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Abstract Seeking singularity free solutions are impor-
tant for further understanding black holes in quantum
level. Recently, a five-dimensional singularity free black
hole/topological star was constructed (Bah and Heidmann
in Phys Rev Lett 126:151101, 2021). Through the Kaluza–
Klein reduction, an effective four-dimensional static spheri-
cally symmetric charged black hole with scalar hair can be
obtained. In this paper, we study shadow of this charged black
hole with scalar hair in terms of four kinds of observers,
i.e., static observers, surrounding observers, freely falling
observers, and escaping observers in four-dimensional space-
time. For a spherically symmetric black hole, the shadow is
circular for any observer, but the shadow size depends on the
motion status of the observer. On the other hand, the effect of
plasma is also investigated by a simple model. The radius of
the photon sphere depends on the plasma model. Most impor-
tantly, we find that the shadow sizes do not monotonically
decrease with r in some cases.

1 Introduction

The detection of gravitational waves by LIGO and Virgo
collaborations [1] and the imaging of black hole shadow by
Event Horizon Telescope (EHT) [2–7] strengthen our ability
to detect the strong gravity regime. This also enhances our
ability to test some fundamental physical problems, e.g., do
singularities exist [8–11]? Classically, a spacetime singular-
ity locates at r = 0 for a spherically symmetric black hole.
However, from the quantum point view, spacetime should
be regular. Some ultra-compact objects such as gravastars
[12], boson stars [13], wormholes [14–17] have been pro-
posed to mimic black holes in the classical description, see
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Ref. [18] for a review. However, these objects either need
exotic matters or do not have a UV origin. On the other
hand, string theory provides us some horizonless models
which resemble black holes up to Planck scale above hori-
zon and have smooth microstate geometries, such as fuzz
balls [19]. Usually, these horizonless models need a lot
of degrees of freedom in supergravity theories. And it is
difficult to relate them to astrophysical observations, e.g.,
quasinormal modes [20] and the deviations from mutlipole
moments [21,22]. Recently, Ibrahima Bah et al. proposed a
five-dimensional topological star/black hole model based on
a five-dimensional Einstein–Maxwell theory [23,24]. In this
model, the spacetime is smooth in microstate geometries and
similar to the classical black hole in macrostate geometries.
So it is interesting to study their observable effects. Actually,
the motion of a charged particle in this background has been
studied in Ref. [25]. Through the Kaluza–Klein reduction, the
five-dimensional Einstein–Maxwell theory has been reduced
to an effective four-dimensional Einstein–Maxwell-Dilaton
theory which possesses a static spherically symmetric solu-
tion [21,22]. Based on the solution, we can study the observ-
able effects, such as gravitational wave physics and black
hole shadow. This will help us to understand the charged
black hole better.

We know that, nothing can escape from a black hole in
the classical physics, even photons can not. However, due
to the strong gravity, the trajectories of photons are curved.
So, we can observe photons around the black hole (even
that of behind the black hole). Especially, there is a region
where photons surround the black hole in unstable circle
orbits. This region is usually called the photon sphere. For
a Schwarzschild black hole, the photon sphere locates at
r = 3M . In principle photons at this sphere can orbit the
black hole forever, but any small perturbation will cause them
fall into the black hole or escape to infinity. The shadow size
and shape are determined by the photon sphere. The trajec-
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tory of photons around a Schwarzschild black hole has been
studied [26–30]. Bardeen investigated the shadow of a rotat-
ing Kerr black hole in Ref. [31]. Usually, the shadow of a
spherically symmetric black hole is circular for any observer,
and for a rotating black hole the shape will deviate from
a sphere. Various of observables have been constructed in
order to study the shadow shape and deformation systemati-
cally [32–39]. Recently, Chang et al., proposed an approach
to describe the size and deformation of shadows using astro-
physical observables [40–42]. This formalism was used to
study the shadow of a rotating Hayward-de Sitter black hole
[43].

The first picture of M87* was taken by EHT in 2019 [2–7].
This is the first time that black holes were observed directly.
It strengthens the confidence of physicists a lot. With this
result, one can study more fine structure near the black hole.
Recently, the polarization of the ring and magnetic field struc-
ture near the horizon was studied based on the first picture
of M87* [44,45]. Up to now, black hole shadows and gravi-
tational lensing have been studied widely [46–67].

