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Abstract Formal analogies between the ordinary differ-
ential equations describing geophysical flows and Fried-
mann cosmology are developed. As a result, one obtains
Lagrangian and Hamiltonian formulations of these equa-
tions, while laboratory experiments aimed at testing geophys-
ical flows are shown to constitute analogue gravity systems
for cosmology.

1 Introduction

There are unexpected formal analogies between cosmol-
ogy and geophysical flows. Geophysical flows encompass
many natural phenomena, including lava flows, the creep of
glacier ice, avalanches, and mud slides. In particular, the
analogy between early models of ice caps on a horizon-
tal bed (based on an incorrect ice rheology) [1] and lava
domes is well known [2,3]. These early models of ice caps
treated glacier ice as a perfectly plastic material, i.e., a non-
Newtonian fluid that does not yield under stress until a cer-
tain threshold (“yield stress”) is reached, at which point the
material deforms abruptly. This kind of material is nowa-
days referred to as a Bingham fluid. It is now established
that glacier ice instead deforms under stress according to the
non-linear Glen law relating the strain rate tensor ε̇i j and the
deviatoric stresses ŝ = (si j ) [4]

ε̇i j = A σ n−1
eff si j , (1)

where A is a constant (that depends on the temperature,
crystal orientation, and impurities [5–8]) and

σeff =
√

1

2
Tr

(
ŝ2

)
(2)
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is the effective stress [5–8]. However, Nye’s discussion
applies without change to a Bingham fluid on a horizon-
tal bed, which is a good model for lava flow, and gives the
parabolic profile for a lava dome on horizontal bed [2,3,9].
(The Bingham fluid is the most common non-Newtonian fluid
model to describe lava flows [10–17].) Similarly, the dis-
cussion of perfectly plastic glacier ice on a slope, although
inadequate to describe an alpine glacier because of the wrong
rheology, describes a lava flow on a slope. The corresponding
analytical solution of the relevant fluid-mechanical equations
appears in the pedagogical literature as a simple example of
how different ice rheologies produce different macroscopic
glacier profiles [18]. Unbeknownst to the author of [18], this
solution is perfectly adequate to describe the flow of lava (a
Bingham fluid) on a slope [3]. Below, we elaborate on this
analogy.

The ordinary differential equations ruling the longitudinal
profiles of glaciers, ice caps, lava flows, or lava domes lend
themselves to analogies with the Einstein–Friedmann equa-
tions of cosmology. These equations describe the evolution
of a spatially homogeneous and isotropic universe in general
relativity and constitute the basis of modern (or Friedmann–
Lemaître–Robertson–Walker, in short “FLRW”) cosmology.
The various solutions describing geophysical flows corre-
spond to different matter contents and curvatures for these
universes. Since Lagrangian and Hamiltonians for the equa-
tions of FLRW cosmology are known, the cosmic analogy
provides a way to identify Lagrangians and Hamiltonians for
the differential equations describing the analogous geophys-
ical flows. While analogies between geophysical (and other)
systems have been explored in the literature (see [19] for a
review), the ones that we examine here are novel.

In the next section we recall the basics of FLRW cos-
mology for the reader unfamiliar with it. Sect. 3 discusses a
Newtonian fluid model of a lava front and the relevant cos-
mic analogy, Lagrangian, and Hamiltonian. Section 4 studies
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a Bingham fluid model of a lava front; Sect. 5 discusses Bing-
ham models of lava domes and ice caps on horizontal beds
and their cosmic analogues, while Sect. 6 extends the discus-
sion to flows on a slope and Sect. 7 contains the conclusions.

2 Basics of FLRW cosmology

We follow the notation of Refs. [20,21] and use units in which
the speed of light is unity. G is Newton’s constant and the
four-dimensional metric tensor has signature −+++.

