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Abstract The detection of high-energy neutrinos in the
EeV range requires new detection techniques to cope with
the small expected flux. The radio detection method, utiliz-
ing Askaryan emission, can be used to detect these neutrinos
in polar ice. The propagation of the radio pulses has to be
modeled carefully to reconstruct the energy, direction, and
flavor of the neutrino from the detected radio flashes. Here,
we study the effect of birefringence in ice, which splits up
the radio pulse into two orthogonal polarization components
with slightly different propagation speeds. This provides use-
ful signatures to determine the neutrino energy and is poten-
tially important to determine the neutrino direction to degree
precision. We calculated the effect of birefringence from first
principles where the only free parameter is the dielectric ten-
sor as a function of position. Our code, for the first time,
can propagate full RF waveforms, taking interference due to
changing polarization eigenvectors during propagation into
account. The model is available open-source through the
NuRadioMC framework. We compare our results to in-situ
calibration data from the ARA and ARIANNA experiments
and find good agreement for the available time delay mea-
surements. This indicates a significant improvement of the
prediction power of birefringence effects compared to pre-
vious models. Finally, the implications and opportunities for
neutrino detection are discussed.

1 Introduction

Neutrinos are perfect cosmic messengers [1]. Because of
the ghostly nature of these peculiar elementary particles that
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allows them to pass through matter almost unhindered, neu-
trinos will provide insights into the inner processes of the
most violent phenomena in our universe [2,3]. However,
the low expected flux of UHE neutrinos and their ghostly
nature make their detection challenging. IceCube, the world’s
largest neutrino telescope, has to date detected neutrinos
with energies up to 1016 eV. Though no neutrino above
1017 eV has been detected so far, limits could be set where
the strongest limits come from the IceCube Neutrino Obser-
vatory [4] and the Pierre Auger Observatory [5]. Current
detector technologies like those of IceCube become cost-
prohibitive for higher energies. Therefore, a new detection
technique has been developed over the last decade where
an array of radio antennas installed in the polar ice sheet
searches for radio flashes generated by neutrinos interacting
in the ice [6–9]. The radio technology allows cost-efficient
instrumentation for the monitoring of large volumes.

When high-energy neutrinos interact in ice they create a
particle shower and the secondary particles generate a short
radio flash via the Askaryan effect [10,11]. Using ice as the
detector medium has the advantage that it is readily avail-
able in polar regions and that the attenuation length of radio
signals often exceeds 1 km [12]. This allows instrumenting
of large volumes with a sparse array of radio detector sta-
tions. However, it also requires a good understanding of the
kilometer-long propagation of radio signals through the ice
to recover the neutrino properties from the observable radio
flashes. This work advances the simulation of ice effects sig-
nificantly. Here we present the first calculation of birefrin-
gence effects (for in-ice radio propagation) that is detailed
enough to be integrated into MC simulation codes. We also
integrated the birefringence calculation into the NuRadioMC
code and made it available open source [13]. In previous MC
codes of in-ice radio propagation, birefringence was ignored.

Several experiments are dedicated to building an in-ice
radio detector and pushing for a measurement of the neu-
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trino flux up into the EeV region. The detector technology
has been successfully explored in the pilot arrays ARIANNA
[8] and ARA [14]. The Radio Neutrino Observatory in Green-
land (RNO-G) is the first detector of sufficient size to poten-
tially detect the first UHE neutrino and is currently being
constructed (2021–2024) [15]. At the same time, an order
of magnitude larger radio array is being planned as part of
the IceCube-Gen2 efforts to build the next-generation neu-
trino observatory at the South Pole [16,17] with hundreds of
autonomous detector stations.

Sensitivity to UHE neutrinos can also be achieved with
balloon experiments. The ANITA experiment [18] and its
successor PUEO [19] fly an array of radio antennas around
Antarctica. One detection channel is in-ice neutrino interac-
tions where the generated Askaryan radio signal propagates
upwards to the surface and continues propagating through
the atmosphere to be eventually detected by the balloon. As
a significant part of the propagation is through ice, birefrin-
gence effects are also relevant for balloon-born radio neutrino
detection.

To reconstruct the neutrino properties from the detected
signals, the propagation through the ice from the neutrino
interaction to the antenna has to be understood to good pre-
cision. This in turn calls for a precise model of the medium in
which the radio pulses propagate and its effect on the prop-
agation. Ice has a non-uniform structure depending on, e.g.,
crystal fabric, density, pressure due to ice flow, or impuri-
ties like air bubbles or ash layers. One effect is biaxial bire-
fringence which alters the propagation speed depending on
the signal polarization of the radio pulses. This paper intro-
duces a model that simulates the effect of birefringence for
in-ice radio propagation. It makes detailed predictions about
the pulse shapes, polarization, and arrival time for arbitrary
geometries possible. The strength of the model is the math-
ematical foundation on which it is based. The calculation
of the effective refractive indices as well as the steps of
the numerical pulse propagation are well-founded in clas-
sical electrodynamics. The only free parameters in the cal-
culation are the ice properties, i.e., the index-of-refraction
including the polarization-dependent asymmetries from bire-
fringence as a function of position. We combine the calcu-
lations with a numerical propagation code that allows the
propagation of arbitrary pulse forms through the ice. This
allows detailed modeling of in-situ measurements, as well as
neutrino-induced radio pulses.

In this work, we use the ice-fabric measurement from the
SPICE core project at the South Pole [20] from which the
dielectric tensor was derived [21]. We build upon previous
work that studied birefringence effects on in-ice propagation
[21,22] but improve it significantly. The previous models
were restricted either to special geometries where the effec-
tive refractive indices could be approximated or to contin-
uous waveforms of fixed frequency instead of short broad-

band pulses that are relevant for radio neutrino detection. Our
model calculates an analytical solution directly derived from
Maxwell’s equations for arbitrary geometries and allows for
the propagation of realistic pulse forms.