Usually, one considers a black hole in vacuum, for which
the photon will orbit the black hole in null geodesics. How-
ever, our universe is filled with matters, which will affect
the trajectory of photons [68]. So it is important to study the
shadow in nonvacuum environment. One of the most com-
mon matters in the universe is plasma. It is a dilute medium
existing around black holes. For a spherically symmetric
black hole, the spherically symmetric plasma only affects the
size of the black hole shadow, but for a rotating black hole the
shadow shape will also be affected [62,69–80]. Besides, the
existence of plasma might cause superradiant instability [81–
83]. And it will also hinder our ability to test the strong-field
gravity [84].

In this paper, we will study the shadow of the four-
dimensional static spherically symmetric charged black hole
with scalar hair observed by four kinds of observers whose
motion statuses are static, surrounding the black hole with cir-
cular geodesics, freely falling into/escaping from the black
hole from/to infinity in the radial direction with and without
plasma. We find that without plasma, the shadow size will
not monotonically decrease with r for the radial freely falling
observer. The existence of plasma will affect the position of
the photon sphere and will cause the shadow size smaller. In
some cases, the photon sphere will disappear. The nonmono-
tonically decreasing phenomenon is also found for the case
with plasma.

This paper is organized as follows. In Sect. 2, we give
a brief review on the charged black hole with scalar hair. In
Sect. 3, we calculate the photon sphere of this black hole with-
out plasma. We study the shadow size of the charged black
hole with scalar hair in terms of astrophysical observables
with four kinds of motion statuses in Sect. 4. In Sect. 5, we

study the effect of plasma through a simple model. Finally,
we give the conclusions in Sect. 6.

2 The charged black hole with scalar hair

We start with a five-dimensional Einstein–Maxwell theory.
The action is given by

S =
∫

d5x
√−g

(
1

2κ2
5

R − 1

4
FMN FMN

)
, (1)

where κ5 is the five-dimensional gravitational constant and F
is the electromagnetic field tensor. Hereafter, we use capital
Latin letters M, N . . . to denote the five-dimensional coordi-
nates, Greek letters μ, ν . . . to denote four-dimensional coor-
dinates. The extra dimension is a warped circle with radius
Ry . The spherically symmetric metric ansatz is [85]

ds2 = − fS(r)dt
2 + fB(r)dy2 + 1

fS(r) fB(r)
dr2

+r2dθ2 + r2 sin2 θdφ2. (2)

With a magnetic flux

F = P sin θdθ ∧ dφ, (3)

the solution can be solved as [85]

fB(r) = 1 − rB
r

, fS(r) = 1 − rS
r

, P = ± 1

κ2
5

√
3rSrB

2
.

(4)

The spacetime has two coordinate singularities located at
r = rS and r = rB , which correspond to a horizon and a
degeneracy of the y-circle, respectively. The degeneracy of
the y-circle at r = rB provides an end to the spacetime. After
some coordinate transformations, Ibrahima Bah et al. found
that a smooth bubble locates at r = rB [23,24]. For rS ≥ rB ,
the bubble is hidden behind the horizon. For rS < rB , the
horizon cannot be reached because the spacetime ends as the
bubble at r = rB . Therefore, for rS ≥ rB and rS < rB , the
solution corresponds to a black string and a topological star,
respectively [23,24].

We can rewrite the metric (2) as

ds2
5 = e2�ds2

4 + e−4�dy2, (5)

ds2
4 = ĝμνdx

μdxν = f
1
2
B

(
− fSdt

2 + dr2

fB fS

+r2dθ2 + r2 sin2 θdφ2
)

, (6)

where

e2� = f −1/2
B , (7)
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and � is a dilaton field. After the Kaluza–Klein reduction,
i.e., integrating the extra dimension y, the five-dimensional
Einstein–Maxwell theory will reduce to a four-dimensional
Einstein–Maxwell-dilaton theory

S4 =
∫

d4x
√

−ĝ

(
1

2κ2
4

R4 − 3

κ2
4

ĝμν∂μ�∂ν�

−πRy

2
e−2� F̂μν F̂

μν

)
, (8)

where R4 is the Ricci scalar constructed by the four-
dimensional metric ĝμν . The four-dimensional gravitational
constant is κ4 = κ5√

2πRy
. The four-dimensional field strength

of the magnetic field can be solved as

F̂ = ± 1

κ4
√

2πRy

√
3rBrS

2
sin θdθ ∧ dφ. (9)

For rB = 0, the metric (6) recovers to the Schwarzschild one.
From the above solution, we can derive the four-

dimensional ADM mass M and the magnetic charge Qm

as

M = 2π

(
2rS + rB

κ2
4

)
,

Qm = 1

κ4

√
3

2
rBrS . (10)