Under the strong mathematical requirements of spatial
homogeneity and isotropy motivated by observations of the
cosmic microwave background permeating our universe and
by large-scale structure surveys, the four-dimensional geom-
etry of the universe is necessarily given by the FLRW line
element, which reads [20–24]

ds2 = gμν dx
μdxν = −dt2

+a2(t)

[
dr2

1 − Kr2 + r2
(
dϑ2 + sin2 ϑ dϕ2

)]
(3)

in comoving polar coordinates xμ = (t, r, ϑ, ϕ), where gμν

is the metric tensor. The scale factor a(t) describes the expan-
sion history of the universe, while the constant K describes
the curvature of the 3-dimensional spatial sections (the 3-
geometries obtained by setting dt = 0). If K > 0 the line
element (3) describes closed universes; if K = 0 it corre-
sponds to Euclidean (flat) spatial sections and, if K < 0, it
describes hyperbolic 3-spaces [20,21,23,24]. All the possi-
ble FLRW geometries fall in these three categories classified
by the sign of the curvature index K .

The cosmological spacetime is curved by its mass-energy
content and different matter contents produce different cos-
mic histories a(t). The cosmic matter is usually described by
a perfect fluid with energy density ρ(t) and isotropic pressure
P(t) related by a barotropic equation of state P = P(ρ). The
scale factor a(t) and the matter variables ρ(t), P(t) satisfy
the Einstein–Friedmann equations (i.e., the Einstein equation
of general relativity adapted to the symmetric line element (3)
[20,21,23,24]

H2 ≡
(
ȧ

a

)2

= 8πG

3
ρ − K

a2 , (4)

ä

a
= − 4πG

3
(ρ + 3P) , (5)

ρ̇ + 3H (P + ρ) = 0, (6)

where an overdot denotes differentiation with respect to the
comoving time t while H(t) ≡ ȧ/a is the Hubble func-
tion [20,21,23,24]. Given any two of these equations, the
third one can be derived from them so that only two equa-
tions are independent. For convenience, here we choose the
Friedmann Equation (4) and the energy conservation Equa-

tion (6) as primary, regarding the acceleration Equation (5)
as derived. Therefore, our analogies between geophysical
flows and FLRW cosmology will be valid only if the energy
conservation Equation (6) is satisfied in addition to the Fried-
mann Equation (4) (which is easy to verify). This happens
when a cosmological fluid satisfying the covariant conserva-
tion Equation (6) fills the analogous universe. If this fluid has
barotropic equation of state P = wρ with w = const., the
conservation Equation (6) corresponds to an energy density
scaling as

ρ(t) = ρ(0)

[a(t)]3(w+1)
, (7)

where ρ(0) is a positive integration constant determined by
the initial conditions [20–24]. Therefore, to establish the
validity of an analogy, it is sufficient to establish the validity
of an equation of the form of the Friedmann equation with
a fluid source satisfying Eq. (7), or sourced by a mixture of
(mutually decoupled) fluids each satisfying Eq. (7).

The Lagrangian and Hamiltonian reproducing the Einstein–
Friedmann equation through the Euler–Lagrange or the
Hamilton equations are obtained from the action of general
relativity with a perfect fluid [20,21]

S =
∫

d4x
√

−g(4)

(
R

16πG
+ ρ

)

= 4π

∫
dr

r2

√
1 − Kr2

∫
dt L (a, ȧ) (8)

(where g(4) is the determinant of the metric gμν), which
yields

L (a, ȧ) = 3

8πG

(
aȧ2 − Ka

)
+ a3ρ, (9)

H (a, ȧ) = 3

8πG

(
aȧ2 + Ka

)
− a3ρ, (10)

where the dynamics is constrained and the “scalar” or
“Hamiltonian” constraint H = 0 must be satisfied [20–22].
We are now ready to build analogies between geophysical
flows and FLRW cosmology.

3 Newtonian model of a lava front

Lava behaves as a Newtonian fluid near a vent, where it is
hotter, but sometimes also the front of a lava flow is modelled
as a Newtonian fluid [3]. An analytical Newtonian lava flow
model is given in [25] and its analogy with FLRW cosmology
was mentioned in Ref. [19], which we report and complete
here.

