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Abstract The strange behaviour of the universe’s dark sec-
tor offers us the flexibility to address cosmological problems
with different approaches. Using this flexibility, we consider
a possible exchange of energy among the dark sector com-
ponents as a viable candidate model. In the present work, we
investigate the interaction between two scalar fields within
the generalization of a two-component chiral cosmology. We
also show that there exists a unique equivalence between
fields and fluids description of interacting dark sector model.
Later, a detailed analysis of the dynamics of the dark energy-
dark matter model with coupling in both kinetic and poten-
tial parts has been performed using a method of qualitative
analysis of dynamical systems. Moreover, the cosmological
viability of this model is analyzed for the potential of an
exponential form via the phase-space study of autonomous
system for various cosmological parameters.

1 Introduction

After the discovery of the accelerated expansion of the uni-
verse at the very end of the twentieth century, various theo-
retical models have been recommended to comply with the
experimentally obtained evidences [1–11] and to set up a new
context for the physics of the future. In the quest to explain
recent cosmological observations, a novel concept of dark
energy with negative pressure has been introduced and stud-
ied closely in the literature [12,13]. The mysterious nature
of this dark entity has multiplied the area of research with a
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focus on uncovering its properties and it has been one of the
hot topics in modern cosmology. Among the various choices
for dark energy (DE), the cosmological constant is the one
that favours the observations most [14]. Nevertheless, as seen
from the theoretical point of view, it consists of two funda-
mental problems in cosmology, (1) cosmological constant
problem [15,16] and (2) coincidence problem [17–21].

To overcome these problems various other canonical
[22,23] and non-canonical scalar field models [24,25] were
introduced. It has been suggested and studied that dark energy
could be dynamic and evolve with time. This feature has
been studied in model where equation of state parameter
ωφ ranges as −1 < ωφ < − 1

3 [22,23,26,27] and leads to
beat the cosmological constant problem. The various other
dark energy scalar field model viz. k-essence, phantom, quin-
tom, tachyon, galileon, and multi-scalar field models [28–
37], where the non-canonical kinetic term appears as a cou-
pling factor have also been studied meticulously and found
to be very useful to ease the coincidence problem. How-
ever, there are recent studies that argue a large class of Dark
Energy Models, including Quintessence and K-essence [38–
41]. More often than not we address those models as dark
energy–dark matter interaction models. Various DE interact-
ing scalar field models [22,25,42–45] and phenomenological
fluid models [46–52] have been set forth and studied in lit-
erature. Another approach to address this issue is based on
modified gravity (see Refs. [53–55] and references therein).

The dynamics of chiral cosmology has been studied ear-
lier in [56–59]. It has been noticed that chiral cosmology can
provide a suitable realm for the description of the multi-scalar
field model and draw the framework where characteristics of
the dark sector universe can be explained under the general-
ization of the chiral cosmological model.
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In our work, we are interested in the background dynam-
ics of field equations in general relativity in a spatial flat
Friedmann–Lemaî tre–Robertson–Walker (FLRW) (homo-
geneous and isotropic) universe. Motivated by quintom
paradigm [60], in our analysis, we aim to study a two-field
interaction model under the chiral cosmological framework.
We consider a case where the coupling factor lives in kinetic
as well in potential parts of the fields. The findings, e.g. in
[61] and the study of [62] show that such DDI models are
indeed more capable than was known up till that can solve
current recurring problems in cosmology, e.g. coincidence
problem and thus, in our opinion, makes it an interesting
study to probe further.

The equivalence between the phenomenological fluid
model and the 2-field scalar field model provides us with the
interaction term which is a mixture of the dark energy field
and dark matter fluid energy density [63]. In such a scenario,
the rigorous form of the Einstein field equations is turned
into an autonomous system of equations by defining prefer-
able dimensionless variables. In particular, we have found
that the simple dynamical system evaluation [13,64] of an
interacting DE–DM model issues the physical validity of the
discussed cosmological DE model in late-time cosmology.
The theory can be applicable to address the current cosmo-
logical problems as long as the background dynamics are
studied, where we notice sufficiently long, extended era of
matter dominated universe to the current era of an accelerated
expanding universe. Additionally, we have examined that the
big rip singularity problem does not appear in our model.
The plan of the work is structured as follows: In Sect. 2, we
describe the chiral cosmology and set up dynamical equa-
tions for the two-field chiral model. In Sect. 3, we consider
a coupled dark energy (DE)–dark matter (DM) model and
obtain evolution equations. Section 4 systematically shows a
one-to-one correspondence between the fluid and field theory
approaches. The principal analysis of our work is presented
in Sect. 5. It explains the formulation of an autonomous sys-
tem consisting of non-linear coupled differential equations.
The examination of critical points of the system and their
stability analysis have also been shown in this section. In
the subsection, we show the graphical representation of the
obtained results to complement the physical viability of the
model. The final Sect. 6, summarizes the present work and
outlines the conclusion.

2 Chiral cosmology

The gravitational action integral for the chiral cosmological
model reads as:

S =
∫

d4x
√−g

(
R

2
− 1

2
gμνFAB(ϕ)∇μϕA∇νϕ

B − V (ϕ)

)
,

(2.1)

where, R is the Ricci scalar. gμν is the metric tensor of the
4-D space-time along with Fab(ϕ) being the second-rank
tensor of chiral space where the scalar field evolve. V (ϕ) is
the potential. Here, we use the natural units where c = 1 and
the reduced Planck mass M2

p = 1
8πG = 1.

