
Eur. Phys. J. C (2023) 83:200
https://doi.org/10.1140/epjc/s10052-023-11189-4

Regular Article - Theoretical Physics

RGESolver: a C++ library to perform renormalization group
evolution in the Standard Model Effective Theory

Stefano Di Noi1,2,a, Luca Silvestrini3,b

1 Dipartimento di Fisica e Astronomia, Universitá di Padova, Via Marzolo 8, 35131 Padua, Italy
2 Sezione di Padova, Istituto Nazionale di Fisica Nucleare, Via Marzolo 8, 35131 Padua, Italy
3 Sezione di Roma, Istituto Nazionale di Fisica Nucleare, Piazzale Aldo Moro 2, 00185 Rome, Italy

Received: 18 November 2022 / Accepted: 30 December 2022 / Published online: 7 March 2023
© The Author(s) 2023

Abstract Renormalization group evolution above the elec-
troweak scale is a crucial ingredient in the phenomenology
of the Standard Model Effective Theory. The RGESolver
open-source C++ library performs the evolution at leading
order for dimension-six operators in the most general flavour
scenario (assuming lepton and baryon number conservation).
Given its efficiency, RGESolver can be used to include the
effects of renormalization group evolution in extensive phe-
nomenological analyses in the framework of the Standard
Model Effective Theory.

1 Introduction

The Standard Model (SM) is one of the biggest scientific
successes of our time: it describes three (weak, strong and
electromagnetic) of the four currently known elementary
interactions in nature, closing a long path started between
the nineteenth and the twentieth century. The particle con-
tent of the SM was completed in 2012 with the discovery of
a Higgs-like boson with properties consistent with the SM
within current experimental errors. In spite of its success,
however, the SM leaves several phenomena unexplained. For
example, neutrino masses, the origin of the baryon asymme-
try in the universe and dark matter suggest the presence of
physics beyond the SM. The absence of direct evidence of
new particles at energies O (TeV) allows us to parametrize
the effects of possible heavy New Physics (NP), lying beyond
the reach of the LHC for direct production, with an effec-
tive field theory, known as the Standard Model Effective
Field Theory (SMEFT) [1,2]. The SMEFT Lagrangian con-
tains the SM Lagrangian plus a complete set of independent

a e-mail: stefano.dinoi@phd.unipd.it (corresponding author)
b e-mail: Luca.Silvestrini@roma1.infn.it

higher-dimensional operators. Working in the framework of
the SMEFT makes it possible to search for NP through its
virtual effects in a general, model-independent way.

Going from the SM to the SMEFT entails dramatic phe-
nomenological consequences, since the SM enjoys sev-
eral accidental symmetries that are potentially broken by
higher-dimensional operators, such as Baryon (B) and Lep-
ton (L) number conservation, or the absence of tree-level
Flavour Changing Neutral Currents (FCNC). Phenomenol-
ogy requires the coefficients of those higher-dimensional
operators that violate accidental symmetries of the SM to be
tiny, implying in turn that any NP not too far from the elec-
troweak (EW) scale must be at least approximately invariant
under the accidental symmetries of the SM. However, while
SM interactions will not generate B or L violation pertur-
batively if the corresponding operators in the SMEFT have
vanishing coefficients, FCNC’s will always be generated,
even if NP is invariant under the full U(3)5 flavour symme-
try group of SM gauge interactions, due to the SM Yukawa
couplings. Therefore, the flavour properties of the SMEFT
Wilson coefficients must be specified at the NP scale, and
then the coefficients must be evolved using Renormalization
group equations (RGE’s) down to the scale relevant for the
processes of interest in order to compute the NP contribu-
tions. Conversely, a phenomenological bound on low-scale
Wilson coefficients can be turned into a bound on the coeffi-
cients at the NP scale, allowing to extract information on the
viable values of SMEFT coefficients and, hopefully, on the
symmetries of the NP models of interest.

Assuming B and L conservation but a general flavour
structure, the SMEFT has 2499 independent operators, so that
the full system of RGE’s involves more than 2500 parame-
ters. At Leading Order (LO), the renormalization group (RG)
evolution is dictated by the Anomalous Dimension Matrices
(ADM’s) of the SMEFT operators, which in general receive

123

http://crossmark.crossref.org/dialog/?doi=10.1140/epjc/s10052-023-11189-4&domain=pdf
mailto:stefano.dinoi@phd.unipd.it
mailto:Luca.Silvestrini@roma1.infn.it

200 Page 2 of 13 Eur. Phys. J. C (2023) 83 :200

contributions from scale-dependent gauge and Yukawa cou-
plings, as well as from the Higgs self-coupling. Since the
ADM contributions proportional to different couplings are
in general non-commuting, an analytic resummation of log-
arithmic contributions cannot be achieved and the numerical
solution of the full system of equations is the only possi-
bility, in particular when the NP scale is much heavier than
the EW one. RGESolver is an open-source C++ library
that performs the RG evolution of the SMEFT Wilson coef-
ficients in a fast and easy-to-use manner, as detailed below.
RGESolver will be also integrated in HEPfit [3], a flexi-
ble open-source tool which, given the Standard Model or any
of its extensions, allows to fit the model parameters to a given
set of experimental observables and to obtain predictions for
observables.