It is also useful to solve (rS, rB) for given (M, Qm). We have
two pairs of (rS, rB),

r (1)
S = κ2

4

8π
(M − M�), r (1)

B = κ2
4

4π
(M + M�), (11)

r (2)
S = κ2

4

8π
(M + M�), r (2)

B = κ2
4

4π
(M − M�), (12)

where M2� = M2 −
(

8πQm√
3κ4

)2
. Note that, in five-dimensional

spacetime, a smooth bubble locates at r = rB ; while in four-
dimensional spacetime, when r < rB , f 1/2

B becomes imag-
inary. So, r = rB is the end of the spacetime. In order to
check whether a spacetime is singular, one can compute the
curvature invariants, such as Zakhary–McIntosh invariant,
Kretschmann scalar and Euler–Poincare invariant [86]. We
give the expression of the Kretschmann scalar of the four-
dimensional effective spacetime considered in this paper

K̂ = R̂μνρσ R̂
μνρσ

= 3

64r7(r − rB)3

[
64r4(rB + 2rS)

2

−64r3rB
(

2r2
B + 13rBrS + 18r2

S

)

+r2r2
B

(
69r2

B + 872rBrS + 2032r2
S

)
+ 477r4

Br
2
S

−6rr3
BrS(51rB + 268rS)

]
. (13)

It can be seen that the spacetime is singular at r = rB . The
metric (6) describes a naked singularity (rB ≥ rS) or a black
hole (rB < rS). On the other hand, the Gregory–Laflamme
instability [87] will enter the black string scenario. How-
ever, the spacetime studied in this paper has a compact extra
dimension. This compact extra dimension will lead to a dis-
crete KK mass spectrum which makes it possible to avoid
the Gregory–Laflamme instability. Stotyn and Mann demon-

strated that if Ry > 4
√

3
3 Qm the solution (12) is stable under

perturbation, but the solution (11) is unstable [85]. So we
only focus on the solution (12) in this paper. In the following
parts, we only study the case rB < rS , that is the charged
black hole with scalar hair.

There is no observational evidence to exclude the mag-
netic charge for this solution, so the shadow of this back-
ground is worthy to study.

3 Photon orbits and photon sphere

In this paper, we are interested in shadow of the four-
dimensional static spherically symmetric charged black hole
with scalar hair. First, we should solve the photon orbits of
this black hole. Geometrically speaking, the photon orbits
are null geodesics of the spactime. So, we can get the orbits
by solving the null geodesic equations. However, we know
that the geodesic equations are four coupled second-order
differential equations, so it is difficult to solve them directly.
Compared with this, Hamiltonian approach is a much easier
way. The Hamilton of a photon is given by

H = 1

2
ĝμνPμPν, (14)

where Pμ = dxμ

dλ
is the four-momentum of the photon, and

λ is the affine parameter. With the metric (6) and H = 0, we
obtain

− 1√
fB fS

E2 + √
fB fS(Pr )

2

+ 1√
fBr2

(Pθ )
2 + 1√

fBr2 sin2 θ
L2 = 0, (15)

where we have used Pt = −E and Pφ = L with E and L the
conserved quantities for the Killing vectors (∂t )

μ and (∂φ)μ,
respectively. We can separate the radial part and the angle
part of Eq. (15) as follows

− r2

fS
E2 + fB fSr

2(Pr )
2 = −K ,

(Pθ )
2 + L2

sin2 θ
= K , (16)

where K is a constant. Then, we have
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(Pθ )
2 = K − L2

sin2 θ
,

(Pr )
2 = E2

fB f 2
S

− K

fB fSr2 . (17)

Now, we can write the four-momentum uniformly as

Pt = E√
fB fS

,

Pr = E

√
1 − fS

r2 κ,

Pθ = E

fBr2

√
κ − b2

sin2 θ
,

Pφ = Eb√
fBr2 sin2 θ

, (18)

where we have defined κ ≡ K
E2 and b ≡ L

E . For the null
geodesics which can reach infinity, the parameter b is the
impact parameter. For large b, the light ray can escape from
the black hole. While for small b, the light ray will fall into
the black hole. For the critical case, the photon will orbit to
the black hole in a circle forever. The region of these circles
is the photon sphere. Note that, the photon sphere is unstable,
any perturbation will result in that the photon falls into the
black hole or escapes to infinity.

