
Eur. Phys. J. C (2023) 83:112
https://doi.org/10.1140/epjc/s10052-023-11249-9

Regular Article - Theoretical Physics

First post-Newtonian N-body problem in Einstein–Cartan theory
with the Weyssenhoff fluid: Lagrangian and first integrals

Emmanuele Battista1,a , Vittorio De Falco2,3,b, Davide Usseglio2,3,c

1 Department of Physics, University of Vienna, Boltzmanngasse 5, 1090 Vienna, Austria
2 Scuola Superiore Meridionale, Largo San Marcellino 10, 80138 Naples, Italy
3 Istituto Nazionale di Fisica Nucleare, Sezione di Napoli, Complesso Universitario di Monte S. Angelo, Via Cintia Edificio 6, 80126 Naples, Italy

Received: 21 November 2022 / Accepted: 21 January 2023 / Published online: 2 February 2023
© The Author(s) 2023

Abstract The rotational dynamics of an N -body system
at the first post-Newtonian order in Einstein–Cartan theory
is derived. This result is achieved by performing the point-
particle limit of the equations of motion of the Weyssenhoff
fluid, which models the quantum spin effects residing inside
the bodies. For the special case of binary systems, we deter-
mine the Lagrangian function and the resulting first integrals
underlying the translational dynamics and the spin preces-
sion.

1 Introduction

The Lagrangian formalism is widely exploited in physics,
because it is able to capture all the dynamical features of
the system under study. In the context of classical (non-
dissipative) mechanics, this approach entails the following
main advantages [1]: (i) the Lagrangian function deals with
the energy of the system, instead of the forces acting upon
it; (i i) given the Lagrangian, assigned the forces, and chosen
the generalized coordinates, one can directly characterize the
dynamics via the Euler–Lagrange equations; (i i i) the sym-
metries of the Lagrangian can be associated with the exis-
tence of first integrals thanks to the Noether theorem.

The nature of the Euler–Lagrange equations changes
depending on the context to be investigated. In the case of
the direct problem (where they are computed through the
given Lagrangian), these are second-order ordinary differ-
ential equations. On the other hand, for the inverse problem
(given the dynamics, the Lagrangian must be determined),
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they become a set of second-order partial differential equa-
tions [2–4].

In General Relativity (GR), the inverse approach is widely
used to determine the Lagrangian associated to the motion of
an N -body system. Due to the non-linear hyperbolic struc-
ture of GR, the aforementioned problem cannot be solved
analytically, since it yields retarded-partial-integro differ-
ential equations [5–7]. However, these mathematical com-
plications can be circumvented by resorting to solid and
well-founded approximation schemes [5,6]. First of all, the
gravitational source, which is first modelled as a continuous
smooth hydrodynamical distribution of matter, is assumed to
be post-Newtonian (PN), namely it is slowly moving, weakly
self-gravitating, and weakly stressed. Thus, its dynamics can
be studied by employing the PN approximation method in
the so-called near zone. Furthermore, by supposing that the
source consists of N mutually well separated fluid bodies,
the point-particle limit can be invoked. This pattern may find
different applications both in astrophysics and cosmology. In
particular, it represents a useful mean to analyse the dynam-
ics of inspiralling compact binaries, which represent the main
astrophysical sources of gravitational waves (GWs).

In 1917, Lorentz and Droste determined for the very first
time the Lagrangian and the equations of motion for the GR
two-body problem at the first post-Newtonian (1PN) order
[8,9]. In 1938, Einstein, Infeld, and Hoffmann (EIH) [10,11]
re-derived these results for N bodies by employing the sur-
face integral method. At 2PN level, some subtleties come into
play. Indeed, the 2PN-accurate GR dynamics of an N -body
system in harmonic coordinates can be derived from a gener-
alizedLagrangian, which, apart from the positions and veloc-
ities, depends also on the accelerations of the particles [12].
This result has been established, on general grounds, in Ref.
[13], where it has been rigourously proved that, under certain
hypotheses, a system of N non-spinning objects interacting
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via gravitational forces cannot be examined through the usual
Lagrangian picture if 2PN corrections occur in the equations
of motion. In the case of spinning interacting bodies, the
(spin-orbit) Lagrangian depends on the accelerations already
at 1PN level (see e.g., Ref. [14] and references therein).

In this article, we investigate the N -body problem at 1PN
level in Einstein–Cartan (EC) theory, which configures as
an extension of GR, where the non-Riemannian part of the
connection is related to the microscopic spin density of the
source [15]. Hereafter, the term “spin” will refer to the quan-
tum intrinsic angular momentum of bodies.

This work represents an important advancement in our
research program aimed at studying GWs and related phe-
nomena in EC theory. In fact, we have first studied the 1PN
GW generation problem by means of the Blanchet-Damour
formalism in Ref. [16]. Then, we have considered an explicit
application by modelling the gravitational source and the
underlying spin effects through the Weyssenhoff fluid [17].
By means of the point-particle procedure, we have also pro-
vided the 1PN-accurate formulas of the source and the radia-
tive multipole moments characterizing an N -body system.
The study of the 1PN dynamics has been started out in Ref.
[18], where we have determined the equations governing the
translational motion of N objects subject to their mutual grav-
itational attraction. In this paper, we complete this analysis.
Firstly, we derive the N -body rotational equations of motion
in EC theory at the 1PN level (see Sect. 2). Subsequently, we
reconstruct the Lagrangian and calculate the first integrals
governing the dynamics of a spinning binary system at 1PN
order (see Sect. 3). Last, we give a summary of our findings
and present future perspectives of our work (see Sect. 4).