The individual variation of Eq. (2.1) w.r.t. the metric tensor
and the scalar fields ϕA brings us the Einstein’s gravitational
field equations and the Klein–Gordon equation as:

Gμν = Tμν ≡ FAB(ϕ)∇μϕA∇νϕ
B

−gμν

(
1

2
gμνFAB(ϕ)∇μϕA∇νϕ

B + V (ϕ)

)
, (2.2)

gμν

(
∇μF

A
B (ϕ)∇νϕ

B
)

− F A
B (ϕ)

∂V (ϕ)

∂ϕB
= 0. (2.3)

The line element for the chiral space is given as:

ds2
c = FAB(ϕ)dϕAdϕB, A, B = 1, 2, . . . , N . (2.4)

2.1 2-Field chiral model

To study the interaction between the dark sector fields, we
consider a two scalar field chiral cosmological model. A pos-
sible interaction in both kinetic and potential parts can be
seen between the two fields [63,65] which can be an effective
mechanism to explain the coincidence problem and cosmo-
logical constant problem. For further analysis of the model
we set,

ϕ1 = φ and ϕ2 = ψ and
F11 = A(φ,ψ), F22 = B(φ,ψ), F12 = C(φ,ψ) =

F21.
Following the analysis in the chiral space, for an isotropic
and homogeneous universe, the space-time (2.4) gives us the
spatially flat FLRW space-time with the line element as

ds2 = −dt2 + a2(t)
(
dx2 + dy2 + dz2). (2.5)

where a(t) defines the scale factor as a function of cosmic
time.

The gravitational action integral (2.1) in the case of two
scalar fields then becomes:

S =
∫

d4x
√−g

(
R

2
− 1

2
gμν A(φ,ψ)φ,μ φ,ν

− 1

2
gμνB(φ,ψ)ψ,μ ψ,ν −gμνC(φ,ψ)φ,μ ψ,ν

− V (φ,ψ)

)
. (2.6)
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Also, Eq. (2.2) provides us the Einstein’s gravitational field
equation as:

Gμν = Tμν ≡ Aφ,μ φ,ν +Bψ,μ ψ,ν +2Cφ,μ ψ,ν

− gμν

(
1

2
gμν(Aφ,μ φ,ν +Bψ,μ ψ,ν +2Cφ,μ ψ,ν )

+ V (φ,ψ)

)
. (2.7)

Furthermore, Eq. (2.3) provides the Klein–Gordon equations
in the FRW universe as:

3H(Aφ̇ + Cψ̇) + ∂t (Aφ̇ + Cψ̇) − 1

2

∂A

∂φ
φ̇2 − ∂C

∂φ
φ̇ψ̇

−1

2

∂B

∂φ
ψ̇2 + ∂V

∂φ
= 0, (2.8)

3H(Cφ̇ + Bψ̇) + ∂t (Cφ̇ + Bψ̇) − 1

2

∂A

∂ψ
φ̇2 − ∂C

∂ψ
φ̇ψ̇

−1

2

∂B

∂ψ
ψ̇2 + ∂V

∂ψ
= 0, (2.9)

where, H = ȧ
a is the Hubble rate.

In the next section, we consider a two scalar fields inter-
acting model where both the fields are coupled to each other.
The coupling can be observed either in kinetic or in potential
or in both parts of the setup Lagrangian. This kind of model
has been considered before as well in literature [33,58,66].
The objective behind studying such a model is to achieve the
negative running of the equation of state (EoS) parameter
which is also consistent with present observational scenar-
ios.

3 Construction of DE–DM interaction model

As inspired by chiral cosmology [56–59], we work with a
model where the parameters in Eq. (2.6) take value as:

A = −1, B = B(φ), C = 0,

for which action integral is given as:

S =
∫

d4x
√−g

(
R

2
+ 1

2
gμνφ,μ φ,ν

− 1

2
B(φ)gμνψ,μ ψ,ν −V (φ) − αφ2ψ2

)
. (3.1)

One of our prime goals is to work on assimilating DE–DM
interaction in action (3.1). In order to accomplish our goal to
design a DE–DM interaction (DDI) model, we here, consider
one of the fields as a dark energy candidate and another one
as a dark matter candidate. The details about the roles played
by the fields have been discussed in the following section.
The last term in Eq. (3.1) represents an interacting potential.

Now, from the line element (2.5) and modified action (3.1),
the dynamical field equations for the fields φ and ψ are given,
respectively, as in Eqs. (3.2) and (3.3)

∇μ∇μφ + B,φ

2
∇μψ∇μψ + 2αφψ2 + V,φ = 0, (3.2)

∇μ∇μψ + B,φ

B
∇μψ∇μφ − 2αψφ2B−1 = 0, (3.3)

where, ‘,φ’ denotes the partial derivative w.r.t φ. Whereas the
Friedmann equations are given as in Eqs. (3.4) and (3.5)

3H2 = −φ̇2

2
+ B(φ)

2
ψ̇2 + V (φ) + αφ2ψ2, (3.4)

2Ḣ + 3H2 = −
(−φ̇2

2
+ B(φ)

2
ψ̇2 − V (φ) − αφ2ψ2

)
.

(3.5)

The field-theoretic description of dark energy coupled to dark
matter treats both components as scalar fields. As the inter-
action is proposed between these fields, it is observed that
the dark energy (DE) and dark matter (DM) do not satisfy
the energy–momentum tensor conservation equation inde-
pendently, instead, they satisfy the local conservation equa-
tion in the form given as:

− ∇μT (φ)
μν = Qν = ∇μT (ψ)

μν , (3.6)

where,

Qν = ∇μT (ψ)
μν = −

(
B,φ

2
∇ξψ∇ξψ + 2αφψ2

)
∇νφ, (3.7)

stands in for the energy transfer between dark energy and
dark matter in interacting dark zone. Here, T (ψ)

μν and T (φ)
μν

play the role of energy–momentum tensor of field ψ and
field φ, respectively.

Now, evolved from Eq. (3.7), we can write the conserva-
tion equations for the fields φ and ψ in FLRW space-time,
respectively, as:

− φ̈ − 3H φ̇ − B,φ

2
ψ̇2 + 2αφψ2 + V,φ = 0, (3.8)

ψ̈ + 3H ψ̇ + B,φ

B
φ̇ψ̇ + 2αψφ2B−2 = 0. (3.9)

4 Similitude between field theory strategy and
phenomenological fluid strategy

This section outlines one-to-one scaling between the field
theory approach and the fluid approach of the interacting dark
sector. This type of work has also been modeled and studied
before in [63]. We, here, try to illustrate that the interaction
function Qν , achieved with the assistance of classical field
theory exhibits a unique form when the fluid approach has
been applied to the interacting dark sector model under con-
sideration. Also, the above-mentioned interaction function
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Qν has been derived systematically from the series of equa-
tions starting from action integral to conservation equations
where one of the fields becomes dark matter representative.

