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Abstract We undertake the construction of quadratic parity-
violating terms involving the curvature in the four-dimensional
metric-affine gravity. We demonstrate that there are only 12
linearly independent scalars, plus an additional one that can
be removed by using the Pontryagin invariant. Several con-
venient bases for this sector are provided in both compo-
nents and differential form notation. We also particularize our
general findings to some constrained geometries like Weyl–
Cartan and metric-compatible connections.

1 Introduction

General Relativity (GR) provides the standard geometrical
description of the gravitational interaction by means of the
spacetime metric. A distinctive property of GR that conforms
one of its very foundational aspects is the equivalence princi-
ple, which has recently been tested to an astonishing precision
of 10−15 by the MICROSCOPE collaboration [1]. In accor-
dance with this principle, gravity cannot distinguish between
different types of matter, which thus manifests its universal
character. It is precisely this alluring property what invites to
develop a geometrical framework for gravity. In this context,
frames become an important aspect of the gravitational inter-
action to the extent that they can be promoted to the status of
fundamental objects. Furthermore, the frames are endowed
with an internal Lorentz invariance that naturally introduces a
Minkowski structure in the tangent space. Equipped with this
set-up, it is then natural to use the field-theoretic machinery
to construct gravity as a gauge theory. Since frames are asso-
ciated to general linear transformations, the relevant group
to consider is GL(4,R) that leads to the metric-affine gravity
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(MAG) framework (see e.g. [2]). In this approach, the corre-
sponding gauge field strength of the connection is identified
with the curvature, in terms of which we can build a quadratic
Lagrangian, as in Yang-Mills theory. Such curvature square
Lagrangians have been extensively studied in MAG, both
in the full metric-affine arena as well as in some restricted
frameworks. In most cases, however, emphasis is given to
the parity-preserving sector. Currently, there is a consider-
able growing interest in the parity violation effects in the
high-energy physics and in the gravity theory. The early dis-
cussions of this issue go back to the works of Kobzarev and
Okun [3] and Leitner and Okubo [4–7] in relation with the
search of a possible nontrivial gravitoelectric dipole moment
of elementary particles, see Mashhoon [8] for a review. In
the context of gauge gravity, cosmological applications have
recently been explored for the parity-odd scalar mode within
the spectrum of Poincaré gravity [9]. However, the previ-
ous results were obtained from an action containing only
parity-even invariants. In the gauge gravity approach, the
parity-violating modifications of gravitational models were
considered in [10–13]. It is worthwhile to mention the highly
interesting manifestations of the parity violation effects that
are predicted for gravitational waves [14–19].

In view of the growing interest in parity-violating effects
from the gravity sector, here we undertake a first step towards
the construction of general extensions for the metric-affine
gravity theory [2]. Following the philosophy explained above
of building Yang–Mills type of Lagrangians, we will focus
on the curvature square invariants, thereby generalizing the
recent discussion [20–23] of the torsion and nonmetricity
square and linear curvature models of the Hilbert-Einstein
type.

The structure of the paper: in Sect. 2, we analyze the irre-
ducible decomposition of curvature tensor, thus deriving the
basic building blocks from which in Sect. 3 we construct
the complete set of the parity-odd curvature square invari-
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ants. Some special geometries are considered in Sect. 4. In
Sect. 5, we discuss our results and collect the conclusions.
Finally, in Appendix A, we prove some useful relations.

Our basic notation and conventions are as follows. We
will use the mostly minus signature for the spacetime metric
(+,−,−,−) and the natural units c = 1. We also intro-
duce the notation H(μν) := 1

2! (Hμν + Hνμ) and H[μν] :=
1
2! (Hμν − Hνμ), and analogously for an object with n
indices (2! → n!). The letters of the Greek alphabet label
coordinate (i.e., holonomic) spacetime indices, whereas the
Latin alphabet is used for the anholonomic frame com-
ponents. The covariant derivative and the curvature ten-
sor are defined by (1) and (2), respectively. For the Hodge
dual of a k-form B = 1

k! Ba1...akϑ
a1 ∧ · · · ∧ ϑak , we use

�B = 1
k!(D−k)! Bb1...bkEb1...bk a1...aD−kϑ

a1∧· · ·∧ϑaD−k , where
Ec1...cD is the totally antisymmetric Levi-Civita tensor and D
is the dimension of the manifold (in our case D = 4). The
parity-odd objects are marked with an overline: R, φab, e.g.

2 Irreducible decomposition of the curvature

In this section we will introduce the main building blocks that
we will employ in our construction of parity-odd invariants.
We will commence by reminding some basic aspects of the
metric-affine framework and, then, the irreducible decompo-
sition of the curvature will be provided. For completeness,
we will do it in both, tensor and exterior calculus formalisms.
We will closely follow the treatment in [2].