Notations. We use metric signature (−,+,+,+). Greek
indices take values 0, 1, 2, 3, while lowercase Latin ones
1, 2, 3. The determinant of the metric gμν is denoted by g. εkli
is the total antisymmetric Levi-Civita symbol. The spacetime
coordinates are xμ = (ct, x). Four-vectors are written as
aμ = (a0, a), and a·b := δlkalbk , |a| ≡ a := (a · a)1/2, and
(a × b)i := εilkalbk . The symmetric-trace-free projection
of a tensor Ai j ...k is indicated with A〈i j ...k〉. Round (respec-
tively, square) brackets around a pair of indices stands for
the usual symmetrization (respectively, antisymmetrization)
procedure, i.e., A(i j) = 1

2 (Ai j + A ji ) (respectively, A[i j] =
1
2 (Ai j − A ji )). A over-hat symbol refers to quantities framed
in GR. The N bodies and all the related quantities are labelled
with capital Latin indices, such as A, B,C = 1, . . . , N .

2 N-body problem

EC gravity model represents the gauge theory of the Poincaré
group, the semidirect product of the translation and the
Lorentz groups. In this framework, the sources of the gravi-

tational field are represented by both the energy-momentum
tensor (i.e., the translational Noether current) and the spin
angular-momentum tensor (i.e., the Noether intrinsic rota-
tional current). A distinguished feature of EC pattern is the
prediction of a spin-spin contact interaction of gravitational
origin [15].

EC theory is defined on a Riemann-Cartan spacetime
endowed with a symmetric metric tensor gαβ and the most
general metric-compatible affine connection �λ

μν := �̂λ
μν −

K λ
μν , where �̂λ

μν = �̂λ
(μν) is the Levi-Civita connection and

K λ
μν the contortion tensor. The antisymmetric part of the

connection �λ[μν] := S λ
μν defines the so-called Cartan tor-

sion tensor.
In this section, we deal with the N -body problem in EC

theory at 1PN order by considering the Weyssenhoff fluid
as the model of the spinning matter. After having reviewed
the translational equations in Sect. 2.1, we tackle the point-
particle limit of the rotational motion in Sect. 2.2. Last, a
physical discussion concerning the structure integrals occur-
ring in the N -body dynamics is provided in Sect. 2.3.

2.1 The translational motion

The semiclassical description of a spinning perfect fluid
within the EC theory can be obtained by means of the
Weyssenhoff model [19,20]. In this approach, the fluid is
characterized by the spin angular momentum tensor

ταβ
γ = sαβu

γ , (1)

and satisfies the Frenkel condition

ταβ
β = sαβ uβ = 0, (2)

where sαβ = s[αβ] and uα = u0

c (c, v) (with v := dx/dt the
coordinate velocity) denote the spin density tensor and the
timelike four-velocity vector of the fluid, respectively. We
note that Eq. (2) amounts to require that the torsion tensor
has vanishing trace (i.e., Sαμ

μ = 0), a condition which fulfils
a crucial role in our analysis (see Refs. [16,17], for further
details).

In order to work out the 1PN translational motion of the N -
body system, we need to apply the point-particle limit to the
(continuous) equations ruling the translational dynamics of
the Weyssenhoff fluid [17,18]. We will employ this procedure
by supposing that the N objects composing the system are:
(1) reflection symmetric about their center of mass; (2) in
stationary equilibrium; (3) mutually well separated.

Let us adopt the following definitions:

mA :=
∫
A

d3x ρ�, (3a)

123



Eur. Phys. J. C (2023) 83 :112 Page 3 of 11 112

ε jki
(n)siA(t) :=

∫
A

d3x (n)s jk, (n = 1, 3), (3b)

xA(t) := 1

mA

∫
A

d3x ρ�x, (3c)

vA(t) := dxA

dt
= 1

mA

∫
A

d3x ρ�v, (3d)

aA(t) := dvA

dt
= 1

mA

∫
A

d3x ρ� dv

dt
, (3e)

which represent the (conserved) material mass, the spin vec-
tor (with (n)si j = O

(
c1−n

) = (n)s j [16,17]), the center of
mass, the center of mass velocity, and the center of mass
acceleration of the body A, respectively. In the above for-
mulas, ρ� := u0

c

√−gρ = ρ + O
(
c−2

)
is the coordinate

rest-mass density of the fluid expressed in terms of rest-mass
density ρ.

Bearing in mind the above equations, the harmonic-
coordinate translational dynamics of the system is encoded
in the following expression [18]:

aiA = aiA,EIH + 4

c2

∑
B �=A

G

r3
AB

{
2
[
(vB − vA) × sB

]i

+ 3niAB sB · [nAB × (vA − vB)]

+ 3 (nAB × sB)i (vA − vB) · nAB

}

− 6

c2

∑
B �=A

GMB

MAr3
AB

{[
(vA − vB) × sA

]i

− 2niAB sA · [nAB × (vA − vB)]

+ (nAB × sA)i (vB − vA) · nAB

}

− 12

c2

∑
B �=A

G

MAr4
AB

{
siA (nAB · sB) + siB (nAB · sA)

+ niAB

[
sA · sB − 5 (nAB · sA) (nAB · sB)

]}

+ O
(
c−4

)
, (4)

where aiA,EIH is the EIH acceleration of the object A (see

Appendix A, for further details) and MA = mA + O
(
c−2

)
its (conserved) total mass-energy; moreover, we have taken
into account that the spin vector admits the PN structure

sA = (1)sA + O(c−2), (5)

and we have introduced the following variables:

r AB := xA − xB, nAB := r AB
rAB

. (6)

Equation (4), jointly with the conservation law dsA/dt =
O

(
c−2

)
, completely determines the dynamics of the N -body

system at 1PN level. As set out in Ref. [18], the lack of
contributions due to the inner details of the bodies can be
interpreted as a hint for the validity of the effacing principle
at 1PN order.