Now, starting up with the fluid description of the above
interacting DE–DM model, one of the fields can be described
as phenomenological fluid. In such description, it is often
suitable to consider the dark matter as a fluid component.
The openness in the work provides the freedom where we
can assume either the field “φ” or the field “ψ” as a dark
matter entity. Therefore, we substitute the dark matter fluid
for the scalar field “ψ”. Thus, framing the field “φ” as a DE
entity. In this description, the dark matter energy density ρdm
and pressure Pdm are given as follows:

ρdm = −1

2
B(φ)

(
gμν∇μψ∇νψ − 2αφ2ψ2B−1

)
, (4.1)

Pdm = −1

2
B(φ)

(
gμν∇μψ∇νψ + 2αφ2ψ2B−1

)
, (4.2)

whereas the energy–momentum tensor (2.7) for the DDI
model in terms of DE scalar field (φ) and DM fluid can be
revised as:

Tμν =
(

− ∇μφ∇νφ + 1

2
gμν∇ξφ∇ξφ − gμνV (φ)

+ Pdmgμν + (ρdm + Pdm)uμuν

)
, (4.3)

where uμ is termed as the four-velocity of the DM fluid.
As observed in the literature, the phenomenological fluid

models state the interaction term “Qν” as a linear function of
DM density or DE density or both. Also, it has been seen that
the “Qν” in fluid models is not uniquely acquired considering
that it is simply set by hand. Unlike in fluid models, the
interaction term “Qν” derived in (4.4) has a particular form
that is acquired by correlating the fields and fluids for the
present interacting model.

This analogy between fields and fluids assists us to revised
all the dynamical field equations and conservation equations
in terms of dark matter fluid component and dark energy
field component for the DDI model. Here, in our work, we
consider dark matter as a pressure-less entity.

Now, from Eq. (3.7), interaction function Qν can be
revised as:

Qν =
(
B,φ

B
− 2

φ

)
ρdm

2
∇νφ, (4.4)

and the Friedmann equations and the conservation equations
in the FLRW space-time then revised, respectively, as in (4.5)
and (4.6)

3H2 = ρdm − φ̇2

2
+ V (φ),

3H2 + 2Ḣ = −
(
Pdm − φ̇2

2
− V (φ)

)
. (4.5)

−φ̈φ̇ − 3H φ̇2 + V,φ φ̇ = Q,

ρ̇dm + 3Hρdm = −Q. (4.6)

Here, it is noted that the DE component “φ” has negative
kinetic term, thus it is phantom field. Though the phantom
field “φ” exhibits instabilities in quantum field arena [67,68],
could be stable in classical field theory and may clearly be
represented by a scalar field with negative kinetic energy
term (Eq. 4.5). In such models, the evolution of the universe
is phantom dominated with ωφ < −1 [69]. It is interesting
to know that the cosmological evolution of ωφ (w.r.t. red-
shift(z)) less than −1 is very much acknowledged by the
observations [70–75]. Though this feature can exhibit an
unusual dynamics as it violates the energy conditions [67,76–
78], the exotic form of dark energy in terms of phantom fields
are profoundly studied in the literature seeing the approval
from latest observational findings [74,75,77] and leads to
the required current accelerated expansion of the universe.
(Nevertheless, it has been investigated [67,79] that it is not
harmless for an energy component to violate the dominant
energy condition (DEC) or weak energy condition (WEC)
that too for a finite time period.) So, here, the motivation to
consider such an exotic form of energy is strongly driven by
the observations.

It can also be realized from the EoS parameter less than
−1 that the phantom energy density may rise to diverge with
time, possibly causing big rip singularity in finite time in
future [80,81]. However, it has been shown by various studies
that this can be over-passed, for details see [82,83]. However,
in this work, we have shown that the problem of big rip
singularity does not occur.

5 Dynamical system formulation

The cosmological equations pertaining to the evolution of an
isotropic and homogeneous universe are purely a network of
ordinary differential equations. An impressive technique to
study such networks is by moulding them into an autonomous
(dynamical) system. The mathematical background behind
the dynamical systems helps us to realize the qualitative fea-
tures of the cosmological model under analysis. To study
the dynamics of the system, we present the following set of
expansion normalized variables

x = φ̇√
6H

, y =
√
V (φ)√
3H

, �m = ρdm

3H2 , (5.1)

where, using Eqs. (4.5) and (4.6) the equivalent form of the
field equations for an interacting DE–DM model become:

x ′ = −
√

3

2

(
λy2 + I

x

)
− 3

2
x(1 + x2 + y2), (5.2)

123



Eur. Phys. J. C (2023) 83 :131 Page 5 of 17 131

y′ = −
√

3

2
(λxy) + 3

2
y(1 − x2 − y2), (5.3)

�′
m = −3�m(x2 + y2) − √

6I, (5.4)

λ′ = √
6λ2x(1 − �λ), (5.5)

k′ = √
6k2x(1 − �k), (5.6)

β ′ = √
6β2x(1 − �β), (5.7)

α′ = −√
6αβx, (5.8)

in which λ, k, β and α are defined as

λ(φ) = − V,φ

V (φ)
, k(λ) = − B,φ

B(φ)
,

β(φ) = − α,φ

α(φ)
, α = α(φ), (5.9)

and the functions �λ, �k, �β . are defined as

�λ = V,φφ V

V,2
φ

, �k = B,φφ B

B,2
φ

, �β = α,φφ α

α,2
φ

. (5.10)

Here, prime denotes derivative with respect to the number of
e-foldings N = ln(a) and ‘,φ’ denotes the partial derivative
w.r.t φ.

We write the scaled interaction term (I) as

I = (2β − k)

2
�mx = 1

3

Q√
6H3

, (5.11)

where ‘�m’ symbolizes the relative density parameter for
the dark matter component. It has been shown in Fig. 5 that
�m varies almost steadily at late times. Please note that this
feature has been taken into account for the further phase-
space analysis of the system in Sect. 5.3.

Also, Eq. (5.1) provides us the Friedmann constraint in
terms of density parameter for dark matter as

1 + x2 − y2 = �m . (5.12)

Now, we compile other cosmological parameters in terms of
dynamical variables (5.1).