2.1 The curvature tensor and the curvature 2-form

Let us consider an arbitrary smooth 4-dimensional mani-
fold (M, g, �) equipped with a metric gμν and an arbitrary
connection �μν

ρ . This connection defines the parallel trans-
port of tensors on M , as well as the corresponding covariant
derivative that acts on a mixed tensor Hμ

ν as follows:

∇μH
ν
ρ = ∂μH

ν
ρ + �μσ

νHσ
ρ − �μρ

σ H ν
σ . (1)

The curvature and the torsion tensors associated to this con-
nection are defined as

Rμνρ
λ := 2∂[μ�ν]ρλ + 2�[μ|σ λ�|ν]ρσ , (2)

Tμν
ρ := 2�[μν]ρ , (3)

and they arise from the commutator of covariant derivatives
[∇μ,∇ν

]
Hρ

λ = Rμνσ
ρHσ

λ − Rμνλ
σ Hρ

σ

−Tμν
σ ∇σ H

ρ
λ . (4)

Applying this identity to the case of the metric tensor, one
finds that the symmetric part of the curvature tensor is given

by

Rμν(ρλ) = ∇[μQν]ρλ + 1

2
Tμν

σ Qσρλ, (5)

so it is nontrivial only when the nonmetricity Qσαβ :=
−∇σ gαβ does not vanish.

Let us now switch to an arbitrary (non-necessarily orthog-
onal) frame and its corresponding coframe:

ea = eμ
a∂μ , ϑa = eμ

adxμ , (6)

which fulfill ea�ϑb = eμ
aeμ

b = δba , where � is the interior
product. The anholonomic components of the metric and the
connection can be obtained from the coordinate ones as fol-
lows:

gab = eμ
ae

ν
bgμν , (7)

ωμa
b = �μν

ρeν
aeρ

b − eν
a∂μeν

b . (8)

Moreover if we denote the covariant derivative of ωμa
b as

Dμ, the two derivatives fulfill Dμva = eν
a∇μvν for a vector

va = eν
avν . In this sense, the second equation (8) can be

interpreted as a map relating the connection ωμa
b in the frame

bundle with the connection �μν
ρ in the tangent bundle. The

curvature tensor can then be expressed as:
(
Rμνρ

λeρ
aeλ

b = )
Rμνa

b = 2∂[μων]ab + 2ω[μ|cbω|ν]ac ,

(9)

or, in differential form notation,

Ra
b = dωa

b + ωc
b ∧ ωa

c , (10)

where we have introduced the curvature 2-form and the con-
nection 1-form,

Ra
b := 1

2
Rμνa

bdxμ ∧ dxν , ωa
b := ωμa

bdxμ . (11)

2.2 Irreducible decomposition of the curvature tensor

Having introduced the curvature, we will proceed now to
obtain its irreducible decomposition. In this section we will
work with all indices referring to an arbitrary frame. We start
by lowering the last index of the curvature and splitting it
into symmetric and antisymmetric parts:

Rcdab = Wcdab + Zcdab , (12)

with Wcdab := Rcd[ab] and Zcdab := Rcd(ab). At this point,
we will introduce the three independent traces of the curva-
ture that can be constructed and that sometimes go under the
names of Ricci, co-Ricci and homothetic tensors:

Rab := Racb
c , R̃ab := Rac

c
b , R̂ab := Rabc

c , (13)
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and also the scalar and the pseudo-scalar that can be con-
structed with the curvature components,

R := Ra
a(= −R̃a

a) , R := Eabcd Rabcd . (14)

Moreover, to compactify the subsequent expressions, it is
also convenient to define the following tensors:

Xab := −1

2
(Rab − R̃ab) = Wcab

c , (15)

Yab := −1

2

(
Rab + R̃ab − 1

2
R̂ab

)

= δdc

(
Zdab

c − 1

4
δcb Zdae

e
)

, (16)

as well as their symmetric traceless parts:

ψab := X(ab) + 1

4
gabR , (17)

φab := Y(ab) , (18)

Finally, we introduce the following symmetric traceless
parity-odd tensors:

ψab := 1

2

(
Wcde(aEcde

b) − 1

4
gabR

)
, (19)

φab := 1

2
Zcde(aEcde

b) . (20)

Notice that (ψab, φab) and (ψ̄ab, φ̄ab) have opposite parity
transformation properties and we will exploit it later in the
construction of parity-odd quadratic scalars.

After introducing all the above useful objects, we now pro-
ceed with the irreducible decomposition under the pseudo-
orthogonal group (see [2,24]), following the conventions in
[25].

Antisymmetric sector
The antisymmetric component of the curvature can be split
into six irreducible pieces:

Wcdab =
6∑

I=1

(I )Wcdab, (21)

given by

(2)Wcdab = −Ecd[ae ψb]e , (22)

(3)Wcdab = R[cdab] = − 1

24
EcdabR , (23)

(4)Wcdab = 2ψe f δ
e[agb][cδ

f
d] , (24)

(5)Wcdab = −2X[e f ]δe[agb][cδ
f
d] , (25)

(6)Wcdab = 1

6
gc[agb]d R , (26)

(1)Wcdab = Wcdab −
6∑

I=2

(I )Wcdab . (27)

The characteristic properties of these parts can be described
as follows:

• The 2nd piece is the symmetric traceless pseudo-tensor
ψab (which has to do with the failure of pair-exchange
symmetry for Wcdab).