2.2 The rotational motion

The rotational dynamics of the Weyssenhoff fluid in EC the-
ory is ruled by the exact equation [17]

∇̂λ

(
sμνu

λ
) = aσ

c2

(
uμsσν − uνsσμ

)
, (7)

where aσ is the fluid acceleration. If we exploit (the PN
expansion of) the Frenkel condition (2) and the PN series
of the spin density

si j = (1)si j + (3)si j + O(c−4), (8)

Equation (7) yields at 1PN level and in harmonic coordinates

d

dt
si j + si j∂kv

k + 1

c2

[
si j∂tÛ + 2si jv

k∂kÛ

− ∂k P

ρ�

(
v j ski − vi sk j + vksi j

)
+ 2ski

(
∂kÛ j

+∂k� j − ∂ j Ûk − ∂ j�k + vk∂ j Û − v j

2
∂kÛ

)

− 2sk j
(
∂kÛi + ∂k�i − ∂i Ûk − ∂i�k + vk∂i Û

−vi

2
∂kÛ

)]
= O

(
c−4

)
, (9)

where P is the fluid pressure, and we have exploited the 0PN-
accurate equations dvk/dt = ∂kÛ − (1/ρ�)∂k P + O

(
c−2

)
and dsi j/dt + si j∂kvk = O

(
c−2

)
, along with the definition

of the potentials

Û (t, x) := G
∫

d3x′

|x − x′|ρ
�′, (10a)

Ûi (t, x) := G
∫

d3x′

|x − x′|ρ
�′v′i , (10b)

�i (t, x) := G
∫

d3x′ (x − x ′)k
|x − x′|3 s′

ki , (10c)

the primed variables being evaluated at time t and position
x′.

At this stage, we can apply the point-particle procedure to
Eq. (9). This process relies mainly on: (i) the separation of
the potentials into internal and external components; (ii) the
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analysis of the contributions introduced by the internal poten-
tials ÛA, Ûi,A, and �i,A, which lead, in general, to structure-
dependent integrals; (iii) the evaluation of the derivatives of
the external potentials Û¬A, Ûi,¬A, and �i,¬A in x = xA

(see Ref. [18], for further details). All the computations are
performed by exploiting the aforementioned hypotheses (1)-
(3) (see Sect. 2.1), where, in particular, hypothesis (3) permits
to neglect terms of fractional order (�A/dA)2 or (�A/rAB)2,
where �A denotes the typical linear dimension of A and and
dA := |x − xA|. In this way, after a lengthy calculation we
obtain the following expression:

εi jl
d

dt

[
slA + slA

c2

(
Û¬A + v2

A

2

)]
+ 1

c2

[
2εkil s

l
A

(
∂kÛ j,¬A

−∂ j Ûk,¬A + ∂k� j,¬A − ∂ j�k,¬A + vkA∂ j Û¬A

−v
j
A

2
∂kÛ¬A

)
+ Qi j

A − Z i j
A − 2εk jl s

l
A

(
∂kÛi,¬A

−∂i Ûk,¬A + ∂k�i,¬A − ∂i�k,¬A + vkA∂i Û¬A

−viA

2
∂kÛ¬A

)
− Q j i

A + Z j i
A

]
= O

(
c−4

)
, (11)

where Qi j
A = Q j i

A and Z i j
A �= Z j i

A are structure integrals,
which will be discussed in Sect. 2.3. It is important to stress
that, in the above equation, the spin vector has the PN form

sA = (1)sA + (3)sA + O(c−4), (12)

and all the external potentials are evaluated at x = xA. If we
multiply Eq. (11) by εi j p and take into account the formulas
for the derivatives of the external potentials (see Sect. 2.2.4
in Ref. [18]), we obtain the 1PN-accurate spin precession
equation

d

dt

{
sA + 1

c2

[
sAÛ¬A + 1

2
(sA · vA) vA

]}

= �A × sA + O
(
c−4

)
, (13)

with

�A := �SO
A + �SS

A . (14)

The spin-orbit (SO) piece stems from the derivatives of Û¬A

and Ûi,¬A and reads as

�SO
A = 1

2c2

∑
B �=A

GMB

r2
AB

[nAB × (3vA − 4vB)] , (15)

while the spin-spin (SS) contribution comes from the deriva-
tives of �i,¬A and is given by

�SS
A = 1

c2

∑
B �=A

2G

r3
AB

[3 (nAB · sB) nAB − sB] . (16)