The density parameter for the phantom field (DE) can be
written as:

�φ = −x2 + y2, (5.13)

with the equation of state parameter ωφ as:

ωφ = −x2 − y2

−x2 + y2 . (5.14)

Then the effective equation of state parameter for the DE–
DM interaction model becomes:

ωe f f = Pef f
ρe f f

= Pφ

ρφ + ρm
, (5.15)

ωe f f = −x2 − y2, (5.16)

and the deceleration parameter is:

q = −1 + 3

2
(1 + ωe f f ). (5.17)

It can be seen that the acceleration condition is feasible for
negative “q” values i.e., for q < 0, whereas the deceleration
condition is feasible for positive “q” values i.e., for q > 0.

5.1 Critical points and stability analysis

Now, we submit the comprehensive phase-space study of the
dynamical system (5.2)–(5.8) (for such phase-space analysis,
refer [13,64,84]). The 7D autonomous system for an inter-
acting DE–DM model is very much tangled and analysing
the stability of the critical points is again a trickier work. In
order to facilitate the further analysis, an exponential poten-
tial of the form V (φ) = V0eα(φ) = V0ec

′φ is the most suit-
able choice [13,64]. However, for the current study, ‘α(φ)’
is taken to be a non-zero constant to additionally reduce the
dimensionality of the system. By default Eqs. (5.5), (5.7) and
(5.8), then becomes trivial fetching us an apt 4D autonomous
system.

Though such a model has been considered before in [63],
the rigorous fixed-point analysis and stability analysis for
this distinct exemplar has not been performed. Such analysis
is essential to understand the mystifying dynamics of the
observable universe in depth. Following this, we now find
out the critical points and discuss their existence and stability
properties. The system contains four critical points ‘A’, ‘B’,
‘C’ and ‘D’ in the phase space depending on the values of
‘λ’ and ‘β’ as presented in the Table 1. In the following,
we examine the existence and acceleration features of each
of the fixed points corresponding to their eigenvalues in the
parameter space (β, λ) as presented in Table 2.

Critical point A exist for all real values of parameter β.
The point is completely scarce of scalar field φ as there
is no contribution either from kinetic energy or from the
potential energy of the field. For pressure-less DM, the
effective EoS (ωe f f ) vanishes which implies that the point
does not facilitate the condition for accelerating universe.
Following the constraint equation (5.12), the relative den-
sity parameter for DM becomes one and hence the point
can be a representative of the DM-dominated universe in
the past. The critical point A is of non-hyperbolic nature.
For the condition, (β, �m) �= 0, only one of the eigenval-
ues is zero (Table 2). Thus, the critical line corresponding
to the point A fits with the �m axis and the imposition
of the centre manifold theory becomes an impracticable
job (for details, refer [64, Sec. 4.4]). This implies that for
�k < 1, the critical line of the point A acts as a saddle
line but for �k > 1, the eigenvalues show complex nature
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Table 1 The critical points and
cosmological parameters
corresponding to an autonomous
system of an interacting
DE–DM model with an
exponential potential and
constant α

Critical points x y �m �φ k ωe f f

A 0 0 �m 0 2β 0

B −
√

2
3 β 0 1 + 2

3 β2 − 2
3 β2 0 − 2

3 β2

C
−

√
3
2

β−λ

√
− 3

2 +β2−βλ

(β−λ)
3−βλ+λ2

(β−λ)2
−3+β2−βλ

(β−λ)2 0 1
λ
β

−1

D −λ√
6

√
1 + λ2

6 0 1 0 −1 − λ2

3

Table 2 The existence and
eigenvalues of corresponding
critical points

Critical pts. Existence Accel. Eigenvalues

A ∀β No 3
2 , 0,− 3

4 ±
√

3
4

√
3 + 32β2�m(1 − �k)

B ∀β Yes 0,−2β2,− 3
2 − β2, 3

2 − β2 + λβ

C λ
β

> −2 Yes See Appendix

D ∀λ Yes 0,−3 − λ2

2 ,−3 − λ2 + βλ,−3 − λ2,

with the real parts predicting the stability of the point A
as saddle one.
Critical point B is dominated by the kinetic energy of the
scalar field φ. Its existence, like point A, is valid for any
real value of parameter β. The point pictures the existence
of an accelerating solution (ωe f f < − 1

3 ), locating in the
region of parameter space where the condition β2 > 1

2
is being satisfied. This condition can lead us to both,
quintessence and phantom dominated DE accelerating
universe. The critical point B is also non-hyperbolic in
nature like point A and the Centre Manifold Theory can
be employed to reveal the nature of point B.
Critical point C is valid for −2 < λ

β
< 1 in the phase-

space. It exhibits the scaling solution where the ratio
between DE and DM density parameter throws a con-
stant

�φ

�m
= −3 + β2 − βλ

3 + λ2 − βλ
.

The accelerated evolution of the universe for the point C
is possible within the above set limit for λ

β
.

When λ
β

becomes zero. The DE i.e. scalar field ‘φ’ por-
trays the cosmological constant behaviour (ωe f f = −1)
and an accelerated de Sitter universe is achieved.
For 0 < λ

β
< 1 case, ωe f f ranges as ωe f f <

−1, clearly showcasing the phantom DE dominated
behaviour. Whereas, for −2 < λ

β
< 0 case, ωe f f ranges

as −1 < ωe f f < − 1
3 and suits the condition under which

scalar field (DE) behaves as a quintessence field.
Point C is of non-hyperbolic type. Stating this, it is found
that the complexity of the eigenvalues (due to higher
power parameters) and the eigenvectors of the point C
obstructs us from carrying out further analysis, required

to implement the Centre Manifold Theory to decide the
nature of the fixed point. Thus, with a comprehensive pur-
pose, to show the stable properties of this point we fol-
low an analytical approach. We plot the parameter space
regions for the fixed point to be stable and unstable in
Fig. 1. The Fig. 1a portrays the regions of the parameter
space where the point C is stable whereas the Fig. 1b por-
trays the regions of the parameter space where the point
C exhibits instability and the intersection hyper-surface
between these two regions represents the saddle surface.
We now carry out further analysis for fixed-point C
with the help of the Table 1. As can be seen from the
Fig. 1 that at some specific regions of parameter space
where ‘λ’ vanishes and ‘β’ is non-negative, the kinetic
energy becomes negative and the universe exhibits phan-
tom dominated behaviour. On the contrary, in the regions
where ‘β’ becomes zero and ‘λ’ is non-negative, the
kinetic term becomes canonical. Thus, in order to be
dominated by the standard canonical kinetic term, the
point needs to be unstable. Hence, in the ongoing case,
we conclude that though the flow becomes dynamic and
highly unstable, slight fluctuation will resurrect the sta-
bility. The above conclusion substantiates the choice of
action surveyed in the present study, where the fusion
of canonical and non-canonical scalar fields, with little
fluctuation, can introduce both stability and instability
dynamics for the zeroth-order background universe.