We integrated the birefringence model into the NuRa-
dioMC framework. NuRadioMC is an open-source python-
based Monte Carlo code to create precise simulations of the
neutrino interaction, the Askaryan emission, the radio propa-
gation, and the detector response [13,23]. The birefringence
model is an extension of the ray-tracing class of the propaga-
tion simulation. The integration into NuRadioMC makes our
model available and directly usable to the in-ice radio com-
munity and will allow studying the impact of birefringence
on neutrino detection in future work.

The paper is structured as follows: We first present the
calculation of birefringence effects from first principles and
describe the numerical procedure we developed to propagate
arbitrary waveforms through the ice. Then, we make predic-
tions and compare them to existing in-situ measurements at
the South Pole where we find that the ability of our model to
propagate arbitrary waveforms is crucial for the interpreta-
tion of the data. Finally, we study the impact of birefringence
on the radio detection of ultra-high-energy (UHE) neutrinos.

2 Birefringence model

In this section, we derive the calculation of birefringence
from first principles and describe how we integrate it into the
NuRadioMC code. The only free parameters of the model are
the position-dependent dielectric properties of the medium.
Throughout this work, we chose a coordinate system that
aligns with the symmetry of the dielectric tensor to simplify
the calculation: The z-axis points in the vertical direction,
the x-axis runs parallel to the direction of the horizontal ice
flow and the y-direction runs perpendicular to the direction
of the horizontal ice flow.

2.1 Ice model

The largest influence on the index-of-refraction of ice is the
ice density. Over the upper O(200 m), often referred to as the
firn, the density gradually changes from fluffy snow to solid
ice which leads to a change of the index-of-refraction from
n ≈ 1.35 at the surface to n = 1.78 at deeper depths [24]. The
density profile has been measured at several places around
the South Pole (see Ref. [25] for a compilation of available
measurements) and the resulting index-of-refraction profiles
〈n(z)〉 can be described via an exponential function of the
form

〈n(z)〉 = 1.78 − Δn · exp

(
z

z0

)
, (1)
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Fig. 1 Refractive index as a function of depth. Measured birefringence
data (scatter) [20] compared to the average index-of-refraction value at
this depth 〈n(z)〉. The shown spline interpolation of the data (solid lines)
assumes constant extrapolation towards deeper and shallower depths
(model A)

where Δn and z0 are free parameters that are determined
from density measurements of ice cores [25], or directly from
propagation times of radio waves in ice [26].

In addition, multiple effects such as the hexagonal crys-
tal structure of the ice and the horizontal glacier/ice flow
make the polar ice a biaxial birefringent medium. The per-
mittivities for the different directions were measured by [20]
and the calculation on how to convert them into refractive
indices can be found in [21]. Figure 1 shows this measure-
ment as well as a spline interpolation of the data to extrapolate
to deeper and more shallow depths, and to average out the
presumably mostly statistical fluctuations of the measured
values. As the baseline model in this article, we assume that
no further change in index-of-refraction takes place towards
deeper and shallower depths. We also studied three alterna-
tive choices of interpolating/extrapolating the available data
that we show in the appendix in Fig. 15 which we will use
later to test and verify the robustness of our birefringence
predictions.

The measurement of the birefringence asymmetries is
combined with the density effect to obtain a complete ice
model that describes all three components of the index-of-
refraction with depth n(z) which we show in Fig. 2.

We note that the model developed here does not rely on the
rather simple parameterization of density effects of Eq. (1).
Our model works for any n(x, y, z) profile. However, we will
use the parameterization of Eq. (1) in the following because
it generally provides good modeling of the South Pole ice
[25], it is used in current analyses [8,14,27], and because we
use the analytic ray tracer of NuRadioMC for a fast calcu-
lation of signal trajectories that only works with exponential
density profiles. Typically, the parameters of the exponen-
tial index-of-refraction profile are determined from density
measurements [25] which yield a good description of the
bending of signal trajectories from deep in the ice to the
surface as measured by the ARIANNA collaboration [27].

Fig. 2 Refractive index as a function of depth. Combination of bire-
fringence and density effects. The zoomed-in version highlights the
birefringence effects seen in Fig. 1 while the zoomed out version high-
lights the density effects from Eq. (1)

The ARA collaboration recently reported that for a propaga-
tion solely in deeper layers from 200 m and below where the
index-of-refraction is already close to the deep ice value of
n = 1.78 a modification of the parameters (major decrease
of z0 and minor increase of Δn) yield better agreement with
data [28]. The different parametrizations for ARA and ARI-
ANNA are shown in appendix Appendix A. In future work,
we will incorporate the birefringence calculations into Radio-
Propa [29,30] which will allow propagation in media with
arbitrary n(x, y, z) profiles.

2.2 Derivation of the Birefringence model

The following derivation was taken from [31] and is repeated
here to provide the relevant context. The birefringence effect
can be derived from Maxwell’s equations for harmonic plane
waves.

k × E = ωμ0H

k × H = −ωεE
(2)

Here, μ0 is the vacuum permeability, k is the wave vector,
ω is the frequency, ε is the absolute permittivity, and H and
E are the magnetic and electric fields of the plane wave. The
general form of ε is a 3x3 matrix but due to our choice of
the coordinate system, it reduces to a diagonal matrix. The
wave equations can then be expressed via the propagation
direction s (normalized), the speed of light c, and the relative
permittivity of the medium εr .

s(s · E) − E + ω2

k2c2 εr · E = 0 (3)
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With the effective refractive index n = kc/ω and using
the biaxial dielectric tensor εr

ε = ε0εr = ε0

⎛
⎝n2

x 0 0
0 n2

y 0
0 0 n2

z

⎞
⎠ (4)

Equation (3) can be written in matrix form:

0 =
⎛
⎝ a n2sx sy n2sx sz

n2sx sy b n2sysz

n2sx sz n2sysz c

⎞
⎠

⎛
⎝Ex

Ey

Ez

⎞
⎠ (5)

with

a = n2
x − n2(s2

y + s2
z )

b = n2
y − n2(s2

x + s2
z )

c = n2
z − n2(s2

x + s2
y)

(6)

Setting the determinant of the matrix in Eq. (5) to zero
returns an equation quadratic in n2 with two positive solu-
tions which are the effective refractive indices N1, N2.

