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Abstract We present a modification of the DGLAP improved
saturation model with respect to the nonlinear correction
(NLC). The GLR-MQ improved saturation model is consid-
ered by employing the parametrization of proton structure
function due to the Laplace transforms method, which pre-
serves its behavior success in the low and high Q2 regions.
We show that the geometric scaling holds for the GLR-MQ
improved model in a wide kinematic region r Qs . These
results are comparable with other models in a wide kinematic
region r Qs . The behavior of the dipole cross sections, with
respect to the GLR-MQ improved saturation model, are com-
parable with the Color Glass Condensate (CGC) model. The
model describes the dipole cross sections in the inclusive and
diffractive processes. We also compare the nonlinear correc-
tions to the impact-parameter dependent saturation (IP-Sat)
model with the impact-parameter dependent color glass con-
densate (b-CGC) dipole model. Finally, we consider the lin-
ear and nonlinear corrections to the IP Non-Sat model. These
results provide a benchmark for further investigation of QCD
at small x in future experiments such as the Large Hadron
Collider and Future Circular Collider projects.

1 Introduction

The color dipole picture (CDP) [1,2] has been introduced
to study a wide variety of small x inclusive and diffractive
processes at HERA. The dipole approach, at small values
of Bjorken x , gives a clear interpretation of the high-energy
interactions. This regime of QCD is characterized by high
gluon densities because the proton structure is dominated by
dense gluon systems [3–5] and predicts that the small x glu-
ons in a hadron wavefunction should form a Color Glass Con-
densate [6–8]. The gluon saturation effects are observable at
very small x values and characterized by a hard saturation
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momentum Qs(x). The saturation scale is a border between
dense and dilute gluonic systems as

xg(x, Q2
s )

αs(Q2
s )

Q2
s

�πR2, (1)

where xg(x, Q2) is the gluon distribution function and πR2

is the target area where R is the correlation radius between
two interacting gluons. Indeed the parameter R controls the
strength of the nonlinearity. The saturation scale rises with
decreasing x and at small enough x , Qs��QCD where �QCD

is the QCD cut-off parameter at each heavy quark mass
threshold (i.e., �

n f
QCD).

Since nonlinear dynamics are known to become siz-
able only at small-x , so the nonlinear contribution to the
Dokshitzer–Gribov–Lipatov–Altarelli–Parisi (DGLAP) evo-
lution [9–11] leads to an equation of the form

∂2xg(x, Q2)

∂ln(1/x)∂lnQ2 = αs xg(x, Q
2)

− 9

16
α2
sπ

2 [xg(x, Q2)]2

R2Q2 , (2)

where αs≡αsCA/π and the value of R is order of the proton
radius (R � 5 GeV−1), if the gluons are distributed through
the whole of proton, or much smaller (R � 2 GeV−1) if glu-
ons are concentrated in hot spot within the proton. This was a
vast subject initiated by Gribov, Levin, Ryskin, Mueller and
Qiu (GLR-MQ) [12,13], as the second nonlinear term in (2)
is responsible for gluon recombination. This term arises from
perturbative QCD diagrams which couple four gluons to two
gluons. So that two gluon ladders recombine into a single
gluon ladder. It leads to saturation of the gluon density at
low Q2 with decreasing x . A closer examination of the small
x scattering is resummation powers ofαs ln(1/x) where leads
to the kT -factorization form [14–16]. In the kT -factorization
approach the large logarithms ln(1/x) are relevant for the
unintegrated gluon density in a nonlinear equation. Solution
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of this equation develops a saturation scale where tame the
gluon density behavior at low values of x and this is an intrin-
sic characteristic of a dense gluon system [17].

The main goal of this paper is to consider the nonlinear cor-
rections to the DGLAP improved saturation model. In fact,
the DGLAP improved saturation model will be modified to
the GLR-MQ improved saturation model. This is based on
the nonlinear evolution of the gluon density at small values of
x . These results will be compared with the nonlinear satura-
tion dynamics which is explicitly incorporated into the CGC
model. One of the well-known impact-parameter dependent
saturation models is the IP-Sat model [18–22]. This is a sim-
ple dipole model that incorporates the physics of saturation
and all known properties of the gluon saturation. In this case
the saturation boundary is approached via the DGLAP evo-
lution, that is, by the eikonalization of the gluon distribution,
which effectively represents higher twist contributions. The
b-CGC and the IP-Sat models are easily generalized from
DIS off protons to DIS off nuclei [23,24].