This paper is organized as follows: we briefly introduce the
theoretical framework of the SMEFT in Sect. 2, presenting
the notation used in RGESolver. In Sect. 3 we describe in
more detail the structure of the library, with a specific focus
on the handling of the flavour structure and on the imple-
mentation of the numerical solution of the RGE’s. Section 4
is devoted to describing the usage of RGESolver: we dis-
cuss the installation procedure and we describe how to use
the basic functionalities of the library, together with a list
of its most important methods. We discuss the efficiency of
the library and the comparison with DSixTools [4,5] in
Sect. 5. We present our conclusions in Sect. 6.

2 Theoretical framework: the SMEFT

As discussed above, the absence of new particles at energies
at or above the TeV scale allows us to parametrize the effects
of physics beyond the SM with a tower of dimension D > 4,
Lorentz and gauge-invariant operators [1,2]. The resulting
effective field theory is the SMEFT. The SM gauge group is

GSM ≡ SU(3)C ⊗ SU(2)W ⊗ U(1)Y. (1)

The three factors represent color, weak isospin and hyper-
charge gauge group. The quantum numbers of SM fields
under GSM are listed in Table 1.

The Lagrangian of the Standard Model is (following the
notation used in Refs. [6–8])

LSM = − 1

4
GA

μνG
Aμν − 1

4
W I

μνW
Iμν − 1

4
BμνB

μν

+
∑

ψ

ψ̄i /Dψ + (DμH
†)(DμH)

− λ

(
H†H − 1

2
v2

)2

−
[
H†d̄Ydq + H̃†ūYuq + H†ēYel + H.c.

]
.

(2)

Table 1 SU(3)C ⊗ SU(2)W ⊗ U(1)Y quantum numbers of SM fields.
p is a flavour index

Field (RC,RW)y

q p (3, 2)+ 1
6

l p (1, 2)− 1
2

u p (3, 1)+ 2
3

d p (3, 1)− 1
3

ep (1, 1)−1

H (1, 2)+ 1
2

GA
μ (8, 1)0

W I
μ (1, 3)0

Bμ (1, 1)0

With this notation, when spontaneous symmetry breaking
occurs, the physical Higgs boson acquires a mass given by
m2

H = 2λv2, with v = (
√

2GF)−1/2 ∼ 246 GeV. The sum
over ψ is extended to all fermion fields in the SM, both left-
handed (q, l) and right-handed (u, d, e). The gauge covari-
ant derivative is Dμ = ∂μ +ig1yBμ +ig2t I W I

μ+ig3T AGA
μ ,

with T A and t I = τ I /21 the generators in the fundamental
representation of SU(3) and SU(2) respectively:

[T A, T B] = i f ABCTC , [t I , t J] = iε I J K t K . (3)

Finally, H̃ and X̃ (with X = B,W I ,GA) are defined via the
totally antisymmetric Levi-Civita symbol, with ε12 = 1 and
ε0123 = 1:

H̃ j = ε jk H
∗k, X̃μν = 1

2
εμνρσ Xρσ . (4)

Fermions appear in ng = 3 different generations, so every
fermion field carries, together with the gauge indices, a gen-
eration (or flavour) index that runs from 1 to 3. We did not
write explicitly neither of these indices in (2) for the sake of
simplicity. Yukawa couplings Yψ are thus complex matrices
in flavour space.

At dimension six a complete basis of independent and
gauge invariant operators that conserve B and L is given by
the so-called Warsaw basis, defined in [2] and displayed in
Table 2. Their independence means that no linear combina-
tion of them and their Hermitian conjugates vanishes due to
the equations of motion (up to total derivatives). The equa-
tions of motion are used at O (

1/
2
)

level, so they can be
derived from LSM alone.

The Warsaw basis consists of 59 operators, for a total of
2499 independent parameters in the generic flavour scenario
(see Appendix A of Ref. [8]). The operators are divided in

1 τI , I = 1, 2, 3, are the Pauli matrices: τ 1 = (
0 1
1 0

)
, τ 2 = (

0 −i
i 0

)
,

τ 3 = (
1 0
0 −1

)
.