We can always choose the orbit of the photon as the equa-
torial plane because of the spherical symmetry. In another
word, we can choose θ = π

2 and Pθ = 0, and so

κ = b2. (19)

The photon sphere is determined by Pr = 0 and Ṗr = 0,
where the dot denotes the derivative with respect to the affine
parameter λ. From Pr = 0 we have

κsp = r2
sp

fS(rsp)
. (20)

From Ṗr = 0 and the Hamilton’s equation Ṗr = − ∂H
∂r we

can derive

r fS
′(r) − 2 fS(r) = 0. (21)

Solving this equation, the radius of the photon sphere can be
obatined as rsp = 3

2rS . This result is similar to that of the
Schwarzschild black hole.

4 Shadow size in terms of astrometrical observables

For a spherically symmetric black hole, the shape of the
shadow is a sphere, the size of the shadow can be described

by the angle between the light rays coming from the photon
sphere of the black hole.

We know that, the observed angle of any two light rays
(kμ,wν) for an observer uμ is

cos � ≡ ĝμνγ
μ
ρ wργ ν

σ k
σ√

ĝαβγ α
ρ wργ

β
σ wσ

√
ĝαβγ α

ρ k
ργ

β
σ kσ

, (22)

where γ
μ
ν is the projector of the observer. That is to say,

γ μ
ν ≡ δμ

ν + uμuν . (23)

Substituting this into Eq. (22), we can rewrite the angle as

cos � = wμkμ

uαwαuβkβ
+ 1, (24)

where we have used wμwμ = kμkμ = 0 and uμuμ = −1.
Based on this, Chang and Zhu proposed an approach to
describe the shadow of a black hole in terms of astrophysical
observables [40–42]. Using three light ryas from the pho-
ton sphere, they defined three angles to describe the size and
the deformation of the shadow. For a spherically symmetric
black hole, the shape of its shadow is circular for any observer
[41]. So we only need to calculate the size of the shadow.

For a black hole shadow, the size depends on the two light
rays from the photon sphere with opposite angular momenta.
The two light rays are described by

kμ = Pμ|κ=κsp,b=bsp ,

wμ = Pμ|κ=κsp,b=−bsp . (25)

Note that, we have denoted bsp = rsp√
fS(rsp)

. So the angle γ

which is related the angular diameter is

cos γ = wμkμ

uαwαuβkβ
+ 1. (26)

Here the angle γ is twice as large as the bending angle α in
Synge’s work [29]. The schematic diagram for the two angles
is shown in Fig. 1.

Fig. 1 Schematic diagram for the angles which are related to the angu-
lar diameter of the shadow. The angle γ is used in this paper. The angle
α is the bending angle in Synge’s work [29]
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Next, we will study the size of the shadow with respect
to four kinds of observers whose motion statuses are static,
surrounding the black hole with a circular geodesic, freely
falling into, and escaping from the black hole in the radial
direction, respectively. We will use the subscripts “st”, “sur”,
“ff”, and “es” to denote quantities of the four kinds of
observers, respectively. First, if the motion of the observer
can be neglected, then such observer can be viewed as a
static observer. Second, if an observer is not far away from
the black hole and surrounds the black hole in a circle, then
such observer is called a surrounding observer. Third, if an
observer is falling into or escaping from the black hole in the
radial direction, then such observer is called a freely falling
observer or escaping observer.

For the static observer, only the t component of the
four-velocity is nonzero. Using the normalization condition
uμuμ = −1, we have

utst = f −1/2
S f −1/4

B . (27)

For the observer who is surrounding the black hole with a
circular geodesic, solving the geodesic equation uν∇νuμ =
0, we obtain

(utsur)
2

(uφ
sur)

2
= 4r fB + r2 f ′

B

fS f ′
B + 2 fB f ′

S
. (28)

Combining with the normalization condition, we can solve
(utsur)

2 and (uφ
sur)

2 as

(utsur)
2 = 4r fB + r2 f ′

B√
fB(4r fB fS − 2r2 fB f ′

S)
,

(uφ
sur)

2 = fS f ′
B + 2 fB f ′

S√
fB(4r fB fS − 2r2 fB f ′

S)
. (29)

For the observer who is freely falling into/escaping from the
black hole in the radial direction, using the same method, we
have

(utff/es)
2 = 1

fB fS2 ,

(urff/es)
2 = 1 − √

fB fS . (30)

Note that, the difference between the observer who is escap-
ing from the black hole and the observer who is falling
into the black hole freely from infinity is a minus sign
in the r -component of the four-velocity. For the freely
falling observer, urff = −√

1 − √
fB fS , and for the escaping

observer, ures = √
1 − √

fB fS .