(
n2

x − n2
) (

n2
y − n2

) (
n2

z − n2
)

+n2[
s2
x

(
n2

y − n2
) (

n2
z − n2

)
+ s2

y

(
n2

x − n2
) (

n2
z − n2

)

+s2
z

(
n2

x − n2
) (

n2
y − n2

) ] = 0 (7)

The roots can be found analytically using the equations
in (1) which were implemented into NuRadioMC. The two
corresponding polarization eigenvectors can be calculated
via

ei =

⎛
⎜⎜⎜⎜⎜⎝

sx

N 2
i − n2

xsy

N 2
i − n2

y
sz

N 2
i − n2

z

⎞
⎟⎟⎟⎟⎟⎠

(8)

with i = 1, 2. For special geometries where Ni = nx,y,z ,
Eq. (7) simplifies, and these special cases are treated sep-
arately [32]. The two eigenvectors are orthogonal to each
other. It is convenient to express the resulting vector in spher-
ical coordinates θ , φ, and r , where the r -component can be
neglected as it is close to zero. Normally, electromagnetic
waves are polarized orthogonal to their direction of prop-
agation resulting in a zero r -component but in a dielectric
medium, the Poynting vector can deviate from the propaga-
tion direction to which the wave is orthogonal. In the case of
polar ice, due to the small birefringence asymmetries, the r
component is not exactly zero but at the level of a few permil
compared to the amplitude of the θ and φ components which
we ignore in the following.

The derivation shows that a radio wave splits up into two
orthogonal components with two different effective indices-
of-refraction that depend on the propagation direction s and
the dielectric tensor ε where ε reduces to the refractive index
vector n due to our choice of coordinate system that orthog-
onalizes the tensor.

2.3 Pulse propagation model

Both, the propagation direction and the refractive index
change during the propagation of the radio signal. We account
for that by performing the propagation in small incremen-
tal steps over which these quantities can be assumed to be
constant. As a first step, the signal trajectory through the
ice is calculated ignoring birefringence effects. In this work,
we use the analytic ray tracer of NuRadioMC [13] but also
other propagation codes that support more complex index-of-
refraction profiles and deviate from the exponential modeling
of Eq. (1) could be used. Work to integrate this model into
the numerical ray tracer RadioPropa [29,30] is ongoing.

We use the same propagation direction for both propaga-
tion states at each incremental step. This neglects the small
spatial separation of the two states in the firn due to the
small difference in effective index-of-refraction and there-
fore slightly different propagation paths. We think that this
approximation is justified and discuss it in Sect. 2.4.

By subtracting the propagation time calculated from N1

with the propagation time calculated from N2, Eq. (9) can be
used to calculate the time delay ΔT due to birefringence.

ΔT = l

c
(N1 − N2) (9)

As the polarization eigenvectors of the two propagation
states change while the pulse propagates (due to a change
in n as well as a change in the direction of propagation),
a mixing of fast and slow parts of the pulse occurs. Here,
the slow and fast parts refer to the eigenstates of N1 and
N2. This means that a simple calculation of time differences
between the two propagation states using Eq. (9) as was done
in previous work [21] is not sufficient to properly describe the
effect of birefringence for the radio detection of neutrinos.

To account for the change in the eigenvectors, a pulse prop-
agation model for arbitrary waveforms was created which we
illustrate in Fig. 3. The polarization of an electromagnetic
wave is best described in spherical coordinates where the
radial component is always zero due to the transversality of
the wave. Then, any waveform can be described by specify-
ing the pulse shape in the θ /φ basis (step 0). This pulse is then
rotated into the new slow/fast basis by a rotation matrix R
defined by the two eigenvectors e1,2 calculated from Eq. (8)
where one part of the pulse travels faster than the other (step
1). The incremental time shift calculated from Eq. (9) is then
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Fig. 3 Pulse propagation model for an artificial pulse shape with the
created time traces at the source (step 0), the rotation into the time
domain (step 1), the time shift applied to separate the pulses (step 2),

and the inverse rotation back into the polarization states (step 3). In the
supplements of the paper, we provide videos detailing how the pulse
shapes propagate for different geometries

applied to the pulses (step 2) and the pulses are rotated back
into the natural θ and φ states (step 3). This process is illus-
trated in Fig. 3 and described in the following equations.

The rotation matrix is given by the unit vectors of the two
polarization eigenvectors (and the one orthogonal to them to
form a new orthogonal basis)

R =
⎛
⎜⎝

er⊥ eθ⊥ eφ
⊥

er
1 eθ

1 eφ
1

er
2 eθ

2 eφ
2

⎞
⎟⎠ ≈

⎛
⎜⎝

1 0 0
0 eθ

1 eφ
1

0 eθ
2 eφ

2

⎞
⎟⎠ (10)

As shown in Eq. (10), the three-dimensional problem can
be reduced to a two-dimensional problem as the radial com-
ponent of the pulse polarization is almost zero. Then the
waveform described as the amplitude as a function of time
A(t) transforms as follows

(
AN1(t)
AN2(t)

)
= R

(
Aθ (t)
Aφ(t)

)
(11)

Then the time shift is applied via

AN1(t) → AN1(t − Δt) (12)

We implement the time shift using the Fourier shift the-
orem, i.e., that a translation in the time domain corresponds
to a multiplication by a phase factor in Fourier domain. This
allows to shift waveforms precisely even with Δt ′s that are
smaller than the binning of the time domain. To increase
performance, the complete propagation is performed in the
Fourier domain. Finally, the waveforms are rotated back into
the θ /φ basis.

(
Aθ (t)
Aφ(t)

)
= R−1

(
AN1(t)
AN2(t)

)
(13)

Steps 1–3 are then repeated for every incremental step of
the signal propagation.