• The 3rd piece is the totally antisymmetric piece of the
curvature (i.e., the pseudo-scalar R).

• The 4th, 5th and 6th pieces basically contain the trace,
the antisymmetric and the traceless symmetric parts of
Xab.

• Finally, the 1st piece is the remaining traceless piece (the
generalization of the Weyl tensor).

In the Riemannian geometry (i.e., for a Levi-Civita connec-
tion), we have the usual identities Xab = −Rab = −R(ab),
R[abcd] = 0 and Wabcd = Rabcd = Rcdab, so that all com-
ponents vanish, except for (1)Wcdab, (4)Wcdab and (6)Wcdab.

Symmetric sector
Let us now move on to analyze the symmetric part. This can
be decomposed into five irreducible components:

Zcdab =
5∑

I=1

(I )Zcdab, (28)

which read

(2)Zcdab = −1

2
Ecd(a

e φb)e , (29)

(3)Zcdab = −1

3
Y[e f ](4δe(agb)[cδ

f
d] − gabδ

e[cδ
f
d]) , (30)

(4)Zcdab = −φe f δ
e
(agb)[cδ

f
d] , (31)

(5)Zcdab = 1

4
gab R̂cd , (32)

(1)Zcdab = Zcdab −
5∑

I=2

(I )Zcdab . (33)

As for the antisymmetric sector, the irreducible pieces of the
symmetric sector admit the following description:

• The 2nd part contains the symmetric traceless pseudo-
tensor φab.

• The 3rd and 4th pieces contain respectively the antisym-
metric and symmetric (automatically traceless) parts of
Yab.

• the 5th piece contains the homothetic curvature R̂ab.
• Finally, the 1st piece stores the remaining non-trivial part

of Zcdab .

123



115 Page 4 of 9 Eur. Phys. J. C (2023) 83 :115

All of these pieces vanish for a Levi-Civita connection by
virtue of (5), i.e., the symmetric sector fully trivialises for
Riemannian geometries.

2.3 Irreducible decomposition of the curvature 2-form

Now that we have introduced the irreducible decomposi-
tion of the curvature tensor, we will proceed to performing
the analogous decomposition in the language of differential
forms. The two decompositions are of course equivalent, but
it is useful to have them both since depending on the spe-
cific application one could be more advantageous than the
other. First we expand the curvature 2-form into symmetric
and antisymmetric parts,

Rab = Wab + Zab , (34)

with Wab := 1
2Wcdabϑ

c ∧ ϑd and Zab := 1
2 Zcdabϑ

c ∧ ϑd .
Introducing the 2-forms (I )Wab := 1

2
(I )Wcdabϑ

c ∧ϑd and
(I )Zab := 1

2
(I )Zcdabϑ

c ∧ ϑd , we find explicitly:

(2)Wab = − �
(
ϑ [a ∧ �b]

)
, (35)

(3)Wab = − 1

24
R � ϑab , (36)

(4)Wab = −ϑ [a ∧ �b] , (37)

(5)Wab = −1

2
ϑ [a ∧ eb]�(ϑX) , (38)

(6)Wab = 1

12
Rϑab , (39)

(1)Wab = Wab −
6∑

I=2

(I )Wab , (40)

(2)Zab = −1

2
�

(
ϑ (a ∧ �b)

)
, (41)

(3)Zab = 1

6

[
2ϑ (a ∧ eb)�(ϑY) − gab(ϑY)

]
, (42)

(4)Zab = 1

2
ϑ (a ∧ �b) , (43)

(5)Zab = 1

4
gabZ , (44)

(1)Zab = Zab −
5∑

I=2

(I )Zab , (45)

where we are using the convenient differential forms:

(ϑX) := −X[ab]ϑa ∧ ϑb , (ϑY) := −Y[ab]ϑa ∧ ϑb ,

Z := Zc
c = 1

2
R̂abϑ

a ∧ ϑb ,

�a := ψabϑ
b , �a := φabϑ

b , �a := ψabϑ
b ,

�a := φabϑ
b , (46)

defined in terms of the tensors in (15)–(20) and the homo-
thetic curvature R̂ab. These objects coincide with the ones
employed in [25] (see the Appendix of that paper).

3 The parity-odd curvature-square sector of
metric-affine gravity

Now that we have the irreducible pieces of the curvature,
we can proceed to the construction of Lagrangians that are
quadratic in the curvature and break parity. The decomposi-
tion simplifies the problem because at the quadratic order the
sectors of different parity cannot mix (as discussed below)
and, thus, they can be treated separately. For practical pur-
poses, it is more suitable to work in terms of objects with a
lower number of indices. Of course, one can construct the set
of invariants by using the full irreducible components. How-
ever, it is more convenient to find a simpler object (with fewer
indices) inside each of them containing all of its information,
and use these objects instead.