Substituting these four-velocities into Eq. (26), we can
obtain the angles γ which are related the angular diameters
for the four kinds of observers

cos γst = 1−κsp fS
r2 −b2

sp fS

r2 , (31)

cos γsur = 1−κsp+b2
sp

r2

4r fB fS−2r2 fB f ′
S

4r fB+r2 f ′
B−b2

sp( fS f
′
B+2 fB f ′

S)
,

(32)

cos γff = 1−κsp+b2
sp√

fBr2

(
1√
fB fS

+
√

1√
fB

− fS

√
1

f 2
S

− κsp

fSr2

)−2

, (33)

cos γes = 1−κsp+b2
sp√

fBr2

(
1√
fB fS

−
√

1√
fB

− fS

√
1

f 2
S

− κsp

fSr2

)−2

. (34)

Note that, from Eq. (19) we have κsp equals to b2
sp, so Eq. (31)

can be rewritten as

cos γst = 1 − 2
b2

sp fS

r2 , (35)

from which we have

sin2
(γst

2

)
= b2

sp fS

r2 . (36)

The bending angle in Synge’s work is [29]

sin2 α = b2
sp fS

r2 . (37)

It means that our result is consistent with Synge’s since
γ /2 = α.

From Eq. (31) we can see that, for the static observer, the
angle γ does not depend on the parameter rB ; but for the
other two cases the angle γ depend on rB . That is to say,
this charged black hole with scalar hair can not be distin-
guished from the Schwarzschild black hole by the shadow
for the static observer. We plot the angle γ for four kinds of
observers in Fig. 2. The effects of the parameter rB on the
angle γ for the surrounding observer, freely falling observer,
and escaping observer are plotted in Fig. 3a–c, respectively.
From Fig. 2 we know that, the relation of the angle γ for
the four kinds of observers is γes > γst > γsur > γff. Note
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Fig. 2 The angle γ as a function of the radial distance r/rS for four
kinds of observers. The black line, blue dashed line, red dot dashed line,
and purple dot dashed line correspond to the static observer, surrounding
observer, freely falling observer, and escaping observer, respectively.
The parameter rB is set to rB = 0.5rS

Fig. 3 The angle γ as a function of the radial distance r/rS . The param-
eter rB is set to rB = 0 (the black solid lines), rB = 0.5rS (the blue
dashed lines), and rB = 0.8rS (the red dot dashed lines).aThe surround-
ing observer. b The freely falling observer. c The escaping observer

that, Chang and Zhu concluded that the shadow size tends to
be shrunk for a moving observer [41], but our results shows
that, the angular diameter of the shadow for the escaping
observer is larger than that of for the static observer. As for
the effect of the parameter rB , we see that the larger rB ,
the smaller the angular diameter for the static observer, sur-
rounding observer, and freely falling observer. But for the
escaping observer, the shadow size increases with rB which
can be seen from Fig. 3c.

In order to study the effect of the magnetic charge, we
should use the mass M and magnetic charge Qm to replace
rB and rS of the angle γ in Eqs. (31)–(34). Because the
solution (11) is unstable under perturbation. So we study the
effect of the magnetic charge Qm with the solution (12). We
find that, the shadow size decreases with the magnetic charge
Qm. The plot of the shadow for the static observer is shown in
Fig. 4. This is reasonable, because when we fix the mass M ,
and increase the magnetic charge Qm, the parameter rS will
decrease and rB will increase. So the change of the shadow

Fig. 4 The angle γ as a function of the radial distance r/M for the
static observer. The magnetic charge Qm is set to Qm = 0.1M̄ (the
black solid line), Qm = 0.5M̄ (the blue dashed line), and Qm = 0.8M̄

(the red dot dashed line), and M̄ is defined as
√

3κ4
8π

M

is similar to the case when we fix rS and increase rB . The
plot of the shadow for the static observer is shown in Fig. 4,
and the situations for the other three kinds of observers are
similar to the case of static observer.

5 Effect of plasma on the shadow

We know that our universe is not vacuum. Instead, it is filled
with plasma, a dilute medium which will affect the trajec-
tories of photons. So, it is important to study the effect of
plasma on the shadow. Perlick and Tsupko et al. studied the
influence of plasma on the shadow of a general spherically
symmetric black hole, and it was generalized to an arbitrary
transparent dispersive medium case [69,80].