Similarly to the GR framework [7], we can define the
refined spin vector

s̄A := sA + 1

c2

[
sAÛ¬A (t, xA) + 1

2
(sA · vA) vA

]
, (17)

and write Eq. (13) as

ds̄A
dt

= �A × s̄A + O
(
c−4

)
, (18)

where �SS
A can be easily written in terms of s̄A bearing in

mind that s̄A = sA + O
(
c−2

)
. The new spin vector (17)

slightly differs from the analogous redefined angular momen-
tum adopted in GR (see Sect. 9.5.1 in Ref. [7]). In fact, in
EC framework no terms related to the translational kinetic
energy occur, while the corrections coming from the internal
structure of the body are included in the PN series (12).1

Although our starting point is represented by the EC-
framed Eq. (7), it is clear that Eq. (18) reproduces the cor-
responding GR equations pertaining to the evolution of the
macroscopic angular momentum if s̄A is multiplied by a fac-
tor 2. This represents an important consistency check of the
EC model, since the same conclusion holds also for the trans-
lational motion [18]. We stress that, in order to obtain this
result, the role of the Frenkel condition (2) is crucial. Further-
more, it is worth pointing out that, likewise the case of the
translational dynamics, the internal components of the bod-
ies do not give contribution to the rotational motion (18). In
fact, the term 2εi j pZ [ j i]

A , originating from Eq. (11), is vanish-
ing at 1PN order upon performing the involved integrations (a
detailed calculation is given in Appendix B). This underlines,
once again, the validity of the effacing principle at 1PN order
in EC theory endowed with the physical condition Sαμ

μ = 0.

2.3 Physical interpretation of the inner-structure-dependent
quantities

In this section, we discuss the physical interpretation of the
following inner-structure-dependent quantities:

Hki
A := 3G

∫
A

d3 y d3 y′ ρ�s′
k j

(y − y′)〈i (y − y′) j〉

| y − y′|5 , (19a)

1 In our model, these internal corrections do not depend on the velocity
w of each fluid element of the body relative to vA, since w vanishes due
to the hypothesis of stationary equilibrium.
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Qi j
A := 6G

∫
A

d3 y d3 y′ siks′
l j

(y − y′)〈k(y − y′)l〉

| y − y′|5 , (19b)

Z i j
A := 6G

∫
A

d3 y d3 y′ siks′
lk

(y − y′)〈l(y − y′) j〉

| y − y′|5 , (19c)

where yi := xi − xiA (t). Note that Eq. (19a) occurs in the
computations of the translational motion (see Ref. [18], for
details), while Eqs. (19b) and (19c) appear in the rotational
dynamics (11).

If we perform a dimensional analysis of the above terms,
we obtain

[
Hki

A

]
= mass · (length)2

(time)3 , (20a)

[
Qi j

A

]
=

[
Z i j

A

]
= mass · (length)4

(time)4 . (20b)

Therefore, the following interpretations are in order: (1) Hki
A

may be seen as the second-time variation of the spin inside
the body; (2) Qi j

A and Z i j
A may resemble the second-time

variation of the spin quadrupole-like effects inside the body.
The subtle differences between Qi j

A and Z i j
A rely on the sat-

uration of the indices inside the integrals. We see that Qi j
A

and Z i j
A represent the spin-body-body and spin-spin-body

interactions, respectively.

3 Lagrangian and first integrals for a binary system

In the previous section, we have investigated the 1PN-
accurate dynamics of an N -body system. In this section,
we restrict our attention to binary systems and provide a
Lagrangian formulation for their dynamics.

In GR, the (conservative) harmonic-coordinate equations
of motion of a two-body system can be derived from a gener-
alized Lagrangian, which besides the (relative) position and
velocity vectors, depends also on the (relative) acceleration.
This effect occurs at 2PN level if the objects have no angular
momentum, or already at 1PN order in the case they have a
“classic spin” [6]. This result is formally justified by the theo-
rem of Martin and Sanz, which is valid as long as the adopted
gauge conditions are Lorentz invariant [13]. The acceleration
dependence in the Lagrangian can be obtained by means
of the previous PN-expanded equations of motion and can
always be recast in a linear form via the addition of the so-
called multi-zero terms [6,21]. In general, the occurrence of
the acceleration in the Lagrangian is obtained via a guess-
work procedure [22]. A way out of this issue consists in the
use of contact transformations and Arnowitt, Deser, and Mis-
ner (ADM) coordinates, which permit to recover an ordinary
Lagrangian [6]. Indeed, this strategy does not violate Martin
and Sanz theorem, because the ADM coordinate conditions

break the Lorentz invariance [23]. In the current literature,
which is devoted to the description of binary dynamics at
high PN orders, the most common approach relies on the
Hamiltonian formalism in ADM coordinates, which avoid
the occurrence of accelerations [24,25].

As we will see in this section, the same situation as in
the GR framework occurs also in EC theory, as (the SO part
of) the Lagrangian involves acceleration terms. After having
derived the equations of motion of the two-body system in
Sect. 3.1, the Lagrangian and the ensuing first integrals will
be computed in Sects. 3.2 and 3.3, respectively.