Critical point D is completely dominated by scalar field
φ (�φ = 1) in the phase-space. The point D exists for
all real values of λ. For λ2 > −2 limit, it describes an
accelerating solution.
The case in which λ = 0, the scalar field (DE) behaves
as cosmological constant (ωe f f = −1). For the case
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Fig. 1 The allowed range of
parameter [β, λ] space in which
critical point C exhibits a
stability and b instability
characteristics

λ2 > 0, the universe portrays phantom field dominated
behavior. Whereas the case −2 < λ2 < 0, portrays the
quintessence field dominated behavior.
Point D is also a non-hyperbolic type critical point. As
explained in the above case for point B, the linear stability
theory is not sufficient to determine its nature. Therefore,
we apply the centre manifold theory to study the nature
of point D.

5.2 Centre manifold theory

We now examine the stability properties of the above fixed
points B and D.

Critical point B

The Jacobian matrix at the point B can be set as

JB =

⎡
⎢⎢⎢⎢⎣

− 3
2 − 3β2 0 −

√
3
2 β

√
3
2

(
1
2 + β2

3

)
0 3

2 − β2 + βλ 0 0√
2
3 β(3 + 2β2) 0 0 −β

(
1 + 2

3 β2
)

0 0 0 0

⎤
⎥⎥⎥⎥⎦ .

(5.18)

So the eigenvalues of JB are given as 0,−2β2,− 3
2 −

β2, 3
2 − β2 + βλ and the corresponding eigen vectors are

[
1√
6
, 0,

−2β
3 , 1

]T
,
[
−

√
6β

3+2β2 , 0, 1, 0
]T

,

[
−

√
3
2

2β
, 0, 1, 0

]T

and

[0, 1, 0, 0]T .
To apply centre manifold theory, we first perform coordi-

nate transformations such that the critical point moves to the
origin and the system, accordingly changing to

x = X −
√

2

3
β, y = Y,

z = Z +
(

1 + 2

3
β2

)
, k = K .

Here, the parameter �m is replaced with ‘z’ to ease the sym-
bolic notation.

We bring in one more set of coordinates (xt , yt , zt , kt ) in
terms of (X,Y, Z , K ). By using the eigenvectors of the JB ,
we insert the following new coordinate system

⎡
⎢⎢⎣
xt
yt
zt
kt

⎤
⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

√
6β

3+2β2 0

√
3
2

2β
− 1√

6
0 1 0 0
1 0 1 2β

3
0 0 0 1

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎣
X
Y
Z
K

⎤
⎥⎥⎦ . (5.19)

This new coordinate system allows us to transform the
autonomous system (5.2)–(5.4) and (5.6) as⎡
⎢⎢⎣
x ′
t
y′
t
z′t
k′
t

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
A(β) 0 0 0

0 ( 3
2 − β2 + βλ) 0 0

0 0 B(β) 0
0 0 0 0

⎤
⎥⎥⎦

⎡
⎢⎢⎣
xt
yt
zt
kt

⎤
⎥⎥⎦

+
⎡
⎣ non
linear
terms

⎤
⎦ (5.20)

where,

A(β) = β

(−9 + 6β2)

×
[

9
√

6 + 2β(−9 + β(9
√

6 + 2β(−9 + √
6β)))

]
,

B(β) = 1

6(−3 + 2β2)

[
27 − 2β(9

√
6

+ 2β(−18 + β(9
√

6 + β(−9 + 2
√

6β))))

]
.

To find a definitive solution to these equations using standard
methods is an impassable task. Thence, we make a series
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expansion of h(kt ) in the powers of kt . By the definition of
the centre manifold (refer to sec.2.4 of [64]), there exists a
sufficiently regular function ‘h’ such that

⎡
⎣xt
yt
zt

⎤
⎦ = h(kt ) =

⎡
⎢⎣
a1k2

t + a2k3
t + O(kt 4)

b1k2
t + b2k3

t + O(kt 4)

c1k2
t + c2k3

t + O(kt 4)

⎤
⎥⎦ . (5.21)

We differentiate this with respect to ‘N’ and apply the chain
rule which yields

⎡
⎢⎣

dxt
dN
dyt
dN
dzt
dN

⎤
⎥⎦ =

⎡
⎢⎣

2a1kt + 3a2k2
t + O(kt 3)

2b1kt + 3b2k2
t + O(kt 3)

2c1kt + 3c2k2
t + O(kt 3)

⎤
⎥⎦ × [ dkt

dN

]
(5.22)

where, ai , bi , ci ∈ R. As we analyze arbitrary small neigh-
bourhood of the origin, we keep only lowest power terms in
CMT. Comparing lowest powers of non-zero coefficients of
kt from both sides of Eq. (5.22), we deduce the solution as
a1 = C(β, �), bi = 0 and c1 = D(β, �) where, C(β, �)

and C(β, �) can be interpreted from Eqs. (5.23) and (5.25)
respectively.