In this paper, we focus on a nonmagnetized cold plasma.
The frequency ωP of the electron plasma only depends on
the radial coordinate:

ω2
P(r) = 4πe2

m
N (r), (38)

where e, m, and N (r) are the electron charge, electron mass,
and electron number density of the plasma, respectively.
With this, the Hamiltonian of light rays in the plasma can
be derived from the the Maxwell’s equations [88,89],

H = 1

2
(ĝμνPμPν + ω2

P). (39)

Volker Perlick studied a two-fluid plasma model with van-
ishing pressure in the non-magnetized plasma medium [90].
The author ignored the effect of the electromagnetic wave on
the ions, and found that the eikonal equation (the character-
istic equation of the system of evolution equations) leads to
three Hamiltonians. But only the Hamiltonian (39) can lead
to the correct transverse modes. The light rays solved from
the Hamiltonian (39) is the time-like geodesics of the met-
ric ω2

Pĝ
μν which is conformallyequivalent to ĝμν . This can
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be seen from the fact that when the Hamiltonian changes as
follows

H̄ = 1

ω2
P

H = 1

2

(
1

ω2
P

ĝμνPμPν + 1

)
, (40)

the solutions solve from the Hamiltonian equations dxμ

dλ
=

∂H
∂pμ

,
dpμ

dλ
= − ∂H

∂xμ , H(x, p) = 0 do not change [90]. Sep-
arating the radial part and the angle part and using H = 0,
we can get that

− r2

fS
E2 + fB fSr

2(Pr )
2 + √

fBr
2ω2

P = −K , (41)

(Pθ )
2 + L2

sin2 θ
= K . (42)

The four momentum Pμ can be derived in the same procedure
as the previous part

Pt = E√
fB fS

, Pr = E

√
1 − fS

r2 κ − √
fB fSω2

P,

Pθ = E

fBr2

√
κ − b2

sin2 θ
, Pφ = b√

fBr2 sin2 θ
. (43)

Compared with Eq. (18), only the r component is affected
by the plasma. Due to the presence of plasma, the tangent
vectors of light rays are no longer null. So the expression of
the angle γ is changed to

cos γ = wμkμ + uμuνw
μkν

√
(uαwα)2 − ωP(r)2

√
(uβkβ)2 − ωP(r)2

. (44)

As in the previous section, we choose the orbit of the
photon as the equatorial plane, which means θ = π

2 , Pθ = 0,

and κ = b2. The photon sphere is also determined by Pr = 0
and Ṗr = 0. But the situation is more complicated here. Form
Pr = 0 we can derive

κsp = r2
sp

fS(rsp)
−

√
fB(rsp)r

2
sp

ω2
P(rsp)

E2 . (45)

The condition Ṗr = 0 gives

f ′
S

f 2
S

√
fB

− 2

fS
√

fBr
+

(
f ′
B

2 fB
+ 2

r

)
ω2

P

E2 +
(

ω2
P

E2

)′
= 0.

(46)

We can solve the radius of the photon sphere from this
equation, which obviously depends on the frequency of the
plasma.

The angle γ for the four kinds of observers can be written
as

cos γst = 1 −
(

κsp fS
r2 + b2

sp fS

r2

)
1

1 − √
fB fS

ω2
P

E2

, (47)

cos γsur =
−2 f 3/2

B r2
(
r f ′

S−2 fS
) ω2

p

E2 +r f ′
B

(
fSb2

sp−r2
)

−2 fBr
(
f ′
Sκsp+2r

)

f 3/2
B r2

(
r f ′

S−2 fS
)√

G2−F2
+

4 fB fS
(
κsp+b2

sp

)

f 3/2
B r2

(
r f ′

S − 2 fS
) √

G2 − F2
, (48)

cos γff = 1 − 1

r2

√
fB

(
κsp+b2

sp

)
(

1
fS

+√
1−√

fB fS

√
1
f 2
S
− κsp

fSr2 −
√

fBω2
P

E2 fS

)2

− fBω2
P

E2

, (49)

cos γes = 1− 1

r2

√
fB

(
κsp+b2

sp

)
(

1
fS

−√
1−√

fB fS

√
1
f 2
S
− κsp

fSr2 −
√

fBω2
P

E2 fS

)2

− fBω2
P

E2

, (50)

where F and G are defined as

F =
2bsp

√(
fS f ′

B + 2 fB f ′
S

) (
r f ′

B + 4 fB
)

f 3/2
B r

(
2 fS − r f ′

S

) − ω2
p

E2 ,

G =
2 fB

(
f ′
Sb

2
sp + 2r

)
+ f ′

B

(
fSb2

sp + r2
)

f 3/2
B r

(
2 fS − r f ′

S

) . (51)

