
Eur. Phys. J. C (2023) 83:125
https://doi.org/10.1140/epjc/s10052-023-11251-1

Regular Article - Theoretical Physics

Functional renormalization group flows ofN = 1 supersymmetric
abelian gauge model with one chiral and one vector superfield

Jeremy Echeverria1,a , Maximiliano Binder2,b, Iván Schmidt2,c

1 Instituto de Física, Pontificia Universidad Católica de Valparaíso, Casilla, 4950 Valparaiso, Chile
2 Departamento de Física, Universidad Técnica Federico Santa María, y Centro Científico-Tecnológico de Valparaíso, Casilla, 110-V Valparaiso,

Chile

Received: 22 November 2022 / Accepted: 21 January 2023 / Published online: 7 February 2023
© The Author(s) 2023

Abstract We apply the functional renormalization group
approach to a N = 1 supersymmetric gauge model with
one chiral superfield coupled to a vector U (1) superfield.
We find that the nonrenormalization theorem still works at
leading order in the supercovariant derivative expansion of
the fields. We also find the beta functions and we study the
behavior of its fixed points in the local potential approxima-
tion. Regulators are also discussed.

Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . 1
2 Chiral superfield coupled to U (1) vector superfield . 2
3 The functional renormalization group . . . . . . . . 3
4 Supersymmetric regulators . . . . . . . . . . . . . . 4
5 Supersymmetric and gauge invariant LPA′ truncation 4
6 Flow equations . . . . . . . . . . . . . . . . . . . . 5

6.1 Non-renormalization theorem . . . . . . . . . . 5
6.2 Beta functions and fixed points . . . . . . . . . 5

6.2.1 Callan–Symanzik regulator . . . . . . . . 5
6.2.2 Litim-type regulator . . . . . . . . . . . 5

7 Comments and conclusions . . . . . . . . . . . . . 6
Appendix A Conventions and dimensionless-renormalized

quantities . . . . . . . . . . . . . . . . . . . . . . . 7
Appendix B Operators LPA′ . . . . . . . . . . . . . . 7
Appendix C Anomalous dimensions LPA′ . . . . . . . 9
References . . . . . . . . . . . . . . . . . . . . . . . . 9

a e-mail: jeremy.echeverria.p@mail.pucv.cl (corresponding author)
b e-mail: maximiliano.binder@postgrado.usm.cl
c e-mail: ivan.schmidt@usm.cl

1 Introduction

Supersymmetry is probably the most important formalism
for achieving a unification of the fundamental interactions,
in particular since it is the only symmetry known in which
fermions and bosons are related by its transformations.
Although so far there has been no experimental confirma-
tion of the standard model (SM) particles superpartners in
nature, there still hope that indications will appear at higher
energies, such as at the Large Hadron Collider. The present
situation in particle physics is that the standard model (SM)
has proven to work extremely well; nevertheless, it is not a
unified theory and contains several unexplained parameters,
so this makes us think that there must exist a most general
theory that can explain these shortcomings [1]. Supersym-
metry has been shown to be a possible solution, for example,
to the hierarchy problem [2], the smallness of the cosmologi-
cal constant [3] and the renormalizability of supergravity [4],
among others, in addition to being a key ingredient of string
theory.

Inside supersymmetric models, supersymmetric gauge
theories have an special importance, being the main ingre-
dient to build the minimal supersymmetric model (MSSM)
[5], and being a powerful tool for approaching the quantum
theory of gravity through the gauge-gravity duality [6–8].
The non-perturbative analysis of supersymmetric gauge the-
ories is important in order to investigate the mechanism of
strong-coupling phenomena, some properties of condensa-
tion phenomena, aspects of the symmetry breaking as an
approach to quantum gravity. Because of this it is clear that
we need non-perturbative methods to study all aspects of
explicit supersymmetry.

The functional renormalization group (FRG) has been an
important non-perturbative tool to apply to a wide range of
physical problems [9]. It consist in applying the functional
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approach of the Wilsonian renormalization group [10–13]
and is based in an exact flow equation for a scale dependent
effective average action (EAA) [14–17]. The FRG flow of
supersymmetric models has been studied in supersymmet-
ric quantum mechanics [18] and different types of Wess–
Zumino models [19–21].