This paper is organized as follows. In Sect. 2, we intro-
duce the color dipole model for calculating the dipole cross
sections in the GBW, the DGLAP improved saturation, the b-
CGC dipole, the IP-Sat models and also the exclusive diffrac-
tive processes. In Sect. 3, we present the GLR-MQ improved
saturation model to consider the color dipole cross section
at low values of x . Then in Sect. 4, we present a detailed
numerical analysis and our main results. We summarize our
main results in Sect. 5.

2 Dipole cross section

Dipole representation provides a convenient description of
DIS at small x . There, the scattering between the virtual pho-
ton γ ∗ and the proton is seen as the color dipole where the
transverse dipole size r and the longitudinal momentum frac-
tion z with respect to the photon momentum are defined. The
amplitude for the complete process is simply the production
of these subprocess amplitudes, as the DIS cross section is
factorized into a light-cone wave function and a dipole cross
section. Using the optical theorem, this leads to the following
expression for the γ ∗ p cross-sections

σ
γ ∗ p
L ,T (x, Q2) =

∫
dzd2r|�L ,T (r, z, Q2)|2σdip(x, r), (3)

where subscripts L and T referring to the transverse and
longitudinal polarization state of the exchanged boson. Here
�L ,T are the appropriate spin averaged light-cone wave func-
tions of the photon and σdip(x, r) is the dipole cross-section
which related to the imaginary part of the (qq)p forward
scattering amplitude. The variable z, with 0 ≤ z ≤ 1, char-
acterizes the distribution of the momenta between quark and
antiquark. The square of the photon wave function describes

the probability for the occurrence of a (qq) fluctuation of
transverse size with respect to the photon polarization [1–3].
The dipole hadron cross section σdip contains all information
about the target and the strong interaction physics with

σdip(x, r) =
∫

d2b
dσdip

d2b
, (4)

where b is a particular impact parameter (IP) as

dσdip

d2b
= 2(1 − Re S(b)), (5)

and S(b) is the S-matrix element of the elastic scattering. The
cross section at a given impact parameter b is proportional
to the dipole area, the strong coupling, the number of gluons
in the cloud and the shape function by the following form
[18–20]

dσdip

d2b
= 2

[
1 − exp

(
− π2r2αs(μ

2)xg(x, μ2)T (b)

2Nc

)]
,(6)

where the hard scale is assumed to have the form

μ2 = C/r2 + μ2
0, (7)

and the parameters C and μ2
0 are obtained from the fit to the

DIS data [1,2]. For multi Pomeron exchange, the eikonalised
dipole scattering amplitude of Eq. (6) can be expanded as

N (x, r, b) =
∞∑
n=1

(−1)n+1

n!
[

π2

2Nc
r2αs(μ

2)xg(x, μ2)T (b)

]n
,

where dσdip/d2b = 2N (x, r, b) and the n-th term in the
expansion corresponds to n-Pomeron exchange [18–20].
Equation (6) is known as the Glauber–Mueller dipole cross
section [25] and can also be obtained within the McLerran–
Venugopalan model [26]. The exponential form of the func-
tion T (b) is determined from the fit to the data as

T (b) = 1

2πBG
exp(−b2/2BG), (8)

where the parameter BG was found [18–20] to be 4.25 GeV−2.
In the original Golec-Biernat–Wüsthoff (GBW) model [1,

2], the dipole cross section was proposed to have the eikonal-
like form

σdip(x, r) = σ0(1 − e−r2Q2
s /4), (9)

where Qs(x) plays the role of the saturation momentum,
parametrized as Q2

s (x) = Q2
0(x/x0)

−λ. Parameters Q0 and
x0 set dimension and absolute value of the saturation scale
and exponent λ governs x behavior of Q2

s . This model was
updated in [3,27,28] to improve the large Q2 description
of the proton structure function by a modification of the
small r behavior of the dipole cross section to include the
DGLAP evolved gluon distribution. Since the energy depen-
dence in large Q2 region is mainly due to the behavior of the
dipole cross section at small dipole size r , therefore authors in
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Refs. [3,27,28] investigated the DGLAP evolution for small
dipoles. Bartels–Golec-Bienat-Kowalski (BGBK) improved
the dipole cross section by adding the collinear DGLAP
effects. Indeed the BGBK model is the implementation of
QCD evolution in the dipole cross section which depends
on the gluon distribution. The following modification of the
DGLAP improved saturation model [1,2] proposed for the
dipole cross section as

σdip = σ0

{
1 − exp

(
−π2r2αs(μ

2)xg(x, μ2)

3σ0

)}
. (10)

Indeed BGBK model is successful in describing dipole cross
section at large values of r as the two models (GBW and
BGBK) overlap in this region but they differ in the small r
region where the running of the gluon distribution starts to
play a significant role. Indeed the DGLAP improved model
of σdip significantly improves agreement at large values of
Q2 without affecting the physics of saturation responsible
for transition to small Q2. As expected, geometrical scaling
is true for the DGLAP improved model curve for the scaling
variable r Qs≥1 and for the GBW model curve for the whole
region [1,2].