3.1 Two-body equations of motion

By eliminating the center of mass of the system [17,18], the
two-body problem admits an effective one-body description
whose main variables are represented by the following rela-
tive vectors:

r := x1 − x2, n := r/r,

v := d

dt
r = v1 − v2, a := d

dt
v = a1 − a2. (21)

In our forthcoming analysis, it is also useful to introduce the
spin variables

s := s1 + s2, σ := M2

M1
s1 + M1

M2
s2, (22)

and the total mass M , the reduced mass μ, and the symmetric
mass ratio ν of the system

M := M1 + M2, μ := M1M2

M
, ν := μ

M
. (23)

The translational dynamics of the two-body system can be
described at 1PN level by means of the relative acceleration
(cf. Eq. (4))

a = aN + a1PN︸ ︷︷ ︸
aEIH

+ aSO + aSS︸ ︷︷ ︸
aEC

+O
(
c−4

)
, (24)

where the GR contribution is [14,26]

aN = −GM

r2 n, (25a)

a1PN = GM

c2r2

{
n

[
2GM

r
(ν + 2) − (3ν + 1)v2

+3

2
ν(n · v)2

]
+ 2(2 − ν)(n · v)v

}
, (25b)

while the EC correction reads as [18]

aSO = 2

{
G

c2r3

[
3(n · v)(n × (σ + 2s))
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+ 6n(n × v) · (σ + s) − v × (3σ + 4s)
]}

, (26a)

aSS = 4

{
3G

c2μr4

[
5n(n · s1)(n · s2) − s1(n · s2)

− s2(n · s1) − n(s1 · s2)

]}
. (26b)

Note that aSO and aSS are proportional to the GR acceler-
ations by the factors highlighted outside the curly brackets
in Eq. (26). This result ties in with our comment below Eq.
(18).

It follows from the outcome of Sect. 2.2, that for binary
systems the rotational motion

ds̄A
dt

=
(
�SO

A + �SS
A

)
× sA + O

(
c−4

)
, (A = 1, 2),

(27)

is governed by the precessional angular velocities

�SO
1 =

{
2Gμ

c2r2

(
1 + 3M2

4M1

)
(n × v)

}
, (28a)

�SO
2 =

{
2Gμ

c2r2

(
1 + 3M1

4M2

)
(n × v)

}
, (28b)

�SS
1 = 2

{
G

c2r3

[
3 (n · s2) n − s2

]}
, (28c)

�SS
2 = 2

{
G

c2r3

[
3 (n · s1) n − s1

]}
, (28d)

where the curly brackets make it clear that �SO
A assumes the

same form as in GR, whereas �SS
A is twice its GR counterpart.

3.2 Lagrangian formulation

As pointed out before, the translational dynamics can be for-
mulated in terms of an acceleration-dependent Lagrangian.
In fact, bearing in mind the GR results [14,26], we find that
the 1PN-accurate Lagrangian function of the binary system
is

L (r, v, a) = LN + L1PN︸ ︷︷ ︸
LGR

+LSO + LSS︸ ︷︷ ︸
LEC

+O
(
c−4

)
, (29)

where the GR piece is

LN = μ

(
v2

2
+ GM

r

)
, (30a)

L1PN = μ

c2

{
GM

2r

[
−GM

r
+ ν(n · v)2 + (ν + 3)v2

]

+ 1

8
(1 − 3ν)v4

}
, (30b)

while the EC term is given by

LEC = −2
2∑

A=1

(
�SO

A + 1

2
�SS

A

)
· sA, (31)

and hence reads as (cf. Eq. (28))

LSO = 2

{
μ

c2

[
v · (a × σ )

2M
+ 2G

r3 v · (r × (σ + s))
] }

,

(32a)

LSS = 4

{
G

c2r3

[
s1 · s2 − 3(n · s1)(n · s2)

]}
. (32b)

We stress that LSO and LSS reproduce their GR analogues if
the spin vector sA is divided by a factor 2.

The translational equations of motion (24) stem from the
Euler–Lagrange equations

0 = ∂L
∂ r

− d p
dt

, (33a)

p = ∂L
∂v

− d j
dt

, (33b)

j = ∂L
∂a

, (33c)

p being the generalized canonical momentum.
The rotational dynamics can be easily dealt with if we

resort to the Hamiltonian formalism. Within this pattern, the
SO and SS couplings are described by the Hamiltonian func-
tion

H(r,P, s1, s2) = HSO + HSS + O
(
c−4

)
, (34)

with

HSO = 2

{
Gμ

c2r3

[(
r × P

μ

)
·
(

3

2
σ + 2s

)] }
, (35a)

HSS = 4

{
G

c2r3

[
3(n · s1)(n · s2) − s1 · s2

]}
, (35b)

and P = μv the (relative) kinematic momentum (see e.g.
Refs. [27,28], for further details). By employing the expres-
sion of P and the PN formula a = aN + O

(
c−2

)
, one can

write H = − (LSO + LSS) + O
(
c−4

)
(see Eqs. (24) and

(32a)). We note that the replacement of the acceleration by
its Newtonian value in the 1PN generalized Lagrangian is a
correct procedure only when we cope with the spin motion.

The Hamiltonian approach permits to characterize the spin
precession via the Poisson brackets {·, ·} as

ds̄A
dt

= {sA,H} = 1

2

{
∂H
∂sA

× sA

}
, (A = 1, 2), (36)
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upon exploiting the basic relations

{
siA, s jA

}
= εi jks

k
A, (A = 1, 2), (37)

and the fact that the orbital variables r and P have vanishing
Poisson brackets with the spin variables.