We start by noticing that (3)W and (6)W are the pieces that
correspond to the pseudo-scalar and the scalar part of the
curvature, respectively, so we can equivalently work with

(3)Wabcd ↔ R , (47)
(6)Wabcd ↔ R . (48)

Now we focus on the traces of the curvature that give
the Ricci, co-Ricci and homothetic tensors defined above
{Rab, R̃ab, R̂ab}. This set of objects is linearly equivalent to
{Xab,Yab, R̂ab}. Moreover, within these three objects, there
is only one independent trace that coincides with the usual
Ricci scalar already taken into account in (48). Thus, we
only need to take care of the symmetric traceless parts of
{Xab,Yab} and the antisymmetric parts of {Xab,Yab, R̂ab},
namely

{X[ab], ψab,Y[ab], φab, R̂ab} , (49)

which relate to the irreducible pieces as follows

(4)Wabcd ↔ ψab , (50)
(5)Wabcd ↔ X[ab] , (51)
(3)Zabcd ↔ φab , (52)
(4)Zabcd ↔ Y[ab] , (53)
(5)Zabcd ↔ R̂ab . (54)

It only remains to analyze the first two irreducible parts
of both sectors, i.e., the set {(1)W , (2)W , (1)Z , (2)Z}. Together,
these four components constitute the totally traceless part of
the curvature. Interestingly, two of them are also character-
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ized by symmetric traceless pseudo-tensors with two indices:

(2)Wabcd ↔ ψab , (55)
(2)Zabcd ↔ φab . (56)

Finally, the remaining components {(1)W , (1)Z , } cannot be
expressed in terms of simpler objects.

At this point, it is useful to separate our variables into four
sets with different number of indices and symmetries:

S0 := {R, R}, (57)

Sa
2 := {X[ab],Y[ab], R̂ab}, (58)

Ss
2 := {φab, ψab, φab, ψab}, (59)

S4 := {(1)Wabcd ,
(1)Zabcd} . (60)

It is worthwhile to recall that the elements of Sa
2 and Ss

2 are
traceless, and that the elements of S4 are completely traceless
(i.e. traceless in any pair of indices) and are subject to the
constraints

(1)W [abcd] = (1)Z [abcd] = 0 , (1)W [abc]d = (1)Z [abc]d = 0 ,

(1)Wabcd = (1)Wcdab . (61)

After a careful look into these properties, the parity of the
variables, their symmetries and the allowed index structures,
it is not difficult to realize that the parity-odd quadratic com-
binations between objects belonging to distinct sets (57)–(60)
are all vanishing. Another way to see this is as follows. First,
recall that the objects within each of the S-subspaces belong
to different irreducible representations (irreps) of the pseudo-
orthogonal group. The reason why mixings between different
S’s are zero is that such mixings would involve contractions
with the metric and the Levi-Civita tensor (i.e., the invari-
ants of the group in an appropriate frame) that are vanishing
for all the irreps. In fact, the two elements of S4 belong to
different irreps, so all combination mixing (1)W and (1)Z are
vanishing, as we will confirm in Sect. 3.4. Having said this,
we can start with the study of the quadratic combinations for
each of the sets (57)–(60) separately.

3.1 Quadratic invariants containing the scalar and the
pseudo-scalar

It is straightforward to conclude that the only possible parity-
odd quadratic invariant involving the elements of S0 is the
product of the scalar and the pseudo-scalar:

RR, (62)

which corresponds to

(Wab ∧ (3)Wab = Wab ∧ (6)Wab =)

(3)Wab ∧ (6)Wab = − 1

24
RR (�1) . (63)

Here �1 = √|g|d4x is the canonical volume form.

3.2 Quadratic invariants involving the elements of Sa
2

Due to the fact that a product of two tensors in Sa
2 has four

indices, exactly as the Levi-Civita tensor, this leaves us with
just the following possibilities:

Eabcd {YabYcd , XabXcd , YabXcd , Yab R̂cd , Xab R̂cd , R̂ab R̂cd } .

(64)

Therefore these 6 invariants correspond to the different com-
binations of (5)W , (3)Z and (5)Z :

(Wab ∧ (5)Wab =) (5)Wab ∧ (5)Wab = 1

2
(ϑX) ∧ (ϑX),

(65)

(Zab ∧ (3)Zab =) (3)Zab ∧ (3)Zab = −1

3
(ϑY) ∧ (ϑY) ,

(66)

(Zab ∧ (5)Zab =) (5)Zab ∧ (5)Zab = 1

4
Z ∧ Z , (67)

Rab ∧ ϑa ∧ (
ec�(5)W cb) = 1

2
(ϑX) ∧ (ϑX)

+ 1

2
(ϑX) ∧ (ϑY)

− 1

4
(ϑX) ∧ Z ,

(68)

Rab ∧ ϑa ∧ (
ec�(3)Zcb) = −1

2
(ϑY) ∧ (ϑY)

− 1

2
(ϑX) ∧ (ϑY)

+ 1

4
(ϑY) ∧ Z ,

(69)