The saturated version of the dipole model may in principle
be derived from the Color Glass Condensate effective theory
for QCD according to Eq. (6) where at small r this expression
(i.e., Eq. (6)) becomes

dσdip

d2b
= π2r2αs(μ

2)xg(x, μ2)T (b)

Nc
. (11)

Equation (6) is referred to as the IP-Sat model, while Eq.
(11) is referred to as the IP Non-Sat model. The BGBK and
CGC models considered only the dipole cross section inte-
grated over the impact parameter b [29]. The BGBK model
was modified to include the impact parameter dependence
as denoted by the IP-Sat model and the CGC model was
also modified to include the impact parameter dependence
as denoted by the b-CGC model. The dipole cross section
can be calculated in the CGC approach from the relation

σdip(x, r) = σ0N (x, r), (12)

where σ0 = 2πR2
p and

N (x, r) =
{

N0(
r Qs

2 )2(γs+(1/kλY ) ln(2/r Qs )): r Qs≤2

1−e−A ln2(BrQs ): r Qs > 2,
(13)

where Y = ln(1/x) and k = χ ′′(γs)/χ ′(γs) where χ is
the LO BFKL [30–32] characteristic function. The scatter-
ing amplitudeN (x, r) can vary between zero and one, where
N = 1 is the unitarity limit. To introduce the impact param-
eter dependence into the CGC model, the b-CGC model for
the dipole cross section is defined by the following form [29]

dσdip

d2b
= 2N (x, r, b) (14)

where the impact parameter dependence of the saturation
scale Qs was introduced by

Qs≡Qs(x, b) =
( x0

x

)λ/2
[

exp

(
− b2

2BCGC

)]1/2γs

, (15)

where the parameter BCGC , instead of σ0 in the CGC dipole
model, is a free parameter and is determined by other reac-
tions, namely the t distribution of the exclusive diffractive
processes at HERA. The parameters were fixed by a com-
bination of theoretical constraints [21,22] and a fit to DIS
data.

Another one of the main advantages of dipole models is
the description of the diffractive process [3,33,34]. The cross
section for the diffractive qq production reads [14–16]

dσ D
L ,T

dt
|t=0 =

∫
dzd2r|�L ,T (r, z)|2σ 2

dip(x, r), (16)

where t = �2, and � is the four-momentum transferred
into the diffractive system from the proton. In Eq. (16), the
generalised optical theorem is applied in the framework of
the dipole picture. At small values of the diffractive mass
M2 ∼ Q2 the elastic scattering of the qq pair dominates,
while at larger values of the mass M2�Q2, the qqg contri-
bution dominates (due to gluon production in the final diffrac-
tive state). The treatment of the qqg component goes beyond
the saturation model since this is not present in the inclusive
analysis [3,33,34]. This component was computed in the two
gluon exchange approximation with an additional assump-
tion of strong ordering of transverse momenta of the qq pair
and the gluon. In the transverse coordinate representation,
the qqg system is treated as a color octet dipole 88 where
the coupling of two t-channel gluons is relative by a weight
factor CA/CF = 2N 2

C/(N 2
C − 1) with CA = Nc = 3 and

CF = N2
C−1
NC

= 4
3 where NC is the number of colors. Thus,

the color dipole cross section for exchange of a two gluon
system for octet dipole reads [3,33,34]

σdip = σ0

{
1 − exp

(
−CA

CF

π2r2αs(μ
2)xg(x, μ2)

3σ0

)}
. (17)

In the next section, we consider the color dipole cross sec-
tions due to the behavior of the linear and nonlinear gluon
density and compare with the other models. The linear gluon
densities are obtained with respect to the Laplace transform
technique by employing the parametrization of proton struc-
ture function, then applied the GLR-MQ evolution equation
for the nonlinear gluon densities. Some approximated ana-
lytical solutions in the color dipole model have been reported
in recent years [35,36] with considerable phenomenological
success due to a parametrization of the deep inelastic struc-
ture function for electromagnetic scattering with protons.
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3 GLR-MQ improved saturation model