123

Eur. Phys. J. C (2023) 83 :200 Page 3 of 13 200

Table 2 The 59 independent dimension-six operators built from SM
fields which conserve baryon and lepton number. p, r, s, t are fermion
flavour indices, j, k are indices in the fundamental representation of
SU(2)W, I, J, K (A, B,C) are indices in the adjoint representation
of SU(2)W (SU(3)C) and greek letters (μ, ν . . .) are Lorentz indices.
Contraction of indices in the fundamental representation of SU(3)C is
implicit

1 : X3

OG f ABCGAν
μ GBρ

ν GCμ
ρ

O
G̃

f ABC G̃ Aν
μ GBρ

ν GCμ
ρ

OW ε I J K W Iν
μ W Jρ

ν WKμ
ρ

O
W̃

ε I J K W̃ Iν
μ W Jρ

ν WKμ
ρ

2 : H6

OH (H†H)3

3 : H4D2

OH� (H†H)�(H†H)

OHD (H†DμH)∗(H†DμH)

4 : X2H2

OHG (H†H)GA
μνG

Aμν

O
HG̃

(H†H)G̃ A
μνG

Aμν

OHW (H†H)W I
μνW

Iμν

O
HW̃

(H†H)W̃ I
μνW

Iμν

OHB (H†H)BμνBμν

O
H B̃

(H†H)B̃μνBμν

OHWB (H†τ I H)W I
μνB

μν

O
HW̃ B

(H†τ I H)W̃ I
μνB

μν

5 : ψ2H3

OeH (H†H)(l̄ per H)

OuH (H†H)(q̄pur H̃)

OdH (H†H)(q̄pdr H)

6 : ψ2XH

OeW (l̄ pσμνer)τ I HW I
μν

OeB (l̄ pσμνer)HBμν

OuG (q̄pT Aσμνur)H̃GA
μν

OuW (q̄pσμνur)τ I H̃W I
μν

OuB (q̄pσμνur)H̃ Bμν

OdG (q̄pT Aσμνdr)HGA
μν

OdW (q̄pσμνdr)τ I HW I
μν

OdB (q̄pσμνdr)HBμν

Table 2 continued

7 : ψ2H2D

OHl(1) (H†i
↔
D μH)(l̄ pγ μlr)

OHl(3) (H†i
↔
D I

μH)(l̄ pτ I γ μlr)

OHe (H†i
↔
D μH)(ēpγ μer)

OHq(1) (H†i
↔
D μH)(q̄pγ μqr)

OHq(3) (H†i
↔
D I

μH)(q̄pτ I γ μqr)

OHu (H†i
↔
D μH)(ū pγ

μur)

OHd (H†i
↔
D μH)(d̄pγ μdr)

OHud (H̃†i DμH)(ū pγ
μdr)

8 : (L̄ L)(L̄ L)

Oll (l̄ pγμlr)(l̄sγ μlt)

Oqq(1) (q̄pγμqr)(q̄sγ μqt)

Oqq(3) (q̄pγμτ I qr)(q̄sγ μτ I qt)

Olq(1) (l̄ pγμlr)(q̄sγ μqt)

Olq(3) (l̄ pγμτ I lr)(q̄sγ μτ I qt)

8 : (R̄R)(R̄R)

Oee (ēpγμer)(ēsγ μet)

Ouu (ū pγμur)(ūsγ μut)

Odd (d̄pγμdr)(d̄sγ μdt)

Oeu (ēpγμer)(ūsγ μut)

Oed (ēpγμer)(d̄sγ μdt)

Oud(1) (ū pγμur)(d̄sγ μdt)

Oud(8) (ū pγμT Aur)(d̄sγ μT Adt)

8 : (L̄ L)(R̄R)

Ole (l̄ pγμlr)(ēsγ μet)

Olu (l̄ pγμlr)(ūsγ μut)

Old (l̄ pγμlr)(d̄sγ μdt)

Oqe (q̄pγμqr)(ēsγ μet)

Oqu(1) (q̄pγμqr)(ūsγ μut)

Oqu(8) (q̄pγμT Aqr)(ūsγ μT Aut)

Oqd(1) (q̄pγμqr)(d̄sγ μdt)

Oqd(8) (q̄pγμT Aqr)(d̄sγ μT Adt)

8 : (L̄ R)(R̄L)

Oledq (l̄ per)(d̄sqt)

8 : (L̄ R)(L̄ R)

Oquqd(1) (q̄ j
pur)ε jk(q̄ks dt)

Oquqd(8) (q̄ j
pT Aur)ε jk(q̄ks T

Adt)

Olequ(1) (l̄ jper)ε jk(q̄ks ut)

Olequ(3) (l̄ jpσμνer)ε jk(q̄ks σμνut)

123

200 Page 4 of 13 Eur. Phys. J. C (2023) 83 :200

Fig. 1 Two SMEFT diagrams that contribute to the running of the
Higgs quartic coupling λ. The solid square denotes a SMEFT vertex
and the dot denotes a SM vertex

8 classes, depending on their field content, which schemati-
cally are

1 : X3, 2 : H6, 3 : H4D2,

4 : X2H2, 5 : ψ2H3, 6 : ψ2HX,

7 : ψ2H2D, 8 : ψ4,

(5)

where X stands for a gauge field-strength tensor (or its dual),
ψ for a fermion field, D for a derivative and H is the Higgs
field.