Assume that the lava front is homogeneous and isother-
mal, that it moves at constant velocity on an inclined plane,
and that it extends indefinitely in the transversal (y-) direc-
tion. Let x be a coordinate down-slope, h(x) be the lava
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thickness measured along an axis perpendicular to the bed,
and L be the length of the flow, and assume h � L (this
shallow fluid approximation is common in glaciology and
in the study of geophysical flows). Let ρ and η be the lava
density and dynamic viscosity coefficient, g the acceleration
of gravity, β the slope of the plane lava bed, and v0 the (con-
stant) velocity of the lava in a reference frame fixed to the
ground [25]. When lava is described a Newtonian fluid, the
Navier–Stokes equations for laminar flow provide the differ-
ential equation for the lava flow profile h(x) [25]

b0 h
3h′ − a0 h

3 + v0 h = 0 (11)

where h′ ≡ dh/dx and

a0 = ρg sin β

3η
, (12)

b0 = ρg cos β

3η
. (13)

The analogy with FLRW cosmology follows from rewriting
this equation as

(
h′

h

)2

= a2
0

b2
0 h

2
+ v2

0

b2
0 h

6
− 2a0v0

b2
0 h

4
, (14)

which is analogous to the Friedmann equation

H2 = − K

a2 + 8πGρ(stiff)

3a6 + 8πGρ(rad)

3a4 (15)

for a universe with negative curvature filled by a stiff fluid
with equation of state P(stiff) = ρ(stiff) and a radiation fluid
with P(rad) = ρ(rad)/3 (which has negative energy density, a
fact that would be unacceptable in realistic cosmology but is
rather immaterial in our formal analogy). The map between
lava front and cosmology reads

K = −
(
a0

b0

)2

= − tan2 β, (16)

8πGρ(stiff) = 3v2
0

b2
0

= 3

(
3ηv0

ρg cos β

)2

, (17)

8πGρ(rad) = −6a0v0

b2
0

= −18v0η sin β

ρg cos2 β
< 0. (18)

The well-known Lagrangian of the analogous FLRW uni-
verse indicates the Lagrangian for the lava flow problem

L
(
h, h′) = h h′2 − 2a0v0

b2
0h

+ v2
0

b2
0h

3
+

(
a0

b0

)2

h. (19)

Since L does not depend explicitly on x , the corresponding
Hamiltonian

H = h h′2 + 2a0 v0

b2
0h

− v2
0

b2
0h

3
−

(
a0

b0

)2

h (20)

is conserved. Equation (14) for the lava flow profile is recov-
ered by setting H = 0 (this is the Hamiltonian constraint of
the Einstein equations).

An analytic solution of Eq. (11) is [25]

x0 − x = H0 cot β

[
tanh−1

(
h

H0

)
− h

H0

]
, (21)

where 0 ≤ x ≤ x0 and

H0 =
√

3η v0

ρg sin β
=

√
v0

a0
=

√
2ρ(stiff)

|ρ(rad)| . (22)

This equation provides the scale factor a(t) of the spatially
curved analogous universe

t0 − t

τ
= tanh−1

(
a

a∗

)
− a

a∗
(23)

for 0 ≤ t ≤ t0, where

τ =
√

2ρ(stiff)

|ρ(rad)| cot β =
√

2ρ(stiff)∣∣ρ(rad)K
∣∣ (24)

anda∗ =
√

2ρ(stiff)/
∣∣ρ(rad)

∣∣. In the limitv0 → 0, the solution
for the (now solidified) lava front degenerates into the trivial
straight line h(x) = (x − x0) tan β. The analogous FLRW
universe is empty and has hyperbolic three-dimensional spa-
tial sections, according to

H2 = − K

a2 , (25)

and linear scale factor a(t) = √|K | t . This is empty
Minkowski spacetime in a hyperbolic foliation (i.e., in accel-
erated coordinates) in which the three-dimensional space is
curved, while the four-dimensional curvature is identically
zero [23,24,26].

The other limit of the solution (21) for β → 0, in which the
bed becomes horizontal, corresponds to zero spatial curva-
ture and the stiff fluid as the only matter source in the cosmic
analogy. This limit is interesting because it reproduces the
shape of an accretionary wedge in the oceanic crust [27].
Setting β = 0 gives [25] the profile

h(x) 	
[

9ηv0

ρg
(x0 − x)

]1/3

(26)

for 0 ≤ x ≤ x0. The scale factor of the analogous spatially
flat expanding universe reduces to the well-known power-law
a(t) 	 a∗ (t − t0)1/3 (with a∗ a positive constant) caused by
a stiff fluid or a free scalar field [28].