We will present an approach to the description of the color
dipole cross section at small x , alternative to that based on
the DGLAP improved saturation model. From a more theo-
retical viewpoint it is known that in the low x , low Q2 region
gluon recombination effects are not negligible and reduce the
growth of the gluon parton distribution function. The GLR-
MQ equation for the gluon density, where an extra non-linear
term, quadratic in the gluon density, was added to the linear
DGLAP evolution equation by the following form

∂xg(x, μ2)

∂lnμ2 = ∂xg(x, μ2)

∂lnμ2 |DGLAP

− 81α2
s

16R2μ2

∫ 1

χ

dy

y
[yg(y, μ2)]2, (18)

where χ = x
x0

and x0 is the boundary condition that the gluon

distribution (i.e., G(x, μ2) = xg(x, μ2)) joints smoothly
onto the linear region. We note that at x≥x0(= 10−2) the non-
linear corrections are negligible. The nonlinear shadowing
term, ∝ −[g]2, arises from perturbative QCD diagrams. In
this regime the gluons in the proton form a dense system
with mutual interaction and recombination which also leads
to the saturation of the total cross section. Other early works
on this topic can be found in [37–40]. In what follows, the
hard scale is assumed to have the form μ2 = C/r2 + μ2

0
as for light quarks the gluon distribution is evaluated at x =
xB J = μ2/(μ2 + W 2) and for the charm quark the gluon
structure function is evaluated at

x = (μ2 + 4m2
c)/(μ

2 + W 2), (19)

wheremc is the charm quark mass andW refers to the photon-
proton center-of-mass energy. The non-linear equation (i.e.,
Eq. (18)) shows that the strong rise that is corresponding to
the linear QCD evolution equations at small-x and Q2 can
be tamed by screening effects. The first iteration of Eq. 18
reads

dG(x, μ2)|NLC = dG(x, μ2)|DGLAP − 81α2
s

16R2μ2 dlnμ2

×
∫ 1

χ

dy

y
[G(y, μ2)]2, (20)

where the nonlinear correction to the gluon distribution func-
tion (i.e., GNLC(x, μ2) ) is obtained by the following form

GNLC(x, μ2) = GNLC(x, μ2
0) + [G(x, μ2) − G(x, μ2

0)]

−
∫ μ2

μ2
0

81

16

α2
s (μ

2)

R2μ2

∫ x0

x

dz

z
G2(

x

z
, μ2)dlnμ2.

(21)

Here G(x, μ2) and G(x, μ2
0) are the linear gluon distribu-

tions, and obtained from the parametrization F2 using the

Laplace transform techniques [41–43], at μ2 and μ2
0 scales

respectively. At the initial scale μ2
0, the low x behavior of the

non-linear gluon distribution is assumed to be [44]

GNLC(x, μ2
0) = G(x, μ2

0){1 + 27παs(μ
2
0)

16R2μ2
0

θ(x0 − x)

×[G(x, μ2
0) − G(x0, μ

2
0)]}−1. (22)

Therefore the non-linear correction to the gluon distribution
at μ2 scale for x < x0 reads

GNLC(x, μ2) = G(x, μ2) + G(x, μ2
0)

[
{1 + 27παs(μ

2
0)

16R2μ2
0

×[G(x, μ2
0) − G(x0, μ

2
0)]}−1 − 1

]

−
∫ μ2

μ2
0

81

16

α2
s (μ

2)

R2μ2

∫ x0

x

dz

z
G2

(
x

z
, μ2

)
dlnμ2. (23)

The gluon distribution due to the non-linear corrections can
be analytically solved at small x with respect to the linear
gluon distribution behavior.

The linear gluon distributions (i.e.,G(x, μ2) andG(x, μ2
0))

in Eq. (23) are defined with respect to the most parametriza-
tion suggested in Refs. [41–43]. The authors in Ref. [41] have
an expression for the asymptotic part of F2 (no-valence) as

F2∝ ln2(1/x) (24)

for x≤0.09. In Refs. [42,43], the authors obtained two
quadratic expressions in ln2(1/x) using second-order linear
differential equation as well as Laplace transforms for the
leading-order (LO) gluon distribution function, respectively.
In the first method in Refs. [42,43], the LO DGLAP equation
for the evolution of the proton structure function F2(x, Q2) is
rearranged into an inhomogeneous second-order differential
equation by the following form

x2 ∂2

∂x2 G(x, Q2) − 2x
∂

∂x
G(x, Q2) + 4G(x, Q2)

= −4π

αs

9

20
x4 ∂4

∂x3∂lnQ2

F2(x, Q2)

x
+ 12

5
x

∂

∂x
F2(x, Q

2)