Rab ∧ ϑa ∧ (
ec�(5)Zcb) = −1

4
(ϑX) ∧ Z

− 1

4
(ϑY) ∧ Z

+ 1

8
Z ∧ Z . (70)

Alternatively, the elements of Sa
2 can be further decom-

posed into selfdual and anti-selfdual with nice transforma-
tion properties under parity. For instance, if we call X�

ab :=
1
2 X[cd]Ecd

ab, then we can introduce the 1-form1

X±
ab := 1√

2

(
X[ab] ± iX�

ab

)
, (71)

1 Here we are writing explicitly the antisymmetrization of indices in
X[ab] and Y[ab], because the objects Xab and Yab (defined in (15) and
(16)) also have a symmetric part. The rest of the objects defined in
this paragraph, i.e. those with superscripts � and ±, are automatically
antisymmetric by definition.
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which satisfies iX±�
ab = ±X±

ab, and similarly for Y[ab]
and R̂ab. Since we are interested in parity-odd invariants,
we need to consider the scalars S+

abT −ab for Sab, Tab ∈
{X[ab],Y[ab], R̂ab}. These six independent quantities span the
same space as (64) in the alternative basis that exploits the
duality properties.

3.3 Quadratic invariants involving the elements of Ss
2

As commented above, the elements of this subspace can be
separated into two subsets of different parity:

Ss
2 = {φab, ψab}+ ∪ {φab, ψab}− . (72)

Any invariant constructed with two elements of the same
subset requires one Levi-Civita tensor, and since our pieces
are symmetric, it must be vanishing. In other words, the only
possibilities allowed by the index structure are the combina-
tions between elements of different subsets. Then, there are
just four options:

{φabφ
ab, φabψ

ab, ψabφ
ab, ψabψ

ab} . (73)

Such a basis of invariants is linearly equivalent to the follow-
ing one, in terms of differential forms:

(Wab ∧ (4)Wab = Wab ∧ (2)Wab =) (2)Wab ∧ (4)Wab

= �a ∧ ��a , (74)

(Zab ∧ (4)Zab = Zab ∧ (2)Zab =) (2)Zab ∧ (4)Zab

= −1

2
�a ∧ ��a , (75)

Rab ∧ ϑc ∧ (
ea�(2)Zcb) = 1

2
�a ∧ ��a − �a ∧ ��a , (76)

Rab ∧ ϑa ∧ (
ec�(4)Zcb) = −�a ∧ ��a − �a ∧ ��a . (77)

3.4 Quadratic invariants with elements of S4

Finally, it remains to analyze the construction of parity-odd
scalars with elements of S4. Such terms should consist of
contractions of two elements of that space and the Levi-Civita
tensor. In view of the properties (61), we can construct the
possible structures as

L(B,C) := {Bab
e f Ccde f , Bef

abCef cd , Bef
abCcde f ,

Bab
e f Cce f d , Bef

abCcef d , Cab
ef Bce f d ,

Cef
abBce f d , Ba

ef
bCce f d}Eabcd . (78)

Here Babcd ,Cabcd ∈ S4, and this L is defined so that the
redundant and vanishing invariants in it are omitted. Notice
that L(B,C) = L(C, B), and hence we only need to check
each of the three possible pairs of elements of S4.

The list above can be further reduced, by using the fol-
lowing properties:

Ba
ef

bCce f dEabcd ∝ Bab
ef Ccde f Eabcd ,

Bab
e f Cce f dEabcd ∝ Bab

ef Ccde f Eabcd ,

Bef
abCce f dEabcd ∝ Bef

abCcde f Eabcd . (79)

These can be easily proven with the help of the differen-
tial form notation (see Appendix A for more details). As a
consequence, only the first line of (78) contains independent
invariants. Therefore,

L(B,C) = {Babe f Ccde f , B
ef

abCef cd , Bef
abCcde f }Eabcd .

(80)

Notice that due to the symmetry of (1)Zabcd in the last two
indices, this expression is showing that (1)W and (1)Z cannot
mix up, in agreement with the discussion after (48). This
leaves us with just two possibilities:

• Case (B,C) = ((1)W , (1)W ). Thanks to the symmetry
under exchange of pairs, this reduces to:

L((1)W , (1)W ) = {(1)Wab
ef (1)Wcdef Eabcd} . (81)

This combination corresponds in differential form nota-
tion to the product

(1)W �
abcd

(1)Wabcd := 1

2
(1)Wab

ef (1)Wcdef Eabcd

∝ (1)Wab ∧ (1)Wab . (82)

Notice that the star in the superscript only indicates that
the Hodge dual has been calculated with respect to the
first two indices.