Abelian supersymmetric gauge theory is the simplest ver-
sion of a supersymmetric gauge theory and it has been shown
that these types of models can emerges from quantum phase
transitions on topological insulators [22]. In this work we
study the beta functions and fixed points of an abelianN = 1
supersymmetric gauge theory with one chiral superfield in
the FRG approach, using two types of regulators in the local
potential approximation (LPA). The main goal is to provide
a useful way to apply the FRG in supersymmetric gauge the-
ories, being also the first application of it to supersymmet-
ric theories including vector superfields coupled with chiral
superfields. Also is the first step to the study of more elabo-
rated models such as the MSSM.

2 Chiral superfield coupled to U(1) vector superfield

We start with the massless, non interacting Wess–Zumino
model [23] in d = 4

LWZ-free = ∂μφ†∂μφ + iψ̄σ̄ μ∂μψ + F†F. (2.1)

The most general interaction for this model has the form

Lint = W ′(φ)F − 1

2
W ′′(φ)ψ · ψ + h.c, (2.2)

where

W = 1

2
mφ2 + 1

6
yφ3 (2.3)

is the superpotential, an holomorphic function of the scalar
field. Here we only consider massive and yukawa-type terms
(see chapter 5 of [24] for more details). The full lagrangian
for the chiral part of our model is

Lchiral = ∂μφ†∂μφ

+ iψ̄σ̄ μ∂μψ + F†F

+
{
mφF + 1

2
yφ2F − 1

2
mψψ − 1

2
yφψψ + h.c

}
.

(2.4)

On the other hand, we need the gauge part of the lagrangian.
We start with a massless abelian supersymmetric gauge the-
ory with a gauge-fixing term

Labelian-free = −1

4
FμνF

μν

+ i λ̄σ̄ μ∂μλ + 1

2
D2 + 1

2α
AμA

μ, (2.5)

which we are going to couple it to (2) through the covari-
ant derivative Dμ = ∂μ + igAμ, where g is the U (1) cou-
pling constant. There is also necessary to add all possible
renormalizable interactions between the fields that respect
Lorentz, gauge and supersymmetric invariance. Following
chapter 7.3 of [24], the lagrangian of the model is

L = Dμφ†Dμφ + iψ̄σ̄ μDμψ

+ F†F − 1

4
FμνF

μν + i λ̄σ̄ μ∂μλ + 1

2
D2 + 1

2α
AμA

μ

+
{
mφF + 1

2
yφ2F − 1

2
mψψ − 1

2
yφψψ + h.c

}

+ i
√

2g
[
φ†ψλ − φψ̄λ̄

]
+ gφ†φD. (2.6)

It is useful to rewrite Eq. (2) in terms of an ”effective poten-
tial”:

L = ∂μφ†∂μφ + iψ̄σ̄ μ∂μψ

+ F†F − 1

2
∂μAν∂

μAν + 1

2
∂μAμ∂ν Aν + i λ̄σ̄ μ∂μλ

+ 1

2
D2 + 1

2α
AμA

μ − Ueff, (2.7)

where

Ueff = ig∂μφ†Aμφ − igAμφ†∂μφ

− g2AμA
μφ†φ + gψ̄σ̄ μAμψ

−
{
mφF + 1

2
yφ2F − 1

2
mψψ − 1

2
yφψψ + h.c

}

− i
√

2g
[
φ†ψλ − φψ̄λ̄

]
− gφ†φD. (2.8)

The model can also be constructed from a lagrangian defined
over the superspace ([25,26], chapter 4 of [27] and chapters
2 and 3 of [28])

L =
∫

d2θd2θ̄
†e2gV
 + 1

32

∫
d2θWαWα

+ 1

α

∫
d2θd2θ̄V 2 +

∫
d2θ {W (
) + h.c} (2.9)

where 
(x, θ, θ†) is defined as a chiral superfield and sat-
isfies the conditions

D̄α̇
 = 0

Dα
† = 0 (2.10)

where

Dα = ∂

∂θα
+ i(σμ)αα̇∂μ
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D̄α̇ = − ∂

∂θ̄ α̇
− iθα(σμ)αα̇∂μ. (2.11)

The expansion in grassmann variables of the chiral superfield
is


(x, θ, θ̄ ) = φ(x) + √
2θψ(x) + θθF(x)