−3x2 ∂2

∂x2 F2(x, Q
2) − 9

5
x3 ∂3

∂x3 F2(x, Q
2)

+12

5
x4 ∂3

∂x3

∫ 1

x

∂

∂x
F2(z, Q

2)ln
z

z − x
dz. (25)

Equation (25), with the new variable υ = ln(1/x) becomes
a linear 2nd order inhomogeneous equation, as

(
∂2

∂υ2 + 3
∂

∂υ
+ 4

)
Ĝ(υ, Q2) = Ĝ4(υ, Q2) (26)
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and the definition Ĝ(υ, Q2) = G(e−υ, Q2). In Refs.
[42,43], the authors have found the parametrization of the
gluon distribution Ĝ4(υ, Q2) which is calculated as a sec-
ond degree polynomial in υ whose coefficients are quadratic
polynomials in ln(Q2) for x≤0.09 as

Ĝ4(υ, Q2) = α(Q2) + β(Q2)υ + γ (Q2)υ2, (27)

Therefore

Ĝ(υ, Q2) = 2√
7

∫ υ

0
e− 3

2 (υ−υ ′)

sin

(√
7

2
(υ − υ ′)

)
Ĝ4(υ

′, Q2)dυ ′,

where the gluon distribution in x-space reads as a simple
quadratic polynomial in ln(1/x) with quadratic polynomial
coefficients in ln(Q2) by the following form

G(x, Q2) = −0.459 − 0.143lnQ2 − 0.0155ln2Q2

+
[

0.231 + 0.00971lnQ2 − 0.0147ln2Q2
]

ln(1/x)

+
[

0.0836 + 0.06328lnQ2 + 0.0112ln2Q2
]

ln2(1/x).

(28)

In the second method, the authors [42,43] have suggested
a new parametrization based on Laplace transforms. The
DGLAP evolution is written as follows∫ υ

0
Ĝ(w, Q2)̂h(υ − w)dw = f̂ (υ, Q2), (29)

where w = ln(1/z) and

f̂ (υ, Q2) = 3

4

4π

αs
F2(e

−υ, Q2). (30)

The function ĥ(υ) in Eq. (29) is

ĥ(υ) = e−υ P̂gq(υ), (31)

where Pgq is the gluon-quark splitting function. The function
F2(x, Q2) in Eq. (30) is sum of the proton structure function
F2-dependent terms in the DGLAP evolution equation by

F2(x, Q
2) = ∂F2(x, Q2)

∂lnQ2 − αs

4π

{
16

3

∫ 1

x

∂F2(z, Q2)

∂z

×ln
z

z − x
dz − 4

3

∫ 1

x

∂F2(z, Q2)

∂z

(
x2

z2 + 2x

z

)
dz

}
. (32)

By making a Laplace transform in υ, we can factor Eq. (29),
since the Laplace transform of a convolution is the product
of the Laplace transform of the factors, so that

L
{ ∫ υ

0
Ĝ(w, Q2)̂h(υ − w)dw; s

}
= ĝ(s, Q2)×ĥ(s) (33)

Solving Eq. (29) for g in s-space, we have

ĝ(s, Q2) = ĥ−1(s) f̂ (s, Q2). (34)

Thus, inverting the Laplace transform of the factors, then the
gluon distribution is defined by

Ĝ(υ, Q2) = L−1
[
ĥ−1(s) f̂ (s, Q2);υ

]
. (35)

Therefore, the gluon distribution in x-space reads

G(x, Q2) = 9

20

4π

αs

{
3Fγ p

2 (x, Q2) − x
∂

∂x
Fγ p

2 (x, Q2)

−
∫ 1

x
Fγ p

2 (z, Q2)(
x

z
)3/2

[
6√
7

sin

(√
7

2
ln

(
z

x

))

+2 cos

(√
7

2
ln

(
z

x

))]}
, (36)

for 0 < x≤0.06. The standard representation for QCD cou-
pling in LO approximation is defined by

αLO
s (t) = 4π

β0t
, (37)

where β0 is the one loop correction to the QCD β-function

and t = ln Q2

�2 , � is the QCD cut-off parameter with

αs(M2
z ) = 0.118.

The ln2(1/x) behavior of the DIS proton structure func-
tion (i.e., Eq. (24)) at small values of x is compatible with
saturation of the Froissart bound at each value of Q2. The
authors, in Ref. [41], have shown that this behavior may be
the signal for the saturation or gluon recombination processes
at high parton densities. The gluon distribution in Eqs. (26–
36), according to the results in Refs. [42,43], is determined
from the DGLAP evolution equation for the proton structure
function. Thus in Eq. (20), the nonlinear corrections to the
gluon behavior at low x and Q2 values are considered, where
it is compatible with ln2(1/x) behavior of parton densities at
very small x in the QCD evolution framework.