• Case (B,C) = ((1)Z , (1)Z). The symmetry in the last two
indices allows to eliminate the second and the third ele-
ments of (80), so we arrive at a similar situation as in the
previous case:

L((1)Z , (1)Z) = {(1)Zab
e f (1)Zcde f Eabcd} . (83)

Thus,

(1)Z�
abcd

(1)Zabcd := 1

2
(1)Zab

e f (1)Zcde f Eabcd

∝ (1)Zab ∧ (1)Zab . (84)

Another way of reaching the same result would be to exploit
again the fact that (1)W and (1)Z belong to different irreps of
the pseudo-orthogonal group so they cannot mix at quadratic
order. Since we are seeking to construct parity-odd scalars,

123



Eur. Phys. J. C (2023) 83 :115 Page 7 of 9 115

then the only possibilities will be (1)Z (1)Z� and (1)W (1)W �,
which are the two combinations that we have found with a
more direct method.

3.5 Pontryagin invariant

In four dimensions, the (Chern-)Pontryagin invariant [26–28]
is introduced as

Ra
b ∧ Rb

a = EμνρλRμνa
bRρλb

a
√|g|d4x

= εμνρλRμνa
bRρλb

ad4x , (85)

where εμνρλ is just the Levi-Civita symbol (a constant
pseudo-tensor density). Notice that the metric and the
coframe disappear from the Lagrangian, which thus depends
only on the connection in view of (9). The combination (85) is
a 4-form that can be written as a total derivative for arbitrary
connections [26]:

Ra
b ∧ Rb

a = d

(
Ra

b ∧ ωb
a + 1

3
ωa

b ∧ ωb
c ∧ ωc

a
)

. (86)

As a consequence, one can ignore this term if we are just
interested in the dynamics of the theory. This allows us to
drop one of the invariants found in Sect. 3.4. In the following,
we will use this freedom to remove the term (1)W (1)W �.

3.6 The quadratic parity-odd metric-affine Lagrangian

As a result of our previous analysis, the dimension of the
vector space of parity-odd curvature-squared invariants is 12
(excluding one that corresponds to the Pontryagin invariant)
so this sector will contain 12 independent parameters. One
possible choice of the basis is2

Lodd = αRR + a1X
abX�

ab + a2Y
abX�

ab + a3 R̂
abX�

ab

+ a4Y
abY �

ab + a5 R̂
abY �

ab + a6 R̂
ab R̂�

ab

+ s1ψ
abφab + s2φ

abψab + s3φ
abφab

+ s4ψ
abψab + β (1)Zabcd (1)Z�

abcd . (87)

We can express the general parity-odd quadratic Lagrangian
in terms of more familiar objects (Ricci, co-Ricci, homothetic
and Riemann tensors) as follows:

Lodd =
(
b1RRabcd + b2RabRcd + b3 R̃ab R̃cd + b4Rab R̃cd

+ b5Rab R̂cd + b6 R̃ab R̂cd + b7 R̂ab R̂cd

+ b8Rabc
e R(de) + b9Rabc

e R̃(de) + b10Rab
e
c R(de)

+ b11Rab
e
c R̃(de) + b12Rab

e f Rcde f

)
Eabcd . (88)

2 In case we are interested in keeping the boundary term, one can
include for example (1)Wab

ef (1)Wcdef Eabcd in (87), Rab
e f Rcd f eEabcd

in (88), Wab ∧ Wab in (89) or (1)Wab ∧ (1)Wab in (90).

We can alternatively express the parity-odd Lagrangian in
the language of differential forms3

Lodd = c1Zab ∧ Zab + c2
(3)Wab ∧ (6)Wab

+ c3�
a ∧ ��a + c4�

a ∧ ��a + c5�
a ∧ ��a

+ c6�
a ∧ ��a + c7(ϑX) ∧ (ϑX)

+ c8(ϑX) ∧ (ϑY) + c9(ϑY) ∧ (ϑY)

+ c10(ϑX) ∧ Z + c11(ϑY) ∧ Z + c12Z ∧ Z . (89)

Let us recall that (3)Wab∧(6)Wab ∝ RR (�1). This Lagrangian
can equivalently be written as

Lodd = d1
(2)Wab ∧ (4)Wab + d2

(3)Wab ∧ (6)Wab

+ d3
(5)Wab ∧ (5)Wab + d4

(1)Zab ∧ (1)Zab

+ d5
(2)Zab ∧ (4)Zab + d6

(3)Zab ∧ (3)Zab

+ d7
(5)Zab ∧ (5)Zab + d8Rab ∧ ϑa ∧ (

ec�(5)W cb)

+ d9Rab ∧ ϑa ∧ (
ec�(3)Zcb)

+ d10Rab ∧ ϑa ∧ (
ec�(4)Zcb)

+ d11Rab ∧ ϑa ∧ (
ec�(5)Zcb)

+ d12Rab ∧ ϑc ∧ (
ea�(2)Zcb) . (90)

4 Special geometries

In this section we will particularize the general parity-odd
Lagrangian obtained above to some particular geometries,
thus recovering some known results in the literature.