Next, we consider a specific model to study the effect of
plasma. For simplicity, we consider the spherically symmet-
ric nonmagnetized pressureless plasma around the black hole
[69]. Due to gravity of the black hole, the plasma will fall into
the black hole in the radial direction freely. From Eq. (38)
we know that, we need the number density of electrons in the
plasma to get the plasma frequency.
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We start with the continue equation

∂μ(
√

−ĝρuμ) = 0, (52)

where ρ and uμ are the rest mass density and the four-velocity
of the plasma. Here, we consider the plasma is consist of
neutral hydrogen, and the four-velocity of the electrons is
same to the hydrogen. Because the mass of an electron is
negligible compared to the mass of a proton, so the rest mass
density ρ is

ρ = mpN , (53)

where mp and N are the rest mass of a proton and the number
density of the protons. Because the plasma is neutral, the
number of the electrons is the same to the number of the
protons. Due to the spherical symmetry and the stationary
accretion, the continue equation becomes

d( fBr2ρur )

dr
= 0. (54)

Integrating this equation, we obtain that

fBr
2ρur = −C, (55)

where C is an integral constant. In our case, it denotes
the mass flux of the plasma. We assume that the plasma is
falling into the black hole freely, so the trajectories are radial
geodesics. For our background metric, the r component of
the four-velocity is

ur = −
√

1 − √
fB fS, (56)

With this, we can calculate the mass density as

ρ = C

fBr2
√

1 − √
fB fS

. (57)

Substituting this equation into Eqs. (38) and (53), we can
write the plasma frequency as

ω2
P

E2 = 4πe2ρ

mempE2 = β
r2
S

r2 fB
√

1 − √
fB fS

, (58)

where

β = e2C

mempE2r2
S

. (59)

For this plasma model, we can only solve the radius of the
photon sphere numerically since Eq. (46) is a higher degree
equation of r . We show the result for some values of rB and
β in Table 1. From this table we can see that both the two

Table 1 The radii of the photon sphere with plasma for different values
of rB and β

rB/rSrsp/rSβ 1 2 3 4

0.5 1.50942 1.51958 1.53058 1.54254

0.6 1.50418 1.50867 1.51350 1.51872

0.7 1.49725 1.49434 1.49120 1.48783

0.8 1.48769 1.47448 1.46031 1.44518

0.9 1.47355 1.44450 1.41300

1.0 1.45000 1.39040 1.32009

parameters β and rB have an effect on the radius of the photon
sphere. For smaller rB (the two upper lines in Table 1), the
value of rsp increases with β. But for larger rB (the other four
lines in Table 1), the value of rsp decreases with β. Besides,
when rB is much larger, rsp will be smaller than rB . However,
rB is the end of the spacetime, so this result is unphysical.
That is, for larger rB , the existence of plasma will result in that
the photon sphere disappears. Besides, from Eq. (42) and the
definition of κ we know that κ is nonnegative. This gives an
upper bound of the parameter β, which is listed in Table 2.
This table shows that the upper bound of the parameter β

decreases with rB .
We show the effect of the plasma on the shadow size in

Fig. 5, where we take rB = 0.5rS and β = 1. When r is large,
the sizes of the black hole shadows for four different kinds
of observers satisfy γes > γst > γsur > γff. When r is small,
the shadow sizes for the escaping observer will smaller than
that of for the static observer and surrounding observer, but
it always larger than that of for the freely falling observer.
But the existence of plasma makes the shadow size much
smaller than the vacuum case for the surrounding observer
and freely falling observer. In the presence of plasma, in
some situation, the size of shadow does not monotonically
decrease with r , (see the blue dashed line and purple dot
dashed line in Fig. 5a). In Fig. 5b, we show the effect of
the parameter β on the shadow size, where the observers
locate at r = 3rS . For the escaping observer, the shadow
size increases with the parameter β. For the other three kinds
observers, the shadow size decreases with the parameter β.
Note that, we only consider a specific plasma model and
neglect the pressure of the plasma. More rich plasma models
or dispersive medium models could be studied in future.