Now, we can estimate the non-linear corrections to the
gluon distribution (i.e., Eq. (23)) due to the linear gluon dis-
tributions (i.e., Eqs. (28) and (36)) for small x and we will
use the non-linear corrections to the dipole cross sections,
and in the next section, the accuracy of the results will be
discussed in comparison with the CGC model.

4 Results

The linear and nonlinear methods are presented based on the
solutions of the DGLAP and GLR-MQ evolution equations at
the leading-order accuracy in perturbative QCD, respectively.
The dipole cross-sections (Eqs. 6, 10, 11 and 17) require
the gluon density G(x, μ2) for all scales μ2. These gluon
distributions [42,43] are obtained directly in terms of the
parameterization of the structure function F2(x, μ2) and its
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Fig. 1 The linear (Eqs. (28) and (36)) and nonlinear (Eq. (23)) gluon
distribution functions for various dipole sizes

derivative. The resulting linear and nonlinear gluon distribu-
tion functions for various dipole sizes for x≤10−2 are shown
in Fig. 1. The dipole size determines the evolution scale μ2.

In this figure, we plot the r dependence of the nonlin-
ear corrections to the gluon distribution for R = 2 GeV−1.
Nonlinear corrections play an important role on gluon distri-
bution as x and μ2 decrease. A depletion occurs at x < 10−2

where these results show that the nonlinear behavior of the
gluon distribution function is tamed. This taming behavior of
nonlinear gluon distribution function toward low x at low μ2

values becomes significant when considering the color dipole
cross section at the hot spot point (i.e., R = 2 GeV−1). We
have calculated the linear and nonlinear corrections to the
ratio σdip/σ0 in a wide range of the dipole size at the LO
approximation. Results of calculations and comparison with
the GBW [1,2] and CGC [6–8] models for x = 10−4 are pre-
sented in Fig. 2. The linear corrections to the ratio of color
dipole cross sections at LO approximation are comparable
with the GBW model at low and high r values. The nonlin-
ear corrections to the ratio of color dipole cross sections are
comparable with the GBW model for r�10−2 and r≥100 and
also are comparable with the CGC model for 10−2�r≤100.
Indeed the nonlinear corrections tame the behavior of the
dipole cross section at r�10−1. The effective parameters
in the GBW model have been extracted from a fit of the
HERA data as, λ = 0.288, x0 = 3.04×10−4, C = 0.38
and μ2

0 = 1.73 [1,2]. Parameters of the CGC dipole model
fixed at the LO BFKL according to the original CGC fit [6–8]
with respect to the values γs = 0.63, k = 9.9, N0 = 0.7,
λ = 0.177 and x0 = 2.70×10−7 [29]. The dipole cross
sections are evaluated according to the four active flavors,
which take into account charm quark mass. The quark mass,
in the CGC model, was taken to be 1.4 GeV although in our
calculations it is 1.29 GeV [45].

An important property of the saturation formalism is the
geometric scaling phenomenon, which means that the scat-

Fig. 2 Left: the extracted linear (dashed curve) and nonlinear (dot
curve) ratio σdip/σ0 (Eq. (10)) as a function r for x = 10−4 com-
pared with the GBW model (Eq. (9)) (solid curve) and CGC model (Eq.
(13)) (dashed-dot curve, CGC plotted due to Eq. (13) for r Qs≤2 and
also the parameters are defined from Ref. [29]). Right: the same as left
as a function r Qs

Fig. 3 The same as Fig. 2 in the the simplest case of the qq system for
the ratio σ 2

dip/σ
2
0 (Eq. (16))

tering amplitude and corresponding cross sections can scale
on the dimensionless scale r Qs . A particular interests present
the linear and nonlinear ratio σdip/σ0 defined by the scaling
variable r Qs . In Fig. 2 (right hand), we observe that the non-
linear corrections to the ratio σdip(r Qs(x))/σ0 merge into
the GBW curve for r Qs�10−1. The results of the GLR-MQ
improved saturation model due to the parametrization of the
proton structure function have become a function of a single
variable, r Qs , for almost all values of r at LO approximation.