We show an example of a pulse propagating from 1300 m
depth to a receiver close to the surface at a horizontal distance
of 1500 m at an angle that is close to parallel to the ice flow
in Fig. 4. We only show the direct trajectory to the receiver.
We choose a generic bandpass limited delta pulse with equal
amplitude in the θ and φ polarization states as starting pulse.
The example shows how the two effective indices of refrac-
tion as well as how the polarization eigenvector change dur-
ing propagation. We picked a geometry where the change in
eigenvectors together with the accumulation of time delays
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Fig. 4 Display of the pulse propagation properties with vertex position
at [0 m, 0 m, −1300 m] and antenna position at [1500 m, 200 m, −1 m].
Top left: Effective refractive indices N1,2 against depth. The density
effect is subtracted to be able to see the relative behaviour. Bottom left:

Normalized eigenvector of N1 against depth. N2 behaves the same way
with the magnitude of θ and φ switched, as it stays perpendicular to the
eigenvector of N1. Top right: Waveform before propagation. Bottom
right: Waveform after propagating

lead to interference which is visible in the pulse shapes after
propagation.

2.4 Limitations of the model and future cross-checks

Because we derived the calculation directly from first prin-
ciples, the model does not have any free parameters that can
be tuned. The only input is the index-of-refraction profile
and the initial waveforms before propagation. However, we
assume that the propagation can be described with ray optics
and that both eigenstates propagate along the same path.
The validity of this assumption is difficult to verify with-
out doing a much more elaborate calculation. Even if we
would keep the ray tracing assumption but would take into
account path differences due to the small differences in the
index-of-refraction, the complexity of the simulation would
increase dramatically because, in every propagation step, the
path would split in two resulting in an exponential increase
in paths to consider of 2Nsteps which would lead to 10301 path
segments for a typical number of 1000 propagation steps.
We approximate the resulting uncertainty by considering the
most extreme case of calculating the difference between the
propagation paths of two pulses following density profiles

that differ by the maximal observed difference between nx ,
ny , and nz of nice = 0.005. The difference is typically only
a few millimeter. Only very rare geometries have a section
of the propagation path with larger deviations but always
stayed below 0.35 m for the refracted/reflected ray solution
and 0.05 m for the direct ray. This needs to be compared to
the relevant wavelength of ∼ 0.5 m–1.5 m. Because the path
differences are small and typically much smaller than the
considered wavelengths, we think that the approximation is
justified.

There is a way to test our calculations via Finite Dif-
ference Time Domain (FDTD) simulations that essentially
evolves Maxwell’s equations over time within some finite
computational volume, e.g., using the open-source code
MEEP [33]. FDTD simulations have already been used to
study second-order propagation effects for radio waves in
polar ice [34]. However, FDTD simulations are extremely
CPU and memory intensive, especially for the large volumes
O(1 km3) and high frequencies relevant for us. About 10 grid
points are needed per wavelength. Even restricting the high-
est frequency to 200 MHz and using n = 1.78 resulting in
λ = 84 cm will result in one grid point every 7 cm. Then,
the memory consumption can easily reach several TB and the
computation time would exceed 100k core hours. However,
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using a supercomputer where several large computing nodes
are combined using MPI, such a simulation seems in principle
possible. We plan to consider this in future work. However,
due to the large computing costs, such a cross-check could
only be done for a few selected geometries. For all practical
purposes, a fast model as presented here is required.

3 SPICE measurement setup

Next to its original purpose of measuring the ice properties
of the South Pole, the SPICE borehole can now be used to
calibrate radio detector stations and to study the propaga-
tion of radio waves through polar ice. To do this, a radio
transmitter, repeatedly emitting short radio pulses, was low-
ered down the borehole. Radio antennas - placed into the
ice at shallow depths - then measured the pulses after in-
ice propagation. In the following, we use public data from
measurement campaigns done by the ARA and ARIANNA
collaborations [21,27,35] to which we compare our predic-
tions of birefringence effects. The positions of the different
ARA and ARIANNA radio detector stations are indicated in
Fig. 5 with respect to the SPICE hole at (0, 0) and the ice
flow in the x-direction.

The ARA detector stations consist of antennas installed
to a depth of down to 200 m. Due to the limited diameter of
the borehole, cylindrical bicone antennas (that are sensitive
to the vertical polarization component, named vpol in the
following) and quad-slot antennas (that are sensitive to the
horizontal component, named hpol in the following) are used.
Each station consists of four strings. Eight pairs of vpol and
hpol antennas form a cube with a separation of approx. 20 m
[36] with slight variations from station to station.

The ARIANNA detector station consists of four LPDA
antennas that point downwards and are buried approx. 1 m
below the snow surface. They are arranged horizontally in
two parallel pairs that are orthogonal to each other. This setup
allows for the reconstruction of the three-dimensional electric
field via a simultaneous unfolding of the antenna response
of the four LPDAs. The measurement setup and the corre-
sponding analysis are described in detail in Ref. [27].

Examples of direct signal trajectories from two represen-
tative emitter depths are shown in Fig. 6 with the ARIANNA
antenna sitting at ∼ 1 m below the snow surface and the ARA
receivers going down to ∼ 200 m.

The emitter that was lowered into the SPICE borehole con-
sisted of a pulse generator that was connected to a fat dipole
antenna. It was measured carefully in an anechoic chamber
to have a precise model of the emitted pulses. The measure-
ment setup and results are described in detail in [27] and
are available at [37]. The pulses were measured for differ-
ent launch angles, i.e., the angle between the line-of-sight
from the emitter to the receiver and the symmetry axis of

Fig. 5 The geometry of the measurement setup at the South Pole [22],
with the SPICE hole for the transmitter in blue and the ARA and ARI-
ANNA antenna stations in red. Also shown is the position of the deep
pulser [21], another radio transmitter attached to the end of one of the
IceCube strings

Fig. 6 Side view of two radio signals propagating from the transmitter
in the SPICE hole at −1000 m and −1400 m depth to the antennas of
the ARA and ARIANNA stations. Detector station ARA5 is outside of
the plot range but the signal trajectories are shown

the dipole antenna. In the measurement setup at the South
Pole, the launch angle changes with the depth of the trans-
mitter in the SPICE borehole (cf. Fig. 6). Naively one would
expect that the emitted signal is only θ polarized but the
measurement revealed the presence of a cross-polarization
(φ polarization) amplitude of up to 20% depending on the
launch angle.