Thus, we observe that the centre manifold given by the
Eq. (5.21) can be put down as

xt = 1

6

(
− 6 − 8�k − 3

β2 −
√

6(3 + �k)

β

+ −6(7 + 10�k) + 4
√

6(1 + 4�k)β

−3 + 2β2 + 48(6 + √
6β)

(3 − 2β2)2

+ 18(−1 + 2�k)

(3 + 2β2)2

+ 2(6 + √
6β + 2�k(−6 + √

6β))

(3 + 2β2)2

)
k2
t + O(kt

3),

(5.23)

yt = 0, (5.24)

zt = 1

9

(
6(−5 + 9�k) − 3

√
6

β
− 2

√
6(7 + 4�k)β

− 3(−1 + 2�k)(6 + √
6β)

(3 + 2β2)

+ 6(30 − 24�k + 15
√

6β) + 10
√

6�kβ)

(3 − 2β2)

− 144(3 + 2
√

6β)

(3 − 2β2)2

)
k2
t + O(kt

3), (5.25)

and therefore, the flow on the centre manifold obtains the
form as

dkt
dN

= −2(1 − �k)βk
2
t + 4

√
6(1 − �k)β(3 + 2β2)

−9 + 6β2 k3
t

+O(kt
4). (5.26)

We are interested only in the non-zero coefficients of lowest
power terms of kt in CMT as we analyze an arbitrarily small
neighbourhood of the origin. Accordingly, the lowest power
term of the expressions of the center manifold is k2

t which
depends upon the sign of �k and β. For the defined range
of φ : 0 � π , the value of �k does not exceed 1, and that
keeps (1 − �k) a positive quantity during the complete anal-
ysis of point B. By looking at the centre manifold equations,
it has been noted that an analytical approach to understand
the stability and qualitative nature in the neighbourhood of
the non-hyperbolic point B will be unusable, and thus, we
aim to achieve the same with numerical analysis. For this
purpose, we choose the different values of �k and β with
the already prescribed range of �k . The various choices of
these parameter values direct us towards the same form of
the centre manifold and hence, showing the stability analysis
only for one such set of values would be enough to under-
stand its behaviour on the center manifold near the origin.
For the chosen value of β = ±0.5 and �k = −1 the stability
analysis follows as:

If β > 0 then the origin becomes a saddle node and it
is unstable. This signals that the local phase portrait is as
given by Fig. 2a. The behaviour of the vector field near the
origin and the flow on the centre manifold in the zt − kt
plane is the same as Fig. 2a. If β < 0 then the local phase
portrait is as given by Fig. 2b, c for xt − kt and zt − kt planes
respectively. We detect that the origin is a saddle node and
hence it is unstable in nature. The topological equivalence
makes the behaviour of the non-hyperbolic point B in the
old coordinate system similar to the behaviour of the centre
manifold in the vicinity of the origin in the new coordinate
system and that it is unstable due to its saddle nature.

Critical point D

The Jacobian matrix at the point D can be set as

JD =

⎡
⎢⎢⎢⎣

−3 − λ2 −λ
2

√
6 + λ2 −

√
3
2β 0

0 −3 − λ2

2 0 0
0 0 (−3 − λ2 + βλ) 0
0 0 0 0

⎤
⎥⎥⎥⎦ . (5.27)

So the eigenvalues of JD are given as 0,−3 − λ2

2 ,−3 −
λ2 + βλ,−3 − λ2 and the corresponding eigen vectors are[
1, 0, 0, 0

]T ,
[−

√
1 + 6

λ2 , 1, 0, 0
]T ,

[−
√

3
2λ2 , 0, 1, 0

]T and[
0, 0, 0, 1

]T .
We, now modify the coordinates such that the critical point

moves to the origin and the system, correspondingly changes
to

x = X − λ√
6
, y = Y +

√
1 + λ2

6
, z = Z , k = K .
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Fig. 2 The phase portrait in the proximity of the origin for the critical
point B. a Represents the vector field near the origin in xt −kt plane for
β > 0. b and c respectively, represent the vector field near the origin in

xt − kt and zt − kt plane for β < 0. The arrows indicate the flow along
the center manifold (black curve)

Here as well, the parameter �m is replaced with ‘z’ to ease
the symbolic notation.

Subsequently, settling the similar arguments as imple-
mented in the above case, we understand that the centre man-
ifold, in this case too, is given as

xt = 0, (5.28)

yt = 0, (5.29)

zt = 0, (5.30)

and thus, making the flow on the centre manifold vanish as

dkt
dN

= 0. (5.31)

In this event, the data is not adequate to know the stability
properties of point D near the origin. So, a bit different from
the above analysis, we attempt to picture the stability of the
vector field near the origin on each plane. The stability prop-
erties of the vector field on each plane for point D are shown
in Table 3. In the table, we denote, c = βλ − λ2.

In the following subsection, we exhibit the graphical rep-
resentation of the above qualitative analysis of the critical
points with constraints on the DE–DM interaction model.

5.3 Constraints on DE–DM interaction model

The specified form of potential has already simplified the
analysis of an autonomous system for coupled DE–DM
model. However, it has been observed that at late times, the
cosmological parameters show nearly steady behaviour with
‘ln(a)’ variation (the reader can also refer [63]). This suppo-
sition brings us a practicability to constrain the model in such

a way that the term ‘
(

2β−k
2

)
�m’ in the interaction strength

obtained in Eq. (5.11) becomes a constant (C) entity. Here,
we define ‘C’ as a coupling constant. For further analysis of
the phase-space portrait, the choice of the potential and other
parameter values are as mentioned in Eq. (5.32). The physi-
cal motivation behind choosing such set of parameters is that
they facilitate the universe’s current cosmological evolution.
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Table 3 Stability properties of vector field for critical point D

Coordinate plane Stability

xt yt Vector field is stable about xt axis for any real value of λ

xt zt For −3 < −c, vector field is stable about xt axis, for −3 > −c, vector field is unstable about xt axis, for c = 3, vector fields are
nearly parallel to xt axis and obeys stability behaviour about kt axis as shown in the Fig. 3. In the plot the tracking nature of
solutions running from higher zt to lower zt values is observed

xt kt Vector field is stable about xt axis for any value of λ

yt zt For −3 < −c, vector field near the origin is a stable node, for −3 > −c, vector field near the origin is a saddle node, for c = 3,
vector field is stable about zt axis

yt kt Vector field near the origin acts as stable star for any real value of λ

zt kt For −3 < −c, vector field near the origin is a stable node, for −3 > −c, vector field near the origin is a saddle node, for c = 3,
vector field is stable about zt axis