The above equations can be also written in terms of the
Lagrangian (29) as follows

ds̄A
dt

= 1

2

{
sA × ∂L

∂sA

}
, (A = 1, 2). (38)

Therefore, the 1PN rotational dynamics pertaining to the total
refined spin tensor (see Eq. (17))

s̄ = s̄1 + s̄2, (39)

is represented by

ds̄
dt

= G

c2r3

{
LN ×

(
3σ

2
+ 2s

)
+ 6

[
(n · s1)(n × s2)

+ (n · s2)(n × s1)

]}
+ O

(
c−4

)
, (40)

the Newtonian angular momentum being

LN = μ(r × v). (41)

In the above analysis, the study of spin motion relies
upon the Hamiltonian picture, while the Lagrangian pattern
has been deduced only in a second moment. Despite that,
it is possible to investigate the spin precession by exploit-
ing exclusively the Lagrangian approach. Indeed, in Refs.
[27,29], it has been shown that the GR rotational dynam-
ics can be derived from a Lagrangian formalism provided
that the motion is described in terms of the Euler angles and
the rotational kinetic energy of the system is added to the
Lagrangian function. Although the GR framework concerns
the evolution of the angular momentum and not of the quan-
tum spin, it is possible to construct a similar scheme also in
EC theory. The main steps are the following. First of all, since
our investigation is restricted to 1PN results, it makes sense to
resort to nonrelativistic quantum mechanics. Moreover, to fix
the ideas, let us consider spin-1/2 particles. It is known that
their analysis rests on the two-dimensional spinorial repre-
sentation of SU (2), which is the double cover of the rotation
group SO(3) [30,31]. Since the elements of an orthogonal
transformation can be expressed in terms of the three Euler
angles, these can be exploited also in EC model to describe
the spin precession via the Lagrangian formulation. Finally,
the spin kinetic energy of each body, which should be added
to the Lagrangian function, can be constructed starting from

the spin kinetic energy density of the Weyssenhoff fluid

Kspin = 1

2
sμνωμν, (42)

ωμν being the fluid microscopic angular velocity (see the dis-
cussion regarding the first thermodynamic law in Ref. [17],
for further details).

3.3 First integrals

Having obtained the Lagrangian formulation of the 1PN
dynamics of the binary system, the first integrals can be easily
computed. Indeed, the total energy reads as

E = p · v + a · j − L, (43)

and its full expression is

E = EN + E1PN︸ ︷︷ ︸
EGR

+ ESO + ESS︸ ︷︷ ︸
EEC

+O
(
c−4

)
, (44)

where

EN = μ

(
v2

2
− GM

r

)
, (45a)

E1PN = μ

c2

{
GM

2r

[
GM

r
+ ν(n · v)2 + (ν + 3)v2

]

+ 3

8
(1 − 3ν)v4

}
, (45b)

ESO = 2

{
Gμ

c2r2 (n × v) · σ

}
, (45c)

ESS = 4

{
G

c2r3

[
3(n · s1)(n · s2) − s1 · s2

]}
. (45d)

Moreover, the total angular momentum of the system is

J = (r × p) + (v × j) + s̄, (46)

and it can be explicitly written as

J = LN + L1PN︸ ︷︷ ︸
LGR

+ LSO︸︷︷︸
LEC

+s̄ + O
(
c−4

)
, (47)

where

L1PN = LN

c2

[
GM

r
(ν + 3) + (1 − 3ν)

v2

2

]
, (48a)

LSO = 2

{
μ

c2M

[
GM

r
n × (n × (σ + 2s))

− 1

2
v × (v × σ )

]}
. (48b)
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Note that, in the above equations, ESO, ESS, and LSO are
proportional to their corresponding GR quantities [14], as it
should be expected.

By exploiting Eqs. (24) and (40), it is easy to show that
the motion keeps E and J constant, i.e., dE/dt = 0 and
d J/dt = 0.

4 Conclusions

In this paper, we have worked out the rotational motion at
1PN order of an N -body system in EC theory and, for the spe-
cial case of binary systems, we have provided the Lagrangian
formulation and the first integrals governing the dynamics.

In Sect. 2, the 1PN spin precession equations have been
obtained by applying the point-particle procedure to the rota-
tional motion of the Weyssenhoff fluid, which is the model we
have adopted to describe the quantum spin effects occurring
inside the bodies. Unlike the translational dynamics, where
the contributions coming from inner-structure-dependent
integrals cancel algebraically, the rotational motion (11) is
characterized by the structure term 2εi j pZ [ j i]

A which does
not vanish in a trivial way. This fact should be expected
on general grounds, as the integral Z j i

A embodies the zero-
range spin interaction which represents the new original fea-
ture brought in by EC theory (see Sect. 2.3). However, after
a detailed investigation (see Appendix B), we have proved
that 2εi j pZ [ j i]

A amounts to zero, provided that the reflection
symmetry hypothesis is taken into account. This remarkable
result entails a twofold implication: on the one hand, the
equations of motion have the same functional form as in
GR (up to a multiplicative factor in the spin) and, on the
other, we can claim that effacing principle is valid at 1PN
order in EC theory (at least for matter models enforcing the
condition Sαμ

μ = 0, see paragraph below Eq. (2)). Driven
by these arguments and the resemblance to GR, it has been
easy in Sect. 3 to derive the Lagrangian function and the first
integrals ruling the 1PN dynamics of a binary system. The
characterization of the spin precession within the Lagrangian
picture requires the introduction of the Euler angles, which
can be easily defined also in EC theory if we exploit the
two-to-one homomorphism between SU (2) and SO(3).