The electric field was measured for launch angles of 15◦,
30◦, 45◦, 60◦, 75◦ and 90◦. Each measurement was repeated
10 times. In Fig. 7, we show the set of 10 measurements for a
launch angle of 30◦. Apart from the existence of a non-zero
cross-polarization amplitude, one can also see a relatively
large variance of the emitted pulses for the same launch angle.
Not only does the amplitude vary but the θ and φ components
have their maximum at different times which further com-
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Fig. 7 Pulses emitted at a launch angle of 30◦ from the anechoic cham-
ber. θ traces are indicated in blue and φ traces are indicated in red

plicates the interpretation of time delay measurements. Our
pulse propagation code allows, for the first time, to take these
subtle but important effects of interference between different
components of the pulse during propagation into account.

It is often useful to reduce the information of the electric-
field traces to a single quantity. A common choice that was
used in previous work [27] is to calculate fluence and polar-
ization. The fluence is calculated by integrating the squared
electric field. We use the same integration window as used
in Ref. [27] of 70 ns around the maximum of the dominant θ

component, and subtract the contribution of noise:

fθ,φ ≡

√√√√√
tm+35ns∑

t=tm−35ns

|Eθ,φ(t)|2 − fθ,φ,noise . (14)

This information can be further reduced to a single polar-
ization angle per electric-field pulse which is given by:

P ≡ arctan

(
fφ
fθ

)
. (15)

The polarization of the emitted pulses as a function of
the launch angle is shown in Fig. 8 as well as which launch
angles are covered for the different geometries and transmit-
ter depths from 600 to 1700 m.

4 Comparison to ARA data

As seen in Fig. 5, the ARA collaboration installed multi-
ple detector stations at the South Pole with various angles
to the ice flow relative to the direction to the SPICE hole.
This gives the ARA experiment many useful handles for
measuring the effect of birefringence. Previous studies mea-
sured time delays between signal pulses arriving at the vpol
and hpol antennas [21]. This measurement of polarization-
dependent time delays is a direct test of birefringence. In

Fig. 8 Polarization of starting pulses against the launch angle. The
launch angle at which each station can receive signals from the SPICE
drop is indicated below. Figure adapted from Ref. [27]

previous work using a simplified model of birefringence, the
measured time delays could be explained for some of the
geometries but showed deviations for other geometries [21].

In the following, we make a detailed prediction of
the ARA measurements by propagating the emitted wave-
forms (obtained from the anechoic chamber measurements
described above) to the receivers using the birefringence
model described in Sect. 2.

4.1 Time delay

Simulating the time delay is difficult, as many small effects
can change the outcome of a measurement. To make a compa-
rable prediction to the previous simulation of [21], the time
delay was first calculated independently of the waveforms
by adding the incremental time delays between the θ and φ

polarization components resulting from Eq. (9). The results
are shown in Fig. 9.

For the geometries perpendicular to the ice flow, our pre-
dictions are very similar to the previous calculation. For par-
allel geometries, one can see a similar trend but a larger
discrepancy to the previous model. The discrepancy can be
explained when considering how the two models calculate
the effective refractive indices. The previous model from [21]
approximated a perfect propagation in the x-z-plane for the
parallel case and a perfect propagation in the y-z-plane for
the perpendicular case. Then, one can approximate N1 with
nx (ny) and N2 with a weighted average of ny and nz (nx and
nz) for a perfectly parallel (perpendicular) propagation with
respect to the ice flow. However, the geometries for the A2
and A4 station are not perfectly perpendicular or parallel to
the ice flow and so N1 and N2 both depend on nx , ny and nz .
Our model takes this into account. Due to nz and ny having
similar values the approximation works better for the per-
pendicular case (propagation to ARA station A2) as N2 lies
in between nz and ny . For the parallel case (propagation to
ARA station A4) N2 lies between nz and nx where the room
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Fig. 9 The simulated time
delay from [21] (thin lines)
compared to the predictions
from the introduced model
(thick lines)

Table 1 Summary of time delay measurements and predictions for the
pulse propagation from 1000 m depth to the ARA A2 and A4 stations.
The first two columns show the accumulated time delay in the θ and
φ polarization component using Eq. (9) from our model and the sim-
plified calculation from [21]. The third/fourth columns show the time
delay extracted from the propagated waveforms of the electric field

(θ , φ) and include the antenna response (v, h). The last column shows
the measured time delay between the vpol and hpol antennas. See text
for details. The values indicated in bold fond represent our predictions
and the normal fond values represent the predictions and measurements
published in [21]

Simple calculation Pulse propagation Measured data

ΔT θ ,φ [ns] ΔTθ,φ[ns] ΔT θ ,φ [ns] ΔT v,h [ns] ΔTv,h[ns]
(This work) (Ref. [21]) (This work) (This work) (ARA [21])

SPICE-A2 −21.7 −22.5 −11.6 ± 0.7 −10.9 ± 0.4 −14.1 ± 2.8

SPICE-A4 −5.5 −1.6 4.1 ± 1.1 3.9 ± 0.2 4.6 ± 9

for error is larger and this difference becomes apparent in
Fig. 9. Other notable differences between the models (While
these differences are important to consider when comparing
the models they are not expected to have changed the results
in a significant manner) include a larger numerical step size
(Δ ∼ 20 m) and using the exact data points of Fig. 1 for
the model described in [21] compared to Δ ∼ 2 m and the
interpolation of the data points shown in Sect. 2.1 for our
model.

When comparing the simulated predictions to measured
data one has to be careful to distinguish between the natu-
ral polarization states (here θ and φ) and what the antennas
measure (vpol and hpol). The vpol antenna is only sensitive
to (the vertical projection of) the θ component of the electric
field. However, the hpol antenna is sensitive to θ as well as
the φ component because the θ component also has a hor-
izontal component depending on the signal direction. Only
for horizontal signal directions, the θ component is purely
vertical. In our analysis, we calculate the response of both
antennas using a detailed model of the antenna response that
is available through NuRadioReco [23].