4 Bingham fluid model of a lava front

Away from a vent, where lava is cooler and more viscous, it
behaves more like a Bingham fluid. Consider now a Bingham
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model of a lava front flowing down an incline with constant
slope β. Let ρ, η, σ0, g, and v0 be the lava density, viscos-
ity coefficient, yield stress, the acceleration of gravity, and
the speed of the front, respectively. Then the Navier–Stokes
equations give [25]

h′ =
(

1 − 3Hp

2h
− H2

N

h2

)
tan β, (27)

where

Hp = σ0

ρg sin β
, HN =

√
3ηv0

ρg sin β
. (28)

Rearranging this equation one obtains
(
h′

h

)2

= tan2 β

h2 +
(

9H2
p

4
− 2H2

N

)
tan2 β

h4 + H4
N tan2 β

h6

+3HpH2
N tan2 β

h5
− 3Hp tan2 β

h3 . (29)

In the analogous FLRW cosmos, the various terms in the
right hand side of Eq. (29) describe, respectively, hyperbolic
curvature, radiation with energy density ρ(rad) = ρ

(0)
(rad)/a

4,

a stiff fluid with ρ(stiff) = ρ
(0)
(stiff)/a

6, a fluid with w = 2/3,

and a dust with zero pressure and ρ(dust) = ρ
(0)
(dust)/a

3, where

K = − tan2 β < 0, (30)

8πG

3
ρ

(0)
(rad) =

(
9H2

p

4
− 2H2

N

)
tan2 β

= 3
(
3σ 2

0 − 8ηv0ρg sin β
)

4ρ2g2 cos2 β
, (31)

8πG

3
ρ

(0)
(stiff) = H4

N tan2 β =
(

3ηv0

ρg cos β

)2

, (32)

8πG

3
ρ

(0)
(2/3) = 3HpHN tan2 β = 3σ0

cos2 β

√
3ηv0 sin β

(ρg)3 , (33)

8πG

3
ρ

(0)
(dust) = −3Hp tan2 β = − 3σ0 sin β

ρg cos2 β
< 0. (34)

Using the common values for lava σ0 	 2000 Pa, η 	
106 Pa·s, v0 	 10−2 m/s, one obtains 3σ 2

0 − 4ηv0 	
1.2 × 107 Pa, making ρ

(0)
(rad) positive. However the dust fluid

always has negative energy density.

5 Bingham fluid models of lava domes and ice caps on
horizontal beds

A Bingham fluid on a horizontal bed assumes a well-known
parabolic profile found by Nye in early studies of ice caps [1].
Nye used the incorrect Bingham (or “perfectly plastic”) rhe-
ology for ice, which was later superseded by Glen’s law (1)
[4], however the discussion applies without modification to

Bingham fluids spreading on a horizontal background, such
as a lava dome, and is confirmed by experiments [2,3].

Consider an axisymmetric flow and let x point in the radial
direction, while h(x) is the thickness of the (incompress-
ible) material of density ρ at x . The simplified Navier–Stokes
equations for stationary state in the thin lava approximation
give

∂P

∂x
= ρg

∂h

∂x
, (35)

where g is the acceleration of gravity. The basal stress τb =
−ρgdh/dx is equated to the yield stress σ0 everywhere [5–
7], giving

ρg
∂h

∂x
= σ0

h
, (36)

which has as a solution the parabolic Nye profile [1,5–7]

h(x) = H

√
1 − x

L
, H =

√
2σ0 L

ρg
. (37)

By squaring, Eq. (36) is written as
(
h′

h

)2

=
(

σ0

ρg

)2 1

h4 , (38)

which is analogous to the Friedmann equation (4) for a spa-
tially flat (K = 0) FLRW universe filled with blackbody
radiation with equation of state P(rad) = ρ(rad)/3 and energy

density ρ(rad)(t) = ρ
(0)
(rad)/a

4, in the correspondence

h(x) ←→ a(t),
8πG

3
ρ

(0)
(rad) =

(
σ0

ρg

)2

. (39)

This energy density is positive-definite. In the standard cos-
mological description, the scale factor is a(t) = a0