+ i∂μφ(x)θσμθ̄ − i√
2
θθ∂μψ(x)σμθ̄

− 1

4
∂μ∂μφ(x)θθ θ̄ θ̄ . (2.12)

Moreover, W (
) is a superfunction of the chiral superfields
that gives us the superpotential

W (
) = 1

2
m
2 + 1

6
y
3. (2.13)

On the other hand, V (x, θ, θ†) is defined as a vector super-
field and satisfies the condition

V = V †. (2.14)

This superfield can be transformed through

V → V + i
(
� − �†

)
, (2.15)

where � is a chiral superfield. The transformation (2) is
called aU (1) supergauge transformation and we can semi-fix
it such that it only holds for the usual gauge transformations.
This is known as Wess–Zumino gauge [25] and its expansion
in grassmann variables is

VW-Z gauge = θσμθ̄ Aμ + iθθ θ̄ λ̄ − i θ̄ θ̄ θλ + 1

2
θθ θ̄ θ̄D.

(2.16)

Finally, Wα is the gauge invariant abelian field strength
superfield

Wα ≡ D̄2DαV . (2.17)

Using (2), we can expand e2gV until V 2 terms (see section
4.8 of [27] for more details) and rewrite (2) in a more useful
form for our proposes

L =
∫

d2θd2θ̄
†


+ 2g
∫

d2θd2θ̄
†V
 + 4g2
∫

d2θd2θ̄
†V 2


+ 1

32

∫
d2θWαWα

− 1

α

∫
d2θd2θ̄V 2 +

∫
d2θ {W (
) + h.c}

=
∫

d2θd2θ̄
†


+ 1

32

∫
d2θWαWα − 1

α

∫
d2θd2θ̄V 2 −U (
, V ),

(2.18)

with

U (
, V ) = −2g
∫

d2θd2θ̄
†V


− 4g2
∫

d2θd2θ̄
†V 2
−
∫

d2θ {W (
)+h.c}
(2.19)

the effective potential.

3 The functional renormalization group

The dependence on the scale of the model constants and oper-
ators will be threaded within the frame of functional renor-
malization group. This is constructed through the flow equa-
tion of the effective average action �k , an action functional
that is scale dependent and interpolates between the classical
action at microscopic scales and the quantum effective action
[14]. On a certain scale of energy, where the system does not
receive contributions of energy fluctuations, we introduce the
energy cutoff scale , and when the effective average action
approximates  we shall obtain the classical action, i.e the
fluctuations may be frozen

�k→ = S. (3.1)

On the other hand, if the effective average action approx-
imates to 0, all fluctuations should be consider, i.e it will
be

�k→0 = �. (3.2)

The flow on the energy scale of the effective average action
is obtained from the Wetterich equation [17]

∂t�k = 1

2
STr

{[
�

(2)
k + Rk

]−1
∂t Rk

}
, (3.3)

where t = ln k


and the supertrace denotes sum over all

types of indices and momentum integration. �
(2)
k is the sec-

ond functional derivative of the effective average action with
respect to the fields1:
[
�

(2)
k

]
i j

(p, q) = δ

δ�i (p)
�k

δ

δ� j (q)
(3.4)

1 in momentum space.
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where � is a collection of fields, and for this case, we use
the arrangement

�† = (φ†(q), φ(−q), F†(q), F(−q), D(q), Aμ(q),

ψ̄(q), ψT (−q), λ̄(q), λT (−q))

� = (φ(q), φ†(−q), F(q), F†(−q), D(−q), Aν(−q), ψ(q),

ψ̄T (−q), λ(q), λ̄T (−q)). (3.5)

On the other hand, Rk = �S(2)
k is a matrix containing all

regulator functions and it has the form

�Sk =
∫

d4q�†(q)Rk�(q). (3.6)

4 Supersymmetric regulators

The goal of using the functional renormalization group is that
it preserve supersymmetry in all steps of its implementation.
To guarantee this we need to add a supersymmetric regulating
term �Sk in the formulation of EAA.