The ARA collaboration presented one measurement each
for A2 and A4 [21] of the time delay between the pulse
amplitude in the vpol and hpol antennas for an emitter depth

of 1000 m with ΔTv,h(1000 m, A2) = −14.1 ± 2.8 ns and
ΔTv,h(1000 m, A4) = 4.6 ± 9 ns.

To make a thorough prediction for these data points, we
start with the waveforms from the anechoic chamber mea-
surement at 75◦ launch angle that matches best the geometry
(cf. Fig. 8). One of the ten measured waveforms showed a
different behavior than the others which we attribute to mea-
surement error and therefore disregard this waveform. Then,
we propagate the remaining 9 waveforms to the receiver using
our birefringence code, correct for attenuation and fold with
the antenna response to obtain the expected voltage traces
in the vpol and hpol antennas. We calculate the time differ-
ence between the maxima of the Hilbert envelopes of these
components from which we calculate the time delay. We use
the standard deviation of the calculated time delays of the
9 pulses to estimate the uncertainty of the prediction. This
way, also the initial time difference between the pulses is
accounted for, a crucial aspect that was neglected in previ-
ous analyses.

The results are summarized in Table 1. For both geome-
tries our predictions agree with the measurements within
uncertainties, with a difference of ∼ 1 ns for the A4 geom-
etry and ∼ 3 ns for the A2 geometry. The application of
the antenna response (ΔTθ,φ vs. ΔTv,h) constitutes a minor
correction because the signal arrival direction is close to hor-
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izontal. However, it is crucial to propagate the emitted wave-
forms compared to the simplified calculation done previously
which leads to differences of up to 10 ns. Furthermore, our
more precise calculation of the effective indices-of-refraction
makes a significant difference for the A4 geometry compared
to the approximation done in [21].

The agreement of our prediction with the measured data
points indicates that our model describes the South Pole ice,
and that time delay measurements are useful to probe bire-
fringence effects. However, these are only two data points for
which a comparison could be made and further comparisons
to real data are needed to solidify the prediction power.

4.2 Amplitude

Another potential way to experimentally probe birefringence
effects is via changes in the pulse amplitude or polarization
with emitter depth. As seen in Fig. 4, the polarization and/or
pulse amplitude can change due to interference because the
birefringence polarization eigenvectors are different from the
θ and φ states and change during propagation. We note that
this effect is only pronounced for geometries where the result-
ing time delays are small because we are only concerned with
measuring short, few-nanoseconds-long pulses.

The ARA collaboration presented a measurement of the
vpol signal strength (averaged over all 8 vpol antennas of the
station) where they saw an oscillatory behavior in the pulse
amplitude with emitter depth [38] which we show in Fig. 10.
It was hypothesized that birefringence was the cause of this
amplitude variation [22]. Unfortunately, no reconstruction
of the electric field (and thereby signal polarization) was
presented to probe experimentally that the change in ampli-
tude originated from a change in signal polarization which
would be the signature of birefringence. The birefringence
model presented in [22] was able to qualitatively generate
such amplitude oscillations. It assumed continuous waves
of a fixed frequency. With this assumption, as the time delay
increases with propagation length, i.e., emitter depth, it leads
to an interference pattern as a function of depth.

To investigate this behavior using more realistic condi-
tions, we use waveforms similar to Fig. 7 but again for a
launch angle of 75◦ to match the geometry. We propagate
these waveforms from the SPICE hole at different depths
to the A5 station. The resulting waveforms were corrected
for attenuation and antenna response effects and the ampli-
tudes were determined by calculating the maximum of the
Hilbert envelope of the vpol and hpol signals. The ampli-
tudes were then rescaled to the measured amplitudes in order
to account for the amplification in the ARA signal chain
which is unknown to us. We plot the resulting amplitudes
against the depth of the transmitter and compare it to the
measured data in Fig. 10. We fail to generate any oscilla-
tions due to birefringence. We attribute this to the fact that

Fig. 10 The amplitude of the vpol and hpol component of the pulses
reaching the ARA A5 station from different depths. The measured vpol
data is indicated in blue and the normalized vpol predictions from the
birefringence model are indicated in orange. ARA datapoints are pub-
lished in [38]

we use realistic pulse shapes and not the unrealistic assump-
tion of continuous waves. We speculate that some part of the
observed effect might originate from a combination of aver-
aging over the 8 vpol antennas that are at different depths
and an increase of signal amplitude when the shadow zone
boundary is approached by the transmitter due to a focusing
effect [13].

5 Comparison to ARIANNA data

The ARIANNA collaboration aims to measure neutrinos
with shallow radio stations [8]. Most detector stations are
installed on the Ross Ice shelf but two ARIANNA stations
were installed at the South Pole where one of them was close
enough to the SPICE hole to be able to observe the emitted
signals from the SPICE pulser drop. The ARIANNA col-
laboration was able to reconstruct the signal direction with
sub-degree precision as well as the electric field pulse that
arrived at the detector station [27]. This allows a detailed
measurement of the signal pulse properties as a function of
emitter depth.

The ARIANNA collaboration presented the measured flu-
ence of the θ and φ polarization components as a function of
emitter depth [39] (which we show in Fig. 11) and converted
it into signal polarization [27,39] which we show in Fig. 12.
When plotting the measured fluence against the transmitter
depth, the data showed depth-dependent variations in the sub-
dominant φ component which also translated into a variation
of the polarization measurement against depth. In the follow-
ing, we investigate if the measured variation could originate
from birefringence effects.

We use the pulses measured in the anechoic chamber,
propagate them with our birefringence code, and calculate
the expected fluence and polarization. The total fluence was
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Fig. 11 Measured fluence at
the ARIANNA station and the
expected fluence after
propagating the anechoic
chamber pulses through the
birefringence model. The
dominant θ component was
downscaled by a factor of 5 for
better visibility. The θ and φ

components of the ten pulses are
represented by solid and dashed
lines respectively. The gray
areas mark communication
periods during which no data
was taken

normalized to the measured average and the results from the
10 pulses at 30◦ launch angle were plotted against the emitter
depth. As shown in Fig. 11, one can observe depth-dependent
changes in the fluence but significantly weaker than the vari-
ations measured by ARIANNA. The same can be seen in the
polarization in Fig. 12, where the bands describe the statisti-
cal uncertainty from the ten different pulses.