The diffractive final state [3,33,34] is built starting from a
qq pair in the color singlet state as the diffractive γ ∗ p→qq p′
cross section is proportional to σ 2(x, r) by Eq. (16). We have
calculated the ratio σ 2

dip/σ
2
0 for the diffractive qq production

into r and r Qs respectively and compared the ratio with the
GBW and CGC models in Fig. 3. The linear corrections to the
ratio σ 2

dip/σ
2
0 are comparable with the GBW model in a wide
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Fig. 4 The same as Fig. 3 for the qqg component of the diffractive
system in the ratio σ 2

dip/σ
2
0 (Eq. (17))

rang of r although the nonlinear corrections are comparable
with the CGC model for r < 1 and with the GBW model for
r≥1. In Fig. 3 (left hand), the geometrical scaling of the non-
linear corrections to the ratio σ 2

dip/σ
2
0 is visible in comparison

with the linear curve. The nonlinear curve merges into one
solid line in the right plot where the dipole cross section is
plotted as a function of the scaling variable r Qs . This is a
reflection of geometric scaling in the nonlinear corrections
in comparison with the GBW model for the diffractive qq
production.

In addition to the contributions of the qq states, it is impor-
tant to include the contributions of the qqg final states of the
diffractive processes in the nonlinear corrections to the ratio
σ 2

dip/σ
2
0 . In Fig. 4 the ratio of the dipole cross sections are

determined by the qqg component and are compared with the
GBW and CGC models. The linear and nonlinear ratio of the
dipole cross sections, in comparison with the results in Fig. 3,
are deviated from the GBW and CGC models respectively.
The reason for this deviation is because the qqg component,
interacting with the proton with the same dipole cross section
as the qq system, goes beyond the saturation model [33,34].
Indeed, in Fig. 4, the linear and nonlinear cross sections are
modified due to the weighted factor CA/CF although this
component is not present in the inclusive analysis.

Now we consider the nonlinear corrections to the the qq
differential cross section dσdip/d2b. In Fig. 5, the linear
and nonlinear corrections to the impact parameter dependent
dipole cross section due to the GLR-MQ equation are consid-
ered and compared with the b-CGC model for x = 10−4. In
this figure (i.e., Fig. 5) the linear corrections to the IP-Sat (i.e.,
b-Sat) model are comparable with the b-CGC model in a wide
range of the impact parameter b for r < 1 fm and the nonlin-
ear corrections to the IP-Sat model are comparable with the
b-CGC model in a wide range of the impact parameter b for
r≥1 fm. The optimum values for the b-CGC model parame-
ters are the following [29]: γs = 0.46, BCGC = 7.5 GeV−1,

Fig. 5 The linear and nonlinear corrections to the impact parameter
dependent dipole cross section versus the impact parameter b (Eq. (6))
compared with the b-CGC model (Eq. (14)) for the dipole sizes r = 0.1,
1 and 2 fm at x = 10−4

Fig. 6 The linear and nonlinear corrections to the IP Non-Sat (Eq.
(11)) versus the impact parameter b for the dipole sizes r = 0.1, 1 and
2 fm at x = 10−4

N0 = 0.558, x0 = 1.84×10−6 and λ = 0.119. In Fig. 5 we
observe that the linear and nonlinear behavior of dσdip/d2b
grows rapidly with r for small values of b, until those reach
the saturation plateau, dσdip/d2b = 2, which illustrates sat-
uration in the Glauber–Mueller approach. Indeed, the GLR-
MQ improved saturation model illustrates unitarity with an
increase of r as b decreases.

At small r , the IP-Sat model (Eq. 6) becomes the IP Non-
Sat model (Eq. 11) where the interaction between the dipole
and the hadron is described by the exchange of one gluon. The
linear and nonlinear behavior of dσdip/d2b in the IP Non-sat
model are considered in Fig. 6. In this model, the behavior of
the dσdip/d2b is directly dependent on the gluon distribution
function. Saturation effects are not visible in this model as b
decreases. However this behavior tamed due to the nonlinear
corrections to the gluon density. For small dipole sizes the

123



42 Page 8 of 9 Eur. Phys. J. C (2023) 83 :42

Fig. 7 Comparison of linear and nonlinear corrections to the
dσdip/d2b for the IP-Sat (Eq. (6)) as well as IP Non-Sat (Eq. (11))
versus r for x = 10−4 and b = 0

Fig. 8 Comparison of nonlinear corrections to the dσdip/d2b for the
IP-Sat (Eq. (6)) as well as IP Non-Sat (Eq. (11)) versus r at x = 10−4

for b = 0 and b = 1 fm, respectively

distributions are almost similar but they differ significantly
as r becomes large.