The types of regulators that can be used in supersymmetric
theories in the local potential approximation (LPA) has been
studied in, for example [20,21], and we are going to gener-
alize them for vector superfields. Following [20] we use the
regulator term

�Sk =
∫

d2θd2θ̄
†ρ2(D, D̄)


+ 2g
∫

d2θd2θ̄
†ρG(D, D̄)V


+ 4g2
∫

d2θd2θ̄
†ρS(D, D̄)V 2


+ 1

32

∫
d2θWατ2(D, D̄)Wα

+
{∫

d4xd2θ
ρ1(D, D̄)
 + h.c

}

+
∫

d4xd2θd2θ̄V τ1(D, D̄)V . (4.1)

That can be simplified to the form

�Sk =
∫

d2θd2θ̄
†r2(�)


+ 2g
∫

d2θd2θ̄
†rG(�)V


+ 4g2
∫

d2θd2θ̄
†rS(�)V 2


+ 1

32

∫
d2θWαt2(�)Wα

+
{∫

d4xd2θ
r1(�)
 + h.c

}

+
∫

d4xd2θd2θ̄V t1(�)V . (4.2)

The reason for using distinct names for the regulator func-
tions in each term is due to the dimensionless process, as
each function is accompanied by different types of fields
which will contain different wave functions renormalization.
The explicit form of the Rk operator is shown in Appendix
1.
According to [20], we use two types of regulators:

• Callan Symanzik regulator(CS): r1 = t1 = 1 and r2 =
t2 = rG = rS = 0.

• Litim-type regulator(LT): r1 = t1 = 0 and r2 = t2 =
rG = rS =

(
1

q
− 1

)
θ(1 − q2)

for dimensionless and renormalized regulators.

5 Supersymmetric and gauge invariant LPA′ truncation

We study the FRG flows of the LPA′ truncation for this model,
that is, consider the effective potential (2) as scale dependent.
The truncation used for �k is

�k =
∫

d4x
{
Z
∂μφ†∂μφ + i Z
ψ̄σ̄μ∂μψ + Z
F†F

− i ZGgk∂μφ†Aμφ + i ZGgk Aμφ†∂μφ

+ ZSg
2
k AμA

μφ†φ − ZGgkψ̄σ̄ μAμψ

+ i
√

2ZGgk
[
φ†ψλ − φψ̄λ̄

]
+ ZGgkφ

†φD

+ ZV

(
−1

2
∂μAν∂

μAν + 1

2
∂μA

μ∂ν A
ν

+ 1

2α
AμA

μ +i λ̄σ̄ μ∂μλ + 1

2
D2

)

+
[
∂Wk

∂φ
F − 1

2

∂2Wk

∂φ2 ψψ + h.c

]}
, (5.1)

or in superspace formulation

�k = Z


∫
d2θd2θ̄
†


+ ZV

32

∫
d2θWαWα − ZV

α

∫
d2θd2θ̄V 2 −Uk(
, V )

= Z


∫
d2θd2θ̄
†


+ 2gk ZG

∫
d2θd2θ̄
†V
 + 4g2

k ZS

∫
d2θd2θ̄
†V 2


+ ZV

32

∫
d2θWαWα − ZV

α

∫
d2θd2θ̄V 2

+
∫

d2θ {Wk(
) + h.c} . (5.2)
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where (Z
, ZV , Zg) are the wave functions renormalization
and does not depend on the energy scale. Besides we have

Wk = 1

2
mkφ

2 + 1

6
ykφ

3,

ZG = Z
Zg

√
ZV and

ZS = Z
Z2
g ZV . (5.3)

The explicit form of the operator �(2) is shown in Appendix
1.

6 Flow equations

In this section we present the results for the non-renormalization
theorem and the beta functions for the dimensionless gauge
(gk) and Yukawa (yk) couplings, in addition to the dimen-
sionless mass (mk), in the LPA′ truncation. First, we write
(5.1) and (4.2) in momentum space; and then, because the
wave functions renormalization do not depend on the energy
scale, we can restrict all fields to real constants �i (q) =
(
√

2π)4�iδ(q). Finally, in Appendix 1 we show the dimen-
sionless and renormalized form of the functions, which are
used to write the beta functions in a dimensionless form.

6.1 Non-renormalization theorem

If we replace (5.1) in the left side of (3) and we set ψ = ψ̄ =
λ = λ̄ = D = A = 0 we obtain

∂t�k = (
√

2π)4δ(0)∂t

×
[
Z
F†F + ∂Wk

∂φ
F + ∂W †

k

∂φ† F†

]
, (6.1)

thus, we can obtain the flow of the superpotential taking the
F or F† derivative and setting F = F† = 0 respectively.
Doing this we obtain

∂tW = 0, (6.2)

which confirms that the non-renormalization theorem works
in the LPA′ approximation.