We have already discussed in Ref. [18] that the deviations
from the GR bulk dynamics turn out to be very tiny. These
have been evaluated by supposing that all the elementary
spins inside the bodies are aligned along a preferred direction
and hence they represent the largest corrections introduced
by EC model. Indeed, we recall that for unpolarized matter
the terms which are linear in the spin or involve its gradient
vanish upon performing a spacetime averaging procedure,
while quadratic-in-spin factors, which are distinct ingredi-
ents of EC theory, give a nonzero contribution [15,32–34].

However, there exist in nature configurations where the align-
ment of the spins naturally occurs as a consequence of the
presence of some external polarizing field. In fact, in the case
of neutron stars, the strong magnetic fields, together with the
spin-torsion forces and the strong-gravity interaction yield
this alignment (see Refs. [35,36], for more details). On the
other hand, for black holes we assume that the spins are
aligned, since we have no insight into their inner structure.
This represents a first approach, which permits to probe pos-
sible spin effects in black-hole physics by means of e.g., GW
phenomena. Indeed, more refined models could potentially
shed light on black hole interior and quantum-gravity issues.

This paper, along with the previous works [16–18], con-
stitutes a comprehensive examination of the GW genera-
tion problem and the N -body dynamics at the 1PN order in
EC theory via the Weyssenhoff fluid. Our research program
opens up several interesting perspectives for future studies,
such as: (i) determining the analytical solution of the trans-
lational motion (24), similarly to what has been done in GR
for bodies with no angular momentum [26]; (i i) deriving the
equations of motion of a two-body system at 2PN level to
check whether some differences with respect to GR would
emerge; (i i i) employing a different model from the Weyssen-
hoff semiclassical one to explore the spin effects and possible
deviations from GR at various PN orders; (iv) considering
some applications of our findings to astrophysical settings as
well as their generalization to cosmology, where EC theory
can lead to interesting implications, as the recent literature
shows (see e.g., Refs. [34,37–39]).
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Appendix A: N-body problem in GR theory

In this appendix, we briefly recall the N -body problem at
1PN level in GR.

The Einstein field equations, when solved iteratively via
the PN method and the harmonic gauge condition are trans-
formed into a set of Poisson equations, which, at 1PN order,
can be solved in terms of the following instantaneous poten-
tials [5,6]:

φ(t, x) := −G

c4

∫
d3x′ (0)T 00(t, x′)

|x − x′| , (A.1a)

ζi (t, x) := −4G

c4

∫
d3x′ (1)T 0i (t, x′)

|x − x′| , (A.1b)

ξ(t, x) := − 1

2c4 ∂2
t χ(t, x)

− G

c4

∫
d3x′ (2)T 00(t, x′) + (2)T ii (t, x′)

|x − x′| ,

(A.1c)

where the stress-energy tensor is such that (n)Tμν =
O

(
c2−n

)
. The function χ(t, x) occurring in Eq. (A.1c) is ref-

ereed to as superpotential. It fulfils a crucial role in the eval-
uation of the integral expressions involving the time deriva-
tives of φ.

In the case of a system consisting of N point-like particles
having masses mA and moving along trajectories described
by the relations x = xA(t) and with velocity vA, the instan-
taneous potentials (A.1) can be written as (dA := x − xA,
nA := dA/dA) [5–7]

φ = −G

c2

∑
A

mA

dA
, (A.2a)

ζi = −4G

c3

∑
A

mAviA

dA
, (A.2b)

ξ = −2G

c4

∑
A

mAv2
A

dA
+ G

2c4

∑
A

mA (vA · nA)2

dA

+ G

2c4

∑
A

mAnA · aA + G2

c4

∑
A

∑
B �=A

mAmB

dArAB
, (A.2c)

where in deriving Eq. (A.2c) we have exploited the regu-
larization prescription (which is a special case of Hadamard
regularization [6])

δ(3) (d A)

dA
≡ 0, (A.3)

to work out the otherwise ill-defined integral (see Eq. (A.1a))

∫
d3x′

|x − x′| φ(t, x′)δ(3)
(
x′ − xA(t)

) ; (A.4)

we refer the reader to Sect. 9.6 in Ref. [7], for further details.
The Lagrangian function pertaining to the geodesic

motion of the N -body system reads as

LNB := LNB
0 + 1

c2 L
NB
2 + O(c−4), (A.5)

with

LNB
0 := 1

2

∑
A

mAv2
A + G

2

∑
A

∑
B �=A

mAmB

rAB
, (A.6a)

LNB
2 := 1

8

∑
A

mAv4
A − G

4

∑
A

∑
B �=A

mAmB

rAB

[
7vA · vB

+ (vA · nAB) (vB · nAB)
]

+ 3G

2

∑
A

∑
B �=A

mAmB

rAB
v2
A

− G2

2

∑
A

∑
B �=A

∑
C �=A

mAmBmC

rABrAC
, (A.6b)

where in the derivation of Eq. (A.6b) we have discarded a total
time derivative. It is important to note that in Eq. (A.6) we
have dropped divergent quantities involving the self-potential
of the bodies, which can be handled either through Hadamard
or dimensional regularization [6]. This procedure can be seen
as a “renormalization” of the mass terms [40]. The 1PN-
accurate equations of motion stemming from Eq. (A.5) are
known in the literature as Einstein–Infeld–Hoffmann equa-
tions [7,10].

Appendix B: Computation of 2εi j pZ [ j i]
A

In this Appendix, we prove that the structure integral Ip =
2εi j pZ [ j i]

A /c2 (cf. Eqs. (11) and (19c)) gives a vanishing con-
tribution to the rotational dynamics.