4.1 Weyl–Cartan gravity

We will first particularize to the Weyl–Cartan geometries
that are characterized by a nonmetricity tensor that is fully
determined by a vector field Vμ so that ∇μgνρ = Vμgνρ .
In this geometry, the traceless part of Zcdab vanishes and
only the irreducible piece (5)Z survives. Moreover, the co-
Ricci tensor is related to the Ricci tensor as R̃ab = −Rab

in this geometry. All of these properties imply the following
vanishing pieces

(1)Zcdab = Yab = φab = φab = 0 , (91)

namely,

(1)Zab = (ϑY) = �a = �a = 0 , (92)

3 The Lagrangian density and its corresponding Lagrangian form are
related via L = L√|g|d4x .
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Then, one can write down the analogue of (87)–(90) in the
Weyl–Cartan case

LWC
odd = αRR + a1X

abX�
ab + a3X

ab R̂�
ab

+ a6 R̂
ab R̂�

ab + s4ψ
abψab (93)

=
(
b1RRabcd + b2RabRcd + b5Rab R̂cd + b7 R̂ab R̂cd

+ b8Rabc
e R(de)

)
Eabcd , (94)

and

LWC
odd = c2

(3)Wab ∧ (6)Wab + c4�
a ∧ ��a

+ c7(ϑX) ∧ (ϑX) + c10(ϑX) ∧ Z + c12Z ∧ Z
(95)

= d1
(2)Wab ∧ (4)Wab + d2

(3)Wab ∧ (6)Wab

+ d3
(5)Wab ∧ (5)Wab + d7

(5)Zab ∧ (5)Zab

+ d11Rab ∧ ϑa ∧ (
ec�(5)Zcb). (96)

4.2 Poincaré gravity

We conclude with the Poincaré gauge gravity case in which
the connection is metric-compatible: ∇μgνρ = 0. The basis
of invariants has already been presented in the literature (see
e.g. [29]), but we also include it for completeness. In this
case, also the trace of Zcdab in the last two (the homothetic
curvature, R̂ab) vanishes. Thus, we also have to impose Z =
0. As a result, only three invariants are allowed. The resulting
parity-odd Lagrangians are:

LPG
odd = αRR + a1X

abX�
ab + s4ψ

abψab (97)

=
(
b1RRabcd + b2RabRcd + b8Rabc

e R(de)

)
Eabcd ,

(98)

and

LPG
odd = c2

(3)Wab ∧ (6)Wab + c4�a ∧ ��a + c7(ϑX) ∧ (ϑX)

(99)

= d1
(2)Wab ∧ (4)Wab + d2

(3)Wab ∧ (6)Wab

+ d3
(5)Wab ∧ (5)Wab. (100)

5 Discussion

In this paper we have undertaken the construction of the
general Lagrangian containing parity-odd terms that are
quadratic in the curvature in four spacetime dimensions. We
have analyzed the construction of all the independent parity-
odd scalars by resorting to the irreducible components of the
curvature under the pseudo-orthogonal group and we have

done in both world tensor components and anholonomic dif-
ferential form languages. We have shown that there are 13
independent terms, but the existence of the Pontryagin invari-
ant in 4 dimensions allows to remove one of them. Thus, our
final Lagrangian consists of 12 independent terms that is our
main result. We have recovered known results in the literature
by particularizing to Weyl–Cartan geometries and Poincaré
gauge theory.

Our results will be important in the context of a gen-
eral development of theories of gravity beyond the Ein-
stein framework, including the discussion of fundamental
issues such as the equivalence principle [30]. In a more
specialized sense, the results obtained will contribute to
the studies of parity-violating effects in cosmology and
black hole physics since the obtained Lagrangians complete
the quadratic parity-odd sector of the general metric-affine
framework. On the other hand, before applications of our
Lagrangian can be robustly and reliably obtained, a stability
analysis should be performed, since a common problem of
quadratic curvature theories in the metric-affine realm is the
presence of ghost-like instabilities (either in the linear or in
the full non-linear spectrum; see e.g. [31]).
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Appendix A: Proof of (79)

If we call Bab = 1
2 Bcdabϑ

a∧ϑb and Cab = 1
2Ccdabϑ

a∧ϑb,
we can derive the following proportionality relations:

Ba
ef

bCce f dEabcd ∝
[
(ee�B f

b) ∧ ϑb
]

∧
[
(ee�C f d) ∧ ϑd

]
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∝ −B f
b ∧ (ee�ϑb) ∧ (ee�C f d) ∧ ϑd

− B f
b ∧ ϑb ∧ (ee�C f d) ∧ (ee�ϑd)

∝ −B f
b ∧ (eb�C f d) ∧ ϑd − 0

∝ B f
b ∧ C f d ∧ (eb�ϑd)

∝ Be f ∧ Ce f ∝ Bab
e f Ccde f Eabcd ,

(101)

Bab
ef Cce f dEabcd ∝ Be f ∧

[
(ee�C f d) ∧ ϑd

]

∝ Be f ∧ C f d ∧ (ee�ϑd)

∝ Bd f ∧ C f d ∝ Bab
e f Ccde f Eabcd ,

(102)

Bef
abCcef dEabcd ∝

[
(ee�e f �Bab) ∧ ϑa ∧ ϑb

]

∧
[
(ee�C f d) ∧ ϑd

]

∝ (...) ∧ (ee�e f �Beb)