√
t − t0

with an increasing functiona(t); for the ice cap model of Nye,
the downward slope of the ice corresponds to h′(x) < 0 and
0 ≤ x ≤ L . This profile is reflected about the x = 0 axis
to produce an overall profile symmetric under the reflection
x → −x and with a cusp at x = 0, where the left and right
derivatives have opposite signs [5–8]. The ice cap model
corresponding to the correct Glen law (1) for ice rheology
satisfies instead the Vialov equation [5–8,29]

x c(x) = 2A

n + 2

(
ρgh

∣∣∣∣dhdx
∣∣∣∣
)n

h2 (40)

where c(x) describes the accumulation rate of ice per unit
of area normal to the vertical direction and per unit time
(volume of ice added per unit time and per square meter, i.e.,
a flux density), n = 3 for ice creep, and A is the constant
appearing in the Glen law (1). The Vialov profile is obtained
for c = const.≡ c0,

h(x) = H

[
1 −

( x

L

) n+1
n

] n
2(n+1)

, (41)
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where H = h(0), h(L) = 0, and

L = H2

2
n

n+1

[
2A

(n + 2)c0
(ρg)n

] 1
n+1

(42)

(the Lagrangian formulation and cosmic analogy for this
equation are presented in [19,30]).

In the limit n → +∞ of plastic ice, the Vialov equa-
tion (40) reduces to (38) while the Vialov profile (41)
becomes the parabolic Nye profile (37) [5,29].

6 Lava dome on a uniform slope

Consider now the flow of a Bingham fluid over a plane of
uniform slope β, in stationary state and in the shallow lava
approximation, building a dome on this slope [9]. The same
problem has been approached in glaciology by studying an
ice sheet made of plastic ice on a slope [18], although for
purely pedagogical purposes since the correct rheology is
given by Glen’s law (1) instead of plastic ice. The result of
[18] is

hh′ − h sin β + h0 = 0 , h0 = τb

ρg
. (43)

This equation has the analytical solution (for arbitrary large
slope angles β) [18]

x(h) = L + h

sin β
+ h0

sin2 β
ln

(
1 − h

h0
sin β

)
, (44)

which satisfies the boundary condition h = 0 at x = L .
There is a difference between ice caps and lava flows.

While precipitation on a glacier is distributed (as described
by the function c(x)), lava erupts from a vent and one must
describe both down-slope and up-slope flows from this vent,
as is done in theoretical descriptions, which commonly leads
to two solutions of the relevant differential equation [3].
Although not considered in [18], the up-slope solution can be
recovered by changing the sign of the basal stress τb, there-
fore of h0, in Eq. (43). Osmond & Griffiths [9] study a silicic
lava dome on a slope (silicic lava has relatively low tem-
perature and high viscosity). The lava thickness h(t, x, y)
satisfies the equation [3,9]
(

∂h1

∂x
− sin β

)2

+
(

∂h1

∂y

)2

=
(

σ0

ρgh cos β

)2

(45)

where one assumes symmetry about the y = 0 line which,
by continuity, results in ∂h1/∂y = 0 on the line x = 0. Here
h1(x) is the vertical position of the lava, not its thickness h
[3,9], to which it is related by h = h1 cos β. Solving for the
longitudinal lava profile along the x = 0 line and using the
rescaled variables

x̄ ≡
(ρg

σ
sin2 β cos β

)
x, (46)

ȳ ≡
(ρg

σ
sin2 β cos β

)
y, (47)

h̄1 ≡
(ρg

σ
sin β cos β

)
h, (48)

Osmond and Griffiths find the solution [3,9]

x(h) =
⎧⎨
⎩
h̄1 − H̄1 + ln

(
1−h̄1
1−H̄1

)
if x ≥ 0,

h̄1 − H̄1 − ln
(

1+h̄1
1+H̄1

)
if x ≤ 0,

(49)

which satisfies the boundary condition h̄1 = H̄1 at x = 0,
and where the flow has length L̄1 = − ln

∣∣1 − H̄2
1

∣∣ and width

W̄1 	 2

(
1 −

√
1 − H̄2

1

)
[3,9]. This solution coincides with

the solution (44) of [18] for perfectly plastic ice and was
rediscovered in Ref. [31] together with the Nye profile (37).