Fig. 3 Vector field projection on xt zt coordinate plane when c = 3 for
fixed point D for λ = 0.5 and coupling constant ‘C’ = 0.04

V (φ) = V0e
α(φ), B(φ) = sin2(φ), k(φ) = −2cot (φ),

α(φ) = c′φ, β = −c′

α
, (5.32)

where ‘φ’ varies between 0 and π . We show the cosmolog-
ical evolution for positive values of coupling constant(C).
Figure 4 represents the plots for the evolution of the relative
density parameter of DE and DM as a function of ‘N’ for dif-
ferent values of coupling constant. The plots clearly show the
DM dominated universe over a long period of time in the past
and then evolve to the DE field(φ) dominated universe. Fig-
ure 4a portrays uncoupled case and the behaviour becomes
analogous to the canonical scalar field. Figure 4b portrays
the behaviour for the coupling constant ‘C’ = 0.04. For such
smaller coupling strengths, we get a completely viable back-

ground cosmological model. Figure 4c indicates the onset
of negative dark energy density parameter for ‘C’ = 0.07
which can clearly be seen in Fig. 4d for further higher val-
ues of ‘C’. We found that for coupling strength ‘C’ > 0.07,
the DE density parameter violates the WEC in the past thus,
setting an upper bound of ‘C’ = 0.07 for λ = 1. The other
allowed values of λ would make no difference on the upper
limit value. Thus, looking at the results we emphasize that
the said violation could be avoided and the current back-
ground dynamics obeying the energy condition (WEC) can
be achieved by pertaining to the small ‘C’ values. Hence, we
follow the smaller couplings to avoid any other such ambigu-
ities. For coupling constant(C) = 0.04, Fig. 4b mirrors the cur-
rent observational measurements of DE and DM density in
the present-day observable universe.1 This may equip us with
derived empirical results of the coincidence problem. Also,
we have observed that for allowed ‘C’ values, the results are
compatible with the current evolution of the dark energy EoS
parameter, “ωφ” (Fig. 7), the effective EoS parameter, “ωe f f ”
(Fig. 8a) and Hubble parameter, “H” (Fig. 8b), respectively
(refer [85–92] and references therein).

The observation of Fig. 5 suggests that the density param-
eter �m changes steadily at late times. Also, to ease the
analysis of the system, we select some particular values of
the parameter ‘k’ along with ‘β’ where the coupling term
(2β−k)

2 �m takes values as C = 0, C = 0.005, C = 0.04. We are
interested in positive values of coupling strength2 and hence
the analysis has been performed only for those values.

Our focus on the late-time cosmological behavior of the
universe makes this feature agreeable to examining the time
evolution of variables x and y in Fig. 6. We observe the dark
energy dominated solution for a coupled DE–DM model for
critical point D represented by a red dot in Fig. 6. All the tra-
jectories moving towards point D signals the stable attractor

1 The dominance of the dark energy over the dark matter takes place at
later time if we further lower the “λ” value.
2 The negative coupling constant produces approximately same results
(the reader can refer [63]).
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Fig. 4 The relative density parameter of DE (�φ) and DM (�m ) with varying N = ln(a) for various values of coupling constant (C)

Fig. 5 Late time evolution of DM energy density for an interacting
DE–DM model

nature of the critical point and the figure exhibits an everlast-
ing late-time accelerated nature of the universe for λ2 > −2.
The phase space portraits are shown for different values of
λ and thus, we reveal that regardless of the initial conditions
the qualitative behavior of the universe at the background
level nearly remains the same. It can also be spotted that
all the trajectories are getting attracted towards a single tra-

jectory and not crossing that specific one. These dynamics
urge us to proclaim that trajectory itself, in this incident, is
acting as an attractor. We call them a late-time acceleration
trajectory similar to an inflationary trajectory (separatrix) in
an inflationary scenario.

Figure 7 presents the cosmological evolution of DE EoS
parameter. It can be seen that in recent times, the dynamics of
the evolution are dominated by the DE field “φ”. We extrap-
olate that the behaviour corresponds to phantom regime. On
the other hand, the dynamics of the effective EoS parame-
ter, ωe f f tracks the quintessence dominated nature “−1 <

ωe f f < − 1
3 ” to phantom dominated nature “ωe f f < −1” in

the present time (Fig. 8a). Hence, the analysis clearly signi-
fies the present time accelerated expansion of the universe.

Furthermore, from the Fig. 7a it can be seen that ωφ attains
larger negative values at the onset of the dark energy com-
ponent domination. This feature results from the coupling
effect on the ωφ behaviour. If we reduce the coupling, the
ωφ becomes less negative (see Fig. 7c, d) as permitted by
the observations [69,93–95]. (Also, It is found that small
coupling “C” have minimal effect on the evolution of den-
sity parameters (refer Fig. 9a)). And if we further increase the
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Fig. 6 The phase space portraits of the dynamical system for an equilibrium point D for λ = 0.1, λ = 0.6 and λ = 0.9 with a coupling constant
‘C’ = 0.04. The horizontal axis represents variable ‘x’ and vertical axis represents variable ‘y’

“C”,3 the feature remains the same (with large negative value)
but gets shift in the future (Fig. 7b). With this knowledge in
mind, we find from the Fig. 9 that there is no appearance
of singularity even in the far future regardless of the size of
the coupling. All these findings are based upon the consid-
eration that whether introduction of interaction and by how
much amount causes any type of singularity or not. Here,

3 Here, we found that dark energy do not overtake the dark matter for
large “C” values which is not physically acceptable scenario. Therefore,
we restrict the coupling to be minimal to achieve the necessary dynam-
ics. Nevertheless, these dynamics again depend upon the constraint put
on the parameter “λ”.

we have observed that irrespective of the coupling consid-
ered, the behaviour of ωφ stabilizes at ∼ −1 at present time
(see Fig. 7). Thus, in our investigation we find with the con-
straints on this EoS parameter that, this particular model of
interaction between dark matter and dark energy gives rise
to the accelerated expansion of the universe at late times and
can also help to avoid the possibility of big rip singularity (if
there is any in the future) since EoS parameter always tends
towards −1 (ωφ → −1) in the present time and even in the
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Fig. 7 The qualitative behaviour of the DE equation of state (ωφ) parameter for different values of coupling constant (C)

Fig. 8 The evolution of the effective equation of state parameter (ωe f f ) and the Hubble parameter (H) as a function of N = ln(a) for an interacting
DE–DM model

future (Fig. 7), giving us an attractor de Sitter like solution
on the large scale.4

To summarize, the constraints on the proposed DE–DM
interaction model restrict the potential and the values of other
parameters facilitating the currently observed evolution of
the universe, as shown in [24,84,96]. The dynamical stability
analysis and the analysis from Figs. 4, 5, 6, 7 and 8 suggest
that with the appropriate choice of parameters β and λ, the
universe exhibits DM dominated nature long enough to let the

4 This has already been investigated in this study.

structure formations to happen. Later, it evolves to DE (field
‘φ’) dominated universe causing an accelerated expansion in
agreement with the current cosmological observations.