+ (...) ∧ (ee�e f �Bae)

+
[
(ee�e f �Bab) ∧ ϑa ∧ ϑb

]

∧
[
C f d ∧ (ee�ϑd)

]

∝
[
(ee�e f �Bab) ∧ ϑa ∧ ϑb

]
∧ C f e

∝ Bef
abCcde f Eabcd , (103)

where we have used the traceless conditions ea�B f a = 0 =
ea�C f a , the duality ea�ϑb = δba , the antisymmetry of the
interior product ea�ea� = 0, the property �(ϑa ∧ ϑb ∧ ϑc ∧
ϑd) = Eabcd and the fact that 5-forms are vanishing in four
dimensions. The symbol (...) denotes some combination of
forms that we have omitted because it is irrelevant for the
proof.

References

1. P. Touboul et al., MICROSCOPE mission: final results of the test of
the equivalence principle. Phys. Rev. Lett. 129(12), 121102 (2022)

2. F.W. Hehl, J.D. McCrea, E.W. Mielke, Y. Ne’eman, Metric affine
gauge theory of gravity: field equations, Noether identities, world
spinors, and breaking of dilation invariance. Phys. Rep. 258, 1–171
(1995)

3. I.Y. Kobzarev, L.B. Okun, Gravitational interaction of fermions.
Sov. Phys. JETP 16, 1343–1346 (1963)

4. J. Leitner, S. Okubo, Parity, charge conjugation, and time reversal in
the gravitational interaction. Phys. Rev. 136, B1542–B1546 (1964)

5. N.D. Hari Dass, Experimental tests for some quantum effects in
gravitation. Ann. Phys. (USA) 107, 337–359 (1977)

6. T.A. Morgan, A. Peres, Direct test for the strong equivalence prin-
ciple. Phys. Rev. Lett. 9, 79–80 (1962)

7. A. Peres, Test of equivalence principle for particles with spin. Phys.
Rev. D 18, 2739–2740 (1978)

8. B. Mashhoon, Gravitational couplings of intrinsic spin. Class.
Quantum Gravity 17, 2399–2409 (2000)

9. Á. de la Cruz Dombriz, F.J.M. Torralba, D.F. Mota, Dark matter
candidate from torsion, 12 (2021)

10. A.J. Purcell, Pseudoscalar action in a Cartan spacetime. Phys. Rev.
D 18, 2730–2732 (1978)

11. R. Hojman, C. Mukku, W.A. Sayed, Parity violation in metric-
torsion theories of gravitation. Phys. Rev. D 22, 1915–1921 (1980)

12. F. Müller-Hoissen, J. Nitsch, Teleparallelism: a viable theory of
gravity? Phys. Rev. D 28, 718–728 (1983)

13. B. Mukhopadhyaya, S. Sengupta, S. Sur, Space-time torsion and
parity violation: a gauge-invariant formulation. Mod. Phys. Lett. A
17(01), 43–49 (2002)

14. S.H. Alexander, N. Yunes, Gravitational wave probes of parity vio-
lation in compact binary coalescences. Phys. Rev. D 97, 064033
(2018)

15. A. Conroy, T. Koivisto, Parity-violating gravity and GW170817 in
non-Riemannian cosmology. J. Cosmol. Astropart. Phys. 2019(12),
016–016 (2019)

16. A. Nishizawa, T. Kobayashi, Parity-violating gravity and
GW170817. Phys. Rev. D 98, 124018 (2018)

17. J. Qiao, T. Zhu, W. Zhao, A. Wang, Waveform of gravitational
waves in the ghost-free parity-violating gravities. Phys. Rev. D
100, 124058 (2019)

18. D. Yoshida, J. Soda, Exploring the string axiverse and parity vio-
lation in gravity with gravitational waves. Int. J. Mod. Phys. D 27,
1850096 (2018)

19. W. Zhao, T. Zhu, J. Qiao, A. Wang, Waveform of gravitational
waves in the general parity-violating gravities. Phys. Rev. D 101,
024002 (2020)

20. Y.N. Obukhov, Parity violation in Poincaré gauge gravity. Int. J.
Geom. Methods Mod. Phys. 18(supp01), 2150022 (2021)

21. D. Iosifidis, L. Ravera, Parity violating metric-affine gravity theo-
ries. Class. Quantum Gravity 38, 115003 (2021)

22. D. Iosifidis, The full quadratic metric-affine gravity (including par-
ity odd terms): exact solutions for the affine-connection. Class.
Quantum Gravity 39, 095002 (2022)

23. D. Iosifidis, Solving linear tensor equations II: including parity odd
terms in four dimensions. Universe 8, 312 (2022)

24. J.D. McCrea, Irreducible decompositions of non-metricity, torsion,
curvature and Bianchi identities in metric affine space-times. Class.
Quantum Gravity 9, 553–568 (1992)

25. A. Jiménez-Cano, Y.N. Obukhov, Gravitational waves in metric-
affine gravity theory. Phys. Rev. D 103(2), 024018 (2021)
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