6.2 Beta functions and fixed points

In d dimensions the beta functions are

βgk =
(

ηg + d − 4

2

)
gk

βyk =
(

−3

2
η
 − d − 4

2

)
yk,

βmk = (η
 − 1)mk, (6.3)

where ηO = −∂t ln ZO is the LPA′ anomalous dimen-
sion of the operator O and βO = ∂tO is the beta function.
We compute the anomalous dimensions in the same way as
before but setting ψ = ψ† = F = F† = A = λ = λ† = 0
in (3)

∂t�k = (
√

2π)4δ(0)∂t

[
gk ZGφ†φD + ZV

2
D2

]
. (6.4)

We compute the anomalous dimensions using

• η
 taking the φ, φ† derivatives of (6.1) at φ = φ† = 0,
• ηV taking the D second derivative of (6.2) at D = 0,
• ηG taking the φ, φ†, D derivatives of (6.2) at φ = φ† =

D = 0

and using (5) to write

ηg = ηG − η
 − 1

2
ηV . (6.5)

6.2.1 Callan–Symanzik regulator

Using the CS regulator the beta functions in d = 4 are

βCS
yk = 24

√
2π2y3

k

96 + 192π + 48π3 + 6π4 + 3(2 + π)4mk − 16π2(
√

2y2
k − 9)

,

βCS
mk

= − 3(2 + π)4mk(mk + 2)

96 + 192π + 48π3 + 6π4 + 3(2 + π)4mk − 16π2(
√

2y2
k − 9)

,

βCS
gk = 48

√
2π2gk(g2

k + y2
k )

48 + 96π + 24π3 + 3π4 + 3(2 + π)4mk − 8π2(
√

2y2 − 9)
.

(6.6)

The explicit form of the anomalous dimensions in d dimen-
sions are shown in Appendix 1.
In this case we find that the system only exhibit gaussian
fixed points (gk = yk = mk = 0).

6.2.2 Litim-type regulator

Using the LT regulator the beta functions in d = 4 are
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βLT
yk = − 36

√
2π

5
2 (m2

k + 1)y3
k

9
√

π(m2
k − 1)3 + 8

√
2π

5
2 (m2

k + 1)y2
k

βLT
mk

=
√

πmk

(
16

√
2π2y2

k (m
2
k + 1) − 9(2 + π)4(m2

k − 1)3
)

9
√

π(m2
k − 1)3 + 8

√
2π

5
2 (m2

k + 1)y2
k

βLT
gk =

gk
(
m2

k(m
2
k − 1)3

(
144 + π + 72π3 + 9π4 + 216π2

) − 4π2
√

2(7m4
k + 4m2

k − 3)
)

(m2
k − 1)4

(
144 + π + 72π3 + 9π4 + 216π2

) + 8
√

2π2(m4
k − 1)y2

k

. (6.7)

The explicit form of the anomalous dimensions are shown in
Appendix 1. In this case we find non-gaussian fixed points
for gk = 0, yk �= 0 and mk �= 0. We can see in Fig. 1 that
there exists an unstable fixed point at mk = 1 and a stable
one, which changes continuously its position when yk grows.
We can see in Fig. 2 the continuous change in the fixed point
value for different values of yk .

7 Comments and conclusions

We have obtained the beta functions for an abelian supersym-
metric gauge theory in LPA′ with a supersymmetric regular-
ization for two different regulator functions. We found that
the non-renormalization theorem still works when we couple
the chiral superfield with a vector superfield in LPA′. For the
case of Callan–Symanzik-type (CS) regulator we found that
there are no non-gaussian fixed points, i.e, it does not exist a
point {g∗, y∗,m∗} �= {0, 0, 0} for wich βg = βy = βm = 0.
On the other hand, for the Litim-type (LT) regulator we found
that there exists stable non-gaussian fixed points of the form

{g∗,m∗} = {0,m} and unestable non-gaussian fixed points
{g∗,m∗} = {0, 1} for any value of y∗. In the case y = 0 only
exists the unestable fixed point.