To test the robustness of the model and see if the data could
be modeled with the pulses of the adjacent launch angles
(15◦ and 45◦, cf. Fig. 8 these pulses were propagated as well
and the results are shown in Fig. 12. We find small differ-
ences in the predicted polarization of a few degrees, and for
the deepest depths also a different behavior with depth. This
indicates that variations of the emitter with different launch
angles can have a significant effect on the measurement. As
the conditions in the field deviate from the anechoic chamber
measurement, it seems plausible that the emitter could be the
cause of the observed variations of signal polarization with
depth.

We further investigated if we could adapt the parameters of
the dielectric tensor to better describe the measured polariza-
tion. We repeated the polarization prediction using different
interpolations of the dielectric tensor data that are presented
in Appendix Appendix A. The predicted polarization for the
different ice models is shown in Fig. 13. None of the adjust-
ments came close to modeling the measured oscillations.
Thus, it seems unlikely that the majority of the observed
variations in polarization are due to birefringence.

6 Examples of impact on neutrino detection

Birefringence is beneficial for in-ice radio detection but also
adds additional challenges to the event reconstruction. It is
beneficial because the time delay between the two polariza-
tion eigenvectors is linearly proportional to the propagation
time. It will allow determining the distance to the neutrino

Fig. 12 Measured polarization at the ARIANNA station and the
expected polarization after propagating the anechoic chamber pulses
through the birefringence model. The adjacent launch angels of 15 and
45 degrees were included for comparison. The gray areas mark com-
munication periods during which no data was taken. The SPICE data
was averaged over 10 m depths, and the 1σ spread of the distribution
is shown with the blue error bars. The light blue shading indicates the
systematic uncertainty on the reconstruction stemming from systematic
uncertainties in the ARIANNA LPDA orientations (see [27] for details)

interaction which is needed for reconstructing the neutrino
energy. It will work especially well for far-away neutrino
interactions where the measurement of the distance through
the curvature of the wavefront deteriorates. On the other
hand, the displacement of pulses reduces the overall ampli-
tude which will reduce the trigger efficiency and therefore
the neutrino effective volume of an in-ice neutrino detector.
It also complicates the search strategy for neutrino-induced
radio signals because pulse shapes can be altered, and double
pulses are not uncommon. Furthermore, due to the change
of the polarization eigenvectors during propagation and sub-
sequent interference, the signal polarization can get altered
which is a problem because the signal polarization is needed
to determine the neutrino direction. However, this is mostly
a problem if the time delay is so small that birefringence
effects can’t be disentangled from the measurement itself, or
if systematic uncertainties in the birefringence modeling (i.e.
uncertainties in the n(z) profile) don’t allow to correct for it.
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Fig. 13 Measured polarization at the ARIANNA station and the
expected polarization after propagating the anechoic chamber pulses
through the birefringence model. The different bands indicate the differ-
ent ice models tested in the birefringence model Appendix A. The gray
areas mark communication periods during which no data was taken.
The SPICE data was averaged over 10 m depths, and the 1σ spread of
the distribution is shown with the blue error bars. The light blue shad-
ing indicates the systematic uncertainty on the reconstruction stemming
from systematic uncertainties in the ARIANNA LPDA orientations (see
[27] for details)

A systematic study of how birefringence will affect the
performance of a radio detector at the South Pole is beyond
the scope of this article, but we discuss three typical sce-
narios in the following that allow estimating the effect on
neutrino detection. We propagate an Askaryan pulse from
1300 m depth to a shallow antenna at 1 m depth that is 1500 m
away horizontally. We use the predicted electric field for a
1018 eV hadronic particle cascade observed at 1◦ away from
the Cherenkov cone as the initial pulse and set the signal
polarization to have the same amplitude in the θ and φ state.
The choice corresponds to a typical geometry expected for
neutrino measurements at the South Pole. We study three
cases where (1) the propagation is perpendicular to the ice
flow, (2) the propagation is parallel to the ice flow, (3) the
propagation is at 7.7◦ to the ice flow. The resulting polar-
ization eigenvectors of the two effective index-of-refraction
states N1 and N2 as a function of depth and the electric field
after propagation at the antenna is shown in Fig. 14.

For the first case of propagation perpendicular to the ice
flow, the polarization eigenvectors align with the θ and φ

states. Hence, the result is a clear separation between the
radio pulse in the θ and φ components. This geometry is ideal

Fig. 14 Typical pulse shapes
generated from NuRadioMC
and propagated through the
introduced birefringence model.
The left side shows the
polarization of the the two
propagating states against the
depth. The right side shows the
expected traces after
propagating from to the given
antenna positions. The neutrinos
source for all plots was set to
[0 m, 0 m, −1300 m]. The top
geometry corresponds to an
antenna position of [1 m,
1500 m, −1 m]. The center
geometry corresponds to an
antenna position of [1500 m,
1 m, −1 m]. The bottom
geometry corresponds to an
antenna position of [1487 m,
200 m, −1 m]. In the
supplements of the paper, we
provide a video detailing how
the pulse shapes change as the
azimuthal angle changes
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to determine the distance to the neutrino interaction via the
birefringence time delay. For the second case of a propagation
parallel to the ice flow, the two polarization eigenvectors also
stay mostly constant but swap over a narrow depth interval.
Therefore, no interference and change in polarization takes
place and the accumulated time delay is less. This geometry
would also allow determining the distance to the neutrino
interaction quite easily but with larger uncertainties due to
the smaller time delay.

The vast majority of geometries however lie somewhere in
between these ’special’ cases and one expects some change
of pulse shape and amplitude as well as a substantial time
shift between the two states. We show a geometry where
this effect is exemplified in Fig. 14. Further investigation is
needed to quantify how these would affect the sensitivity and
reconstruction performance of in-ice neutrino detectors.