We first write si j = εi j pξ
p, where ξ p is the spin density

vector. After performing the resulting computations, we find
that Ip is the sum of the following integrals:

Ap = 6G

c2 εlpk
∫
A d3 y d3 y′ξ kξ ′ j (y − y′)l(y − y′) j

| y − y′|5 , (B.7a)

Bp = −2G

c2 εlpk
∫
A d3 y d3 y′ξ kξ ′l 1

| y − y′|3 . (B.7b)

We consider the integral (B.7b) first. By swapping the
integration variables y and y′, it is easy to prove that Bp =
−Bp and hence Bp = 0. Remarkably, from this integral we
deduce a crucial property of the spin vectors inside each body
A, namely

1

c2

∫
A

d3 y d3 y′ξ × ξ ′ = 0. (B.8)
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In other words, at 1PN order the spin density vectors inside
each body point in the same direction.

The integral (B.7a) requires some additional work. By
exploiting the reflection symmetry property, we can realisti-
cally describe the body A as a general orthogonal ellipsoid
having the axes a, b, c coincident with those of a Cartesian
coordinate system. Applying the following dilation transfor-
mation

(x, y, z) → (X,Y, Z) = (ax, by, cz), (B.9)

the orthogonal ellipsoid is mapped into a unit sphere.
Using spherical coordinates and setting the spin vector

along the Z -axis (cf. Eq. (B.8)), we then employ the rotation-
ally invariant property of the sphere. This allows to set, with-
out loss of generality, ϕ′ = ϕ = 0, because the vector y− y′
lies always in a plane. In this way, we have AX = AZ = 0,
while AY �= 0, and in fact its expression is (after a coordinate
transformation for the angular variables and up to multiplica-
tive constant terms)

AY =
π
2∫

− π
2

dθ sin θ

π
2∫

− π
2

dθ ′
1∫

0

dr

1∫

0

dr ′ sin θ ′g(r, r ′, θ, θ ′),

g(r, r ′, θ, θ ′) = r2r ′2(r cos θ − r ′ cos θ ′)(r sin θ − r ′ sin θ ′)[
r2 + r ′2 − 2rr ′ cos

(
θ − θ ′)]5/2

.

(B.10)

The integration with respect to the radial coordinates pro-
duces a well-behaved function in the domain of integration.
Indeed, g can be dominated by

|g| ≤ r√
1 − r2

, (B.11)

and

1∫

0

dr

1∫

0

dr ′ r√
1 − r2

=
[

−
√

1 − r2

]1

0

= 1. (B.12)

Since Eq. (B.10) will be evaluated in 0 and 1, the final expres-
sion will depend only on the polar angles θ and θ ′. The result-
ing function is odd on a symmetric domain, entailing thus
Ip = 0.

We stress that the hypothesis of reflection symmetry is
extremely important in this computation. Indeed, in the most
general case the integral (B.7a) may be, in principle, non-
vanishing.
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11. L. Infeld, J. Plebański, P. A. N. (Warsaw), Motion and
Relativity, Monografie Fizyczne - Polska Akademia Nauk
(Pan. Wyd. Naukowe, 1960). https://books.google.it/books?
id=co8zcgAACAAJ

12. T. Damour, in Lecture Notes in Physics. Berlin Springer Verlag
124, 59–144 (1983)

13. J. Martin, J. Sanz, J. Math. Phys. 20, 25 (1979)
14. L.E. Kidder, C.M. Will, A.G. Wiseman, Phys. Rev. D

47, R4183 (1993). https://doi.org/10.1103/PhysRevD.47.R4183.
arXiv:gr-qc/9211025

15. F. W. Hehl, P. von der Heyde, G. D. Kerlick, J. M. Nester, Rev.
Mod. Phys. 48, 393 (1976). https://doi.org/10.1103/RevModPhys.
48.393

16. E. Battista, V. De Falco, Phys. Rev. D 104, 084067 (2021).
arXiv:2109.01384 [gr-qc] 10.1103/PhysRevD.104.084067

17. E. Battista, V. De Falco, Eur. Phys. J. C 82, 628 (2022).
arXiv:2206.12907 [gr-qc] 10.1140/epjc/s10052-022-10558-9

18. E. Battista, V. De Falco, Eur. Phys. J. C 82, 782 (2022).
arXiv:2208.09839 [gr-qc] 10.1140/epjc/s10052-022-10746-7

19. Y. Obukhov, V. Korotkii, Class. Quant. Grav. 4, 1633 (1987).
https://doi.org/10.1088/0264-9381/4/6/021

20. C.G. Boehmer, P. Bronowski, Ukr. J. Phys. 55, 607 (2010).
arXiv:gr-qc/0601089

21. L. Blanchet, Academie des Sciences Paris Comptes Rendus Serie
Physique Astrophysique 2, 1343 (2001). https://doi.org/10.1016/
S1296-2147(01)01267-7. arXiv:gr-qc/0108086 [gr-qc]

22. T. Damour, in Gravitational Radiation (1983) p. 58
23. T. Damour, G. Schäfer, Gen. Relativ. Gravit. 17, 879 (1985). https://

doi.org/10.1007/BF00773685
24. G. Schäfer, in General Relativity, Cosmology and Astrophysics,

Vol. 177, editor edited by editor J. Bičák and editor T. Ledvinka
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