6 Conclusions

In this article, we have put forward the representation of
the two-field dark sector model to describe the accelerated
expanding universe and also to test the feasibility of the model
in the background cosmology under the convenience of chi-
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Fig. 9 The variation of density parameter �φ and �m for couplings C = 0.009 and C = 0.04 exhibiting no appearance of future singularity

ral cosmology. We set up a general formulation method to
study 2-field chiral model. Further, approaching this point
of view, to study the dark sector fields’ evolution. We pro-
posed an interacting canonical and non-canonical scalar field
model termed as coupled DE–DM model. We presented that
there is a resemblance between the field theory approach
and phenomenological fluid approach to study the DE–DM
interaction model. This method makes all the cosmological
equations appear in terms of DM fluid and DE scalar field φ,
creating possible scenarios to formulate the dynamical sys-
tem of equations effortlessly. In our case, we have opted not
to surplus the system of equations signaling the radiation-
dominated era and thus, focused on the dark matter and dark
energy dominated period of the universe. We chose this sce-
nario since we are interested in studying the late time cos-
mological behaviour.

Later, we conducted a detailed fixed point analysis and sta-
bility analysis of the dynamical system set up for an interact-
ing DE–DM model. The chosen exponential potential of the
form V (φ) = V0eα(φ) and parameters constraints reduced
the dimensions of the system to make further analysis even
more comfortable. The critical points obtained are of non-
hyperbolic nature. However, the linear stability theory can
still be employed to decide the nature of the points A, B, and
D but vaguely. On the other hand, point C contains cosmo-
logical parameters of higher power terms and the stability
analysis is found to be convoluted.

For the critical point A, we have gained parameter restric-
tions to be �k < 1 indicates the saddle nature of the point
but �k > 1 leaves the stability undetermined. Also, the van-
ishing ωe f f makes this point unsuitable for acceleration. The
critical point B has been analysed with the employment of
the centre manifold theory and its stability features have cor-
respondingly been portrayed in Fig. 2. Point B describes both
quintessence and phantom DE dominated accelerated expan-
sion as seen from Table 1. The cosmological evolution cor-

responding to point C describes the scaling solution and also
describes an accelerated era of the universe for parameters
with −2 < λ

β
< 1 constraint. It is to be noted that for van-

ishing λ
β

, point C nurtures the de Sitter universe. The point
gains the cosmological importance since the late time accel-
erated scaling solution can alleviate the coincidence problem
as well with few constraints on parameters. The Fig. 1 facil-
itate us with the allowed range of parameters to understand
the stable and unstable behaviour of point C accordingly. The
non-hyperbolic critical point D also exhibits an accelerating
universe under λ2 > −2 parameter constraint. Point D has
been analysed with the application of the centre manifold the-
ory and its stability features are corresponding as shown in
Table 3. For specific values of parameter λ, the point is a sta-
ble attractor (Fig. 6) and describes the cosmological constant
or phantom field or quintessence field dominated universe.

To complement the above analysis, in our work, we have
also discussed the graphical presentation of the dynamical
system. In Fig. 4 we studied the evolution of density param-
eters of dark matter and dark energy. We set our analysis to be
short of radiation component supposing that the universe has
encountered a radiation dominated era long before it evolved
to the time period dominated by the dark matter which is
in late time follows the dark energy dominated behaviour
as it is seen from Fig. 4. Figure 5 shows the era where the
evolution of dark matter energy density becomes almost con-
stant after it went through an era that is long enough for all
kinds of structure formation to take place. Later we discussed
the phase-space portrait of the system (Fig. 6) picturing the
stable attractor D determining the late time DE dominated
accelerated evolution of the universe. The evolution of the
equation of state parameters in Figs. 7 and 8a also shows
cosmologically relevant behaviour complimenting the afore-
said analysis of the dynamical system. This investigation also
implies that the occurrence of future singularity problem is
absent and even if there is any it can be cured.
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The above analysis suggests that Chiral cosmological the-
ory can be used to sense the cosmologically viable solutions
in the realm of background dynamics, where we notice a
sufficiently long, extended era of the matter-dominated uni-
verse to an era of an accelerated expanding universe in the
present time. Our next plan is to employ the observational
data analysis methods and be more precise about the param-
eter values encountered in the current study. In the future, we
also plan to investigate other relevant cosmological models
[97–100] under the Chiral theory of cosmology and also plan
to analyze them by bringing in the cosmological experimen-
tal framework.
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Appendix

Since the output corresponding to eigenvalues of critical
point C is too big to handle and it is a tedious task to display
them on the full scale, we struck out a large number of terms
and simply intended to disclose the mannerism in which it
appears during the course of action which makes them incon-
venient to deploy for the analysis of stability behaviour of the
corresponding fixed point.

[
0,

1

(β − λ)4

√
(2592β9 − 1728β11)(β − λ) − 5760β11(β − λ)λ2 + · · · + (96β9λ + · · ·,

1

(β − λ)4

√
−1728β11(β − λ) + (20736β8λ + 72576β7λ2)(β − λ) + · · · + (72β6λ2 + · · ·,

1

(β − λ)4

√
−1728β11(β − λ) + · · · − 10368(β − λ)β4λ7 + (96β9λ + · · · − 1296βλ5) + · · ·

]
.
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