7 Conclusions

We calculated the effect of birefringence on in-ice radio prop-
agation from first principles where the only free parameters
are the ice properties, i.e., the dielectric tensor at every posi-
tion in the ice. We combined these results with a numerical
propagation code that allows to propagate arbitrary wave-
forms through the ice. For the first time, this allows mak-
ing realistic predictions of birefringence effects for arbitrary
geometries and arbitrary waveforms. Our code is available
open-source through NuRadioMC and can be directly inte-
grated into MC simulations of radio neutrino detectors.

During propagation, the radio signal splits up into two
orthogonal components with slightly different indices of
refraction. Because the ice properties and the propaga-
tion direction change during propagation, also the effective
indices-of-refraction as well as the polarization eigenvectors
can change during the propagation. Therefore, in addition to
just accumulating a time delay between polarization states,
interference takes place which can alter the pulse form and
signal polarization. The effect depends strongly on the con-
sidered geometry and the initial signal pulse.

We used our birefringence code to make detailed predic-
tions of in-situ measurements of in-ice propagation that are
sensitive to birefringence effects conducted by the ARA and
ARIANNA collaborations at the South Pole. We base the
prediction on measurements of the dielectric tensor from ice
fabric measurements, and an anechoic chamber measurement
of the signal emitter that was used in the measurement cam-
paign. We found that taking into account the emitted pulse
shapes is crucial for interpreting existing in-situ measure-
ments, an effect that was ignored in previous studies of bire-
fringence. After taking into account these effects, we find
an agreement between our prediction and the ARA measure-
ment of the time delay between the vertical and horizontal

signal components. The measurement of time delays is use-
ful to probe birefringence effects and the agreement we find
is an encouraging test of the propagation code but additional
measurements for different geometries are needed to better
probe the predictive power.

We also compare our predictions to amplitude and/or
polarization measurements where some variation with emit-
ter depth was observed. In previous work that assumed the
emission of continuous waves of fixed frequency, it was spec-
ulated that the observed amplitude variation stems from bire-
fringence. With our more detailed calculation based on first
principles and using a detailed model of the emitted wave-
forms, we fail to generate amplitudes variations at the level
that was observed. We conclude that it is unlikely that bire-
fringence causes this effect.

The birefringence effect adds additional information ben-
eficial for in-ice radio detection. However, it also adds new
challenges to the event reconstruction. The time delays
between polarization states give access to the distance to the
neutrino interaction which is needed to estimate the neutrino
energy. On the other hand, a change in signal polarization
will complicate the reconstruction of the neutrino direction.
A systematic study of the effect of birefringence on in-ice
radio detection is beyond the scope of this article but we dis-
cussed three different geometries that envelop typical cases.
For propagation direction along and perpendicular to the ice
flow, we observe only an accumulation of a time delay with-
out any change to the pulse shapes or amplitude. For geome-
tries in between, the polarization eigenstates show a smooth
transition over longer propagation length which leads to inter-
ference effects. A typical result is a double pulse in both
polarization states. In future work, we will systematically
study the effect of birefringence on in-ice radio detection of
high-energy neutrinos. The detailed predictions that can be
made using this work can be used to develop reconstruction
algorithms that exploit birefringence effect for energy and
direction reconstruction, e.g., through the use of deep neural
networks.

Additional measurement campaigns at the South Pole sen-
sitive to birefringence effects will be useful to solidify the
predictive power of the birefringence calculation presented
here. Work to integrate the propagation code into RadioPropa
is ongoing which will allow propagation in media with arbi-
trary n(x, y, z). In addition, the remaining approximation of
modeling the propagation using ray optics can be checked
via FDTD simulations but due to their extreme computa-
tional costs, it would only be feasible to test a few selected
geometries.

Acknowledgements We thank Dave Besson, Anna Nelles, and Bob
Oeyen for feedback on the manuscript. We thank all members of the
inicemc working group for the feedback on this work. We thank the
developers of the NuRadioMC code for their help in integrating the
birefringence model into NuRadioMC.

123



124 Page 14 of 15 Eur. Phys. J. C (2023) 83 :124

DataAvailabilityStatement The manuscript has data included as elec-
tronic supplementary material.

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adaptation,
distribution and reproduction in any medium or format, as long as you
give appropriate credit to the original author(s) and the source, pro-
vide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indi-
cated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permit-
ted use, you will need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.
Funded by SCOAP3. SCOAP3 supports the goals of the International
Year of Basic Sciences for Sustainable Development.

Appendix A: Different ice models

Different experiments report on different density profiles
such that for the ARIANNA measurements the parameters of
Eq. (1) were nice = 1.78, Δn = 0.426, z0 = 77 m [25] and
for the ARA measurements the parameters were nice = 1.78,
Δn = 0.454, z0 = 49.504 m [28]. For the analysis of the
data by the two collaborations, the respective models were
used.

Figure 15 shows the different interpolations used to see
how big the changes affect the polarization measurement of
ARIANNA in Fig. 13.

Appendix B: Effective refractive indices

The two effective refractive indices are found by calculating
the roots of Eq. (7). As it is a six order polynomial, numer-
ical methods were initially used to find the roots. However,
this is computationally expensive and it is possible to find
analytical solutions for the roots. When using the normal-
ization of the direction vector, the 6th-order term of Eq. (7)
vanishes and when substituting r for n2 it reduces Eq. (7) to a
simple quadratic equation with two roots R1,2. Reversing the
substitution and ignoring the nonphysical negative solutions
returns the two effective indices N1,2:
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Fig. 15 Refractive index as a function of depth. Measured birefrin-
gence data (scatter) [20] compared to the average index-of-refraction
value at this depth of 〈n(z)〉. The shown spline interpolation of the data
(solid lines) was used in the analysis to create Fig. 13. Model B assumes
a converging index of refraction at shallow depths. Model C is a con-
stant average over all depths. Model D assumes ny and nz to be the
same value at the average of the two

N1,2 = √
R1,2. (B.2)
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