A comparison of the resulting dσdip/d2b according to the
linear as well as nonlinear behavior of the dipole cross section
for b = 0 at x = 10−4 presented in Fig. 7. The resulting
dipole cross-sections in linear and nonlinear corrections are
shown in Fig. 7. We observe that, in this figure, the nonlinear
corrections suppress the behavior of the large dipoles in the
IP Non-Sat model. Indeed, this behavior tamed at large r
for b = 0 where with the increase r , μ decreases to the
value of μ0. We also note that adding nonlinear corrections
to the IP-Sat model decreases the dipole cross-section for
0.2 fm < r < 1 fm at b = 0. The linear and nonlinear
corrections to the dipole cross section to the IP-Sat model
reach the saturation plateau at r > 1 fm.

It is interesting to increase the impact parameter from
b = 0 to 1 fm for the nonlinear behavior of the dipole cross

Fig. 9 The nonlinear corrections to the ratio IP Non-sat/IP-Sat (Eq.
(11)/Eq. (6)) of the dσdip/d2b as a function r at x = 10−4 for b = 0
and 1 fm, respectively

sections to the IP Non-Sat in Fig. 8. The proton dipole cross
section at different impact parameters with and without non-
linear corrections are shown in Fig. 8 for the IP-Sat as well as
IP Non-Sat versus r at x = 10−4. The IP-Sat and IP Non-Sat
dipole cross sections are very similar in the range 0≤r≤4 fm
for b = 1 fm. Consequently, for large impact parameter sizes
the distributions are almost similar but they differ signifi-
cantly as b becomes small due to the nonlinear corrections.
Indeed, the nonlinear corrections become stronger at larger
impact parameters for the IP Non-Sat model [4]. In Fig. 9
we show the IP Non-Sat to IP-sat cross-section ratios as a
function of r for x = 10−4. We depict the ratio as a function
of r for b = 0 and 1fm. Note that the ratio increases much
faster as a function of r for b = 0 than for b = 1fm. We
further note that at larger r , the ratio remains near almost
unity for b = 1fm. The large difference between IP Non-Sat
and IP-Sat comes from the decreases in the impact parameter
values.

5 Conclusions

In this paper we proposed a modification of the saturation
model which takes into account the GLR-MQ evolution of
the gluon distribution. We have presented a certain theoretical
model at LO approximation to describe the color dipole cross
sections based on the Laplace transforms method at small val-
ues of x (the Bjorken variable x is fixed to be x = 10−4). We
have used a nonlinear correction to the dipole cross sections
from a parametrization of the proton structure function with a
rescaled variable mc. The nonlinear corrections to the dipole
cross sections in the description of inclusive and diffractive
DIS at small x , according to the saturation scale and geomet-
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ric scaling, are consistent with analytical saturation models
in a wide range of r and r Qs , respectively. We find that the
ratio σdip/σ0 due to the DGLAP improved saturation model
is consistent with the GBW saturation model, although the
nonlinear corrections to this ratio with respect to the GLR-
MQ improved saturation model is consistent with the CGC
saturation model especially in the range 0.05 < r≤1. In
the simplest case of the qq system for the ratio σ 2

dip/σ
2
0 in

the diffractive processes, the linear and nonlinear corrections
show good agreement with the GBW and CGC models in a
wide range of r and r Qs . The linear and nonlinear correc-
tions to the ratio σ 2

dip/σ
2
0 in the diffractive processes due to the

component qqg deviates from the GBW and CGC models,
because the qqg system goes beyond the saturation models.

We developed nonlinear corrections to the impact param-
eter dependent dipole cross sections, dσdip/d2b. The nonlin-
ear corrections to the IP-Sat model are comparable with the
b-CGC model in a wide range of the impact parameter b and
the dipole size r . The linear and nonlinear corrections con-
sidered in the IP-Sat and IP Non-Sat models for the impact
parameters b = 0 and b = 1 fm in the range 0≤r≤4. The
behavior of the nonlinear corrections to the IP Non-Sat model
tamed in a wide range of r . This behavior for the IP-Sat model
shows that the dipole cross section saturated early for b = 0
in comparison with b = 1 fm for r > 1 fm. The nonlinear
corrections to the IP-Sat and IP Non-Sat models show that
those behaviors are comparable in the range 0≤r≤4 for the
impact parameter b = 1 fm.

In conclusion, by considering the statistical errors due
to the effective parameters, the nonlinear corrections to
the dipole cross sections give a reasonable data descrip-
tion in comparison with the other models. Indeed, the
GLR-MQ improved saturation model tames the DGLAP
improved model behavior when the results compared to mod-
els described based on the recombination of gluons at low x .
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