The reason for the nonmonotonically decreasing phe-
nomenon is the combined result of uμkμ and kμwμ. With
the presence of plasma, this phenomenon occurs for the
surrounding observer, freely falling observer and escaping
observer. But this phenomenon occurs only when rB is
greater than some values which depends on β for the freely
falling observer. Figure 6 shows that, even β = 0.01, we can
also find the nonmonotonically decreasing phenomenon for
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Table 2 The upper bound of the
parameter β for different values
of rB

rB/rS 0.5 0.6 0.7 0.8 0.9 1.0

Upper bound of β 4.68879 4.50092 4.28685 4.03709 3.73250 3.31718

Fig. 5 The angle γ as a function of the radial distance r/rS of the
observer or the parameter β in the plasma model with rB = 0.5rS . The
black solid lines, blue dashed lines, red dot dashed lines, and purple dot
dashed lines correspond to the static observer, surrounding observer,
freely falling observer, and escaping observer, respectively. a The angle
γ as a function of the radial distance r/rS for four kinds of observers
with β = 1. b The angle γ as a function of the parameter β with the
observers located at r = 3rS

Fig. 6 The angle γ as a function of the radial distance r/rS for four
kinds of observers in the plasma model with β = 0.01. The black solid
lines, blue dashed lines, red dot dashed lines, and purple dot dashed lines
correspond to the static observer, surrounding observer, freely falling
observer, and escaping observer, respectively

the surrounding observer, freely falling observer, and escap-
ing observer.

We compute the shadow size of the Reissner-Nordström
(RN) black hole by this method. We take the event horizon
rp = M + √

M2 − Q2 = 1, and the range of inner horizon

rm = M − √
M2 − Q2 is [0, 1]. Some results are shown

in Fig. 7. From Fig. 7a we can see that, the relation of the
angle γ for the four kinds of observers is γes > γst > γsur >

γff which is the same as the charged black hole with scalar
hair case. And for the four kinds of observers, the angular
diameters decrease with r . The nonmonotonically decreasing
phenomenon does not occur. With the existence of plasma,
the nonmonotonically decreasing phenomenon occurs for the
surrounding observer (the blue dashed line in Fig. 7b) and the
escaping observer (the purple dot dashed line in Fig. 7b), but
it does not occur for the freely falling observer. Compared
with these results, for the charged black hole with scalar hair,

Fig. 7 The angle γ of the RN black hole as a function of the radial
distance r/rp . The inner horizon rm is set to rm = 0.5rp. The black solid
line, blue dashed line, red dot dashed line, and purple dot dashed line
correspond to the static observer, surrounding observer, freely falling
observer, and escaping observer, respectively. a Without plasma. bWith
plasma

the nonmonotonically decreasing phenomenon occurs for the
freely falling observer with and without plasma.

6 Conclusions and discussions

In this paper, we studied the shadow size of the static spher-
ically symmetric four-dimensional charged black hole with
scalar hair in terms of astrometrical observables. Using the
Hamiltonian approach we derived the null geodesics. Based
on the condition of the unstable circle orbit, we obtained the
values of the conserved quantities κ and b. And the photon
sphere locates at 3

2rS in the vacuum case which is similar to
the Schwarzschild black hole. The shadow size of the charged
black hole with scalar hair is determined by two light rays
from the photon sphere with opposite angular momentum.
Then we studied the shadow sizes for four kinds of observers,
i.e., the static observer, surrounding observer, freely falling
observer, and the escaping observer. We derived the angu-
lar diameter for these four kinds of observers in the vacuum
background, respectively. We found that, at the same posi-
tion the escaping observer will observe the largest shadow
and the freely falling observer will observe the smallest one.
The parameter rB of the charged black hole with scalar hair
can also affect the shadow size. For the surrounding observer
and freely falling observer: the larger the parameter rB , the
smaller the shadow size. For the escaping observer, the larger
the parameter rB , the larger the shadow size. Besides, for the
freely falling observer, the shadow size does not decrease
with r monotonically in some cases.

The plasma as a dispersive medium can affect the trajec-
tory of light rays. We got the four-momentum of light rays by
making use of the Hamiltonian of light rays in the plasma. We
took a spherically symmetric nonmagnetized pressureless
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neutral plasma as an example to study the effect of plasma. In
this model, the plasma is consist of neutral hydrogens which
are freely falling into the black hole. We numerically solved
the radius of the photon sphere for different values of the
parameters rB and β. For a smaller rB , rsp increases with β,
and for a larger rB , rsp decreases with β, which was shown in
Table 1. Although when r is large, the shadow sizes for differ-
ent observers also satisfy the relation γes > γst > γsur > γff,
the plasma makes the shadow sizes smaller than the vacuum
case, which can be found in Fig. 5. Especially, the nonmono-
tonically decreasing phenomenon occurs for the surrounding
observer.

Compared with the RN black hole, for the freely falling
observer, the nonmonotonically decreasing phenomenon
occurs for both the case of with and without plasma. How-
ever, this only occurs when the observer is very close to the
black hole, so it is almost impossible to detect it. Neverthe-
less, this is also helpful to understand the black hole. Besides,
we only considered a simple plasma model, we should study
more realistic models in future.
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