Fig. 2 Fixed point, for different values of mk and yk

Fig. 1 Flow diagrams in the gk − mk projection for different values of yk . Here m(g) is represented in the y(x) axis
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Clearly both types of regularizations give completely dif-
ferent results. In the study of the Wess–Zumino models the
CS regulator has been shown to be a non-optimized regulator
[29] in comparison with the optimized LT regulator [30]. In
fact, a mass-type regulator for the vector superfield in the
Wess–Zumino gauge as CS regulator seems not to be a good
option because it does not work to regularized λ and D fields,
because the Wess–Zumino gauge allows that quadratic terms
in vector superfield to be proportional to A2.

The most important contribution of this work has been to
present a useful way to study beta functions of supersymmet-
ric gauge theories in the non-perturbative regime, expanding
previous works in Wess–Zumino models to include vector
superfields, using convenient regulator functions. We have
studied an abelian gauge theory which involves only one
chiral superfield in a LPA′, focusing in the application of the
FRG in this type of models, which in future work can be
generalized to models with more field content and next order
truncations in a superderivative expansion.
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AppendixAConventionsanddimensionless-renormalized
quantities

For momentum space we use the convention

F(q) = 1(√
2π

)d
∫

dd xF(x)eiqμxμ

. (A.1)

In order to write anomalous dimensions and beta functions
in term of dimensionless and renormalized quantities we
defined

mk = Z
kmk,R

yk =
√

(Z
)3k
d−4

2 yk,R

gk = Zgk
d−4

2 gk,R, (A.2)

also we need the regulator functions in a dimensionless form,
for that we redefine

r1 = Z
kr1,R

t1 = ZV kt1,R

r2 = Z
r2,R

t2 = ZV t2,R

rG = ZgZ


√
ZV rG,R

rS = Z
ZV Z
2
grS,R . (A.3)

It is convenient to solve the integrals in Appendix 1 change

the integration variable by qR → q

k
and defining r ′

i,R(q2
R) =

ri,R(k2q2
R). Finally, we omit all R subscripts and primes.

Appendix B Operators LPA′

The way to found the explicit form of the operators Rk and
�

(2)
k is, in first place, write the regulator (4.2) and the action

(5.1) in momentum space, then restrict all fields to real con-
stants �i (q) = (

√
2π)4�iδ(q) and compute the matrix Rk

and the second derivatives of EAA.
In our case, the explicit form of operators are

Rk =
(
RkBB RkBF

RkFB RkFF

)
, (B.1)

where
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RkBB =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

r2q2 + gkrGD + gkrS A2 0 0 2r1 gkrGφ 2g2
k rSφA

0 r2q2 + gkrGD + gkrS A2 2r1 0 gkrGφ† 2g2
k rSφ

†A
0 2r1 r2 0 0 0

2r1 0 0 r2 0 0
gkrGφ† gkrGφ 0 0 t2 0

2g2
k rSφ

†A 2g2
k rSφA 0 0 0 t1 + q2

α
t2 + 2g2

k rSφφ†

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

RkFB =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0
√

2gkrGψT σ 2 0
0

√
2gkrG λ̄σ 2 0 0

0 0 0 0
0 0 0 0
0 0 0 0

gkrG σ̄ μψ̄ gkrG σ̄ μψT 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

RkBF =

⎛
⎜⎜⎝

0 0 0 0 0 gkrG σ̄ μψ

0
√

2gkrGλσ 2 0 0 0 gkrG σ̄ μψ̄T√
2gkrGψ̄T σ 2 0 0 0 0 0

0 0 0 0 0 0

⎞
⎟⎟⎠

RkFF =

⎛
⎜⎜⎝
r2qμσ̄μ + gkrG Aμσ̄μ ir1σ

2 0 0
−ir1σ

2 r2qμσ̄ Tμ + gkrG Aμσ̄ Tμ
√

2gkrGφ†σ 2 0
0

√
2gkrGφσ 2 t2qμσ̄μ 0

0 0 0 t2qμσ̄μT

⎞
⎟⎟⎠ .