The cosmic analogy is obtained by rewriting Eq. (44) as
(
h′

h

)2

= sin2 β

h2 + h2
0

h4 − 2h0 sin β

h3 , (50)

which is analogous to the Friedmann equation

H2 = − K

a2 + 8πG

3

(
ρ

(0)
(rad)

a4 + ρ
(0)
(dust)

a3

)
(51)

where

K = − sin2 β, (52)
8πG

3
ρ

(0)
(rad) = h2

0, (53)

8πG

3
ρ

(0)
(dust) = −2h0 sin β < 0. (54)

The effective Lagrangian and‘ Hamiltonian for the lava flow
obtained from the analogy are

L = h h′2 + h sin2 β + h2
0

h
− 2h0 sin β, (55)

H = h h′2 − h sin2 β − h2
0

h
+ 2h0 sin β, (56)

and Eq. (43) is obtained by imposing the Hamiltonian con-
straint of general relativity H = 0.

The width of the lava flow in the transverse y-direction is
obtained [9] for ∂ h̄1/∂ x̄ 	 0, which leads to

1 +
(

∂ h̄1

∂ ȳ

)2

= 1

h̄2
1

(57)

and to another cosmic analogy through the analogue of the
Friedmann equation
(
h̄′

1

h̄1

)2

= − 1

h̄2
1

+ 1

h̄4
1

(58)

(where now a prime denotes differentiation with respect to
ȳ), which describes a spatially closed (K = +1) universe
sourced by blackbody radiation. The solution of [9]

123



130 Page 6 of 8 Eur. Phys. J. C (2023) 83 :130

ȳ(h̄1) = ±
(√

1 − h̄2
1 −

√
1 − H̄2

1

)
, (59)

which can be inverted as

h̄1(ȳ) =
√

1 −
(
ȳ ∓

√
1 − H̄2

1

)2

, (60)

is a classic solution of FLRW cosmology [28] and can be
rewritten in the parametric form

h̄1(η) = sin η, (61)

ȳ(η) = ±
√

1 − H̄2
1 + cos η, (62)

where the parameter η corresponds to the conformal time
of FLRW cosmology defined by dt = adη. This FLRW
universe begins at a Big Crunch, reaches a maximum size,
and then shrinks and collapses to a Big Crunch, mirroring the
transverse profile of the lava dome of finite extension. The
corresponding Lagrangian and Hamiltonian are

L1
(
h̄, h̄′) = h̄ h̄′2 − h̄ + 1

h̄
, (63)

H1
(
h̄, h̄′) = h̄ h̄′2 + h̄ − 1

h̄
. (64)

7 Conclusions

The Friedmann equation (4) lends itself to various analogies
[19], including the differential equations ruling lava flows,
because it resembles the energy conservation equation for
a one-dimensional motion. Analogue gravity, in which lab-
oratory scale systems mimic gravitational systems such as
black holes, wormholes, and universes that cannot be recre-
ated in the lab, has become a mature area of science (e.g.,
[64–68]). Analogue gravity systems comprise Bose–Einstein
condensates and other condensed matter systems [32–45],
fluids [46–58], optical systems [59–63] and even soap bub-
bles [73,74] and capillary flow [75]. Specifically, analogues
of FLRW cosmology have been found in Bose–Einstein con-
densates [69–72]. Based on the cosmic analogies presented
here, tabletop experiments studying the flow of Bingham flu-
ids of interest in geophysics, which employ slurries descend-
ing inclines [3], can constitute analogue gravity systems
for cosmology. The most interesting phenomena discovered
in analogue gravity thus far involve wave propagation and
perturbations, which have led to the discovery of analogue
Hawking radiation [55], superradiance [54], and cosmolog-
ical particle production [35], predicted in quantum field the-
ory in curved spacetime and not directly observable in nature,
but other aspects may be disclosed by analogue gravity in the
future.

As seen above, negative energy densities for the cosmo-
logical fluids analogous to geophysical flows do occur some-

times and they are responsible for the appearance of hyper-
bolic functions in the scale factor a(t) (cosmologists are
familiar with hyperbolic functions in the presence of a neg-
ative cosmological constant or of positive curvature index
K [20–24]). While these negative densities would be unac-
ceptable for real fluids in Einstein gravity, they can be viable
in alternative theories where extra degrees of freedom with
respect to general relativity can be described as effective flu-
ids not subject to the usual physical requirements imposed
on ordinary fluids (e.g., [76–78]). The extension of the cos-
mological analogies reported here to scalar-tensor and other
theories of gravity alternative to general relativity will be
pursued elsewhere.
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