In the same way

�k =
(

�kBB �kBF

�kFB �kFF

)
, (B.2)

with

�kBB =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

γ yk F† 0 mk + ykφ† gk ZGφ 2g2
k ZSφA

yk F γ mk + ykφ 0 gk ZGφ† 2g2
k ZSφ

†A
0 mk + ykφ† Z
 0 0 0

mk + ykφ 0 0 Z
 0 0
gk ZGφ† gk ZGφ 0 0 ZV 0

2g2
k ZSφ

†A 2g2
k ZSφA 0 0 0 q2

α
ZV + 2g2

k ZSφφ†

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

�kFB =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 − iyk ψ̄
8π2 σ 2

√
2gk ZGψT σ 2 0

iykψT

8π2 σ 2
√

2gk ZG λ̄σ 2 0 0
0 0 0 0
0 0 0 0
0 0 0 0

gk ZGψ̄σ̄ μ gk ZGψT σ̄ μ 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

�kBF =

⎛
⎜⎜⎜⎝

0 − iyk ψ̄T

8π2 σ 2 0 0 0 gk ZGψσ̄μ

iykψ
8π2 σ 2

√
2gk ZGλσ 2 0 0 0 gk ZGψ̄T σ̄ μ√

2gk ZGψ̄T σ 2 0 0 0 0 0
0 0 0 0 0 0

⎞
⎟⎟⎟⎠

�kFF =

⎛
⎜⎜⎜⎜⎜⎝

Zφqμσ̄μ + gk ZG Aμσ̄μ − i(mk + ykφ†)

4π2 σ 2 0 0

i(mk + ykφ)

4π2 σ 2 Zφqμσ̄ Tμ + gk ZG Aμσ̄ Tμ
√

2gk ZGφ†σ 2 0

0
√

2gk ZGφσ 2 ZV qμσ̄μ 0
0 0 0 ZV qμσ̄μT

⎞
⎟⎟⎟⎟⎟⎠

. (B.3)
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Where

γ =Z
q
2 + ZSg

2
k A

2 + ZGgkD. (B.4)

Appendix C Anomalous dimensions LPA′

In d dimensions, the explicit form of the dimensionless
anomalous dimensions in both regulators are

ηCS

 = −

∫ ∞

0
dq

�d

(2π)d
qd−1

4y2
kα1(1 − ηCS


 + ∂t − q∂q )r1

(α2
1 − q2)3

ηCS
V = −

∫ ∞

0
dq

�d

(2π)d
qd−1

8g2
kα1(1 − ηCS


 + ∂t − q∂q )r1

(α2
1 − q2)3

ηCS
g =

∫ ∞

0
dq

�d

(2π)d
qd−1

4α1
[
3g2

k

(
α2

1 − q2
) − y2

k

(
α2

1 + 5q2
)]

(1 − ηCS

 + ∂t − q∂q )r1

(α2
1 − q2)4

,

(C.1)

where

α1 = m + 2r1.

ηLT

 = −

∫ 1

0
dq

�d

(2π)d
qd−1

× y2
kα2

(
α2

2q
2 + m2

k

)
(−ηLT


 + ∂t − q∂q )r2

(α2
2q

2 − m2
k)

3

ηLT
V = −

∫ 1

0
dq

�d

(2π)d
qd−1 1

(α2
2q

2 − m2
k)

3

{
2g2

kα2αG
[
αG

(
α2

2q
2 + m2

k

)

×(−ηLT

 + ∂t − q∂q )r2

× −α2
(
α2

2q
2 − m2

k

)
(−ηLT

g − ηLT

 − 1

2 ηLT
V + ∂t − q∂q )rG

]}

ηLT
g = −

∫ 1

0
dq

× �d

(2π)d
qd−1 1

(α2
2q

2 − m2
k)

4α2
t{

αt
[
y2
kαt

(
m4

k (r2 − rG) − 8m2
kq

2α2
2αG − q4α4

2 (4 + r2 + 3rG)
)

− g2
kα2

(
α4

2q
4 − m4

k

)
α2
G (3 + 2rG + t2)

]
(−ηLT


 + ∂t − q∂q )r2

−α2
(
α2

2 − m2
k

) [
g2
kα2

(
α2

2q
2 − m2

k

)
α3
G(−ηLT

V + ∂t − q∂q )t2

−αt
(
g2
kα2

(
α2

2q
2 − m2

k

)
αG (4 + 3rG + t2) − y2

kαt
(
α2

2q
2 + m2

k

))
× (−ηLT

g − ηLT

 − 1

2 ηLT
V + ∂t − q∂q )rG

]}
, (C.2)

where α2 = r2 + 1, αG = rG + 1, αt = t2 + 1 and �d =
(2π)

d+1
2

�
[ d+1

2

] is the surface of a d−dimensional sphere.
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