To conclude the discussion about the SMEFT we note
that higher dimensional operators contribute to observables
not only through their matrix element, but also through their
contribution to the running of SM couplings. An example is
given by the diagrams in Fig. 1. Coherently with the power
counting, their effects in the running of λ are suppressed by
a factor of m2

H/
2. The contributions to the running of the
SM parameters due to SMEFT operators are available in Ref.
[6].

2.1 Flavour basis and back-rotation

In the SM a unitary transformation for each fermion field in
flavour space,

ψ = R†
ψψ ′, ψ = q, l, u, d, e, (6)

does not alter the structure of the Lagrangian, provided the
Yukawa matrices are redefined as
⎧
⎪⎨

⎪⎩

Yu = R†
uY ′

u Rq ,

Yd = R†
dY

′
d Rq ,

Ye = R†
eY ′

e Rl .

(7)

This freedom allows to diagonalize simultaneously two
out of the three matrices (Ye and one between Yu and Yd).2

2 The situation changes after the spontaneous symmetry breaking in the
SM: fermions acquire a mass matrix proportional to the corresponding
Yukawa matrix,mpr

ψ = vY pr
ψ /

√
2, ψ =u,d, e. All the mass matrices can

be simultaneously diagonalized because the up and down component
of the iso-doublet q can be rotated indipendently.

Denoting with Ŷ a diagonal Yukawa matrix we can define
two reference bases: the down basis where Ye =Ŷe, Yd =Ŷd ,
Yu = ŶuV and the up basis where Ye = Ŷe, Yu = Ŷu , Yd =
ŶdV †, with V a unitary matrix. In the SM, V is the Cabibbo–
Kobayashi–Maskawa matrix. In the SMEFT this is not true,
since the mass matrices are not simply proportional to the
Yukawa couplings due to the contributions from dimension-
six operators. With a slight abuse of notation, in the following
we still refer to the matrix V as the CKM matrix. It is worth
noticing that the matrix V is not the one appearing in the
interaction vertices between quarks and W± bosons, again
due to effects from higher dimensional operators. A more
detailed discussion is available in Section 2 of Ref. [9].

Notice that the up and down bases are not stable under
renormalization group evolution, even in the SM. For exam-
ple, the SM β function for Yd (available in Ref. [10]) contains
a term proportional to Yd(Y

†
d Yd − Y †

u Yu), which is always
non-diagonal in flavour space. Starting from a diagonal Yd
at the scale μI (down basis) leads to a non-diagonal Yd at a
different scale μF. To go back into the down basis, a further
flavour rotation is thus required. Clearly, the same holds for
the up basis.
In the SMEFT the flavour transformations in Eq. (6) imply
not only a redefinition of the Yukawa couplings, but also a
rotation of the Wilson coefficients. For example, the coeffi-
cient CdH of operator OdH is redefined as CdH = R†

qC′
dH Rd .

It should be noticed that the flavour rotations are not uniquely
determined by the singular value decomposition. The three
Yukawa matrices are diagonalized via six unitary matrices:

Yψ = Uψ ŶψV
†
ψ, ψ = u, d, e. (8)

If Uψ, Vψ satisfy the relation (8), also Uψφψ, Vψφψ with

φψ = diag
(
eα

ψ
1 , eα

ψ
2 , eα

ψ
3

)
satisfy it. The phase matrices

φu, φd are determined unambiguosly once the phase con-
vention for the CKM matrix is chosen, while, in the absence
of right-handed neutrinos, the phase of the lepton matrices
cannot be determined. A possibility to fix the phases would
be using one of the SMEFT coefficients that involve leptons,
but this would not be a general solution. In fact, the user may
want to set that coefficient to 0, frustrating the choice of phase
convention. To overcome this problem, we choose φe =
diag

(
e−i arg[(Ue)11], e−i arg[(Ue)22], e−i arg[(Ue)33]

)
. This choice

ensures that an evolution between two energy scales close to
each other produces a small change in the coefficients. The
user is then free to perform the rotation in the lepton sector
choosing any other convention.

To go into the up basis, the rotation matrix Rq in (6) must
be set equal to Vuφu . To go into the down basis one must
instead set Rq = Vdφd . Obviously, in both bases one sets
Ru = Uuφu , Rd = Udφu , Rl = Veφe and Re = Ueφe.

123

Eur. Phys. J. C (2023) 83 :200 Page 5 of 13 200

2.2 Solution of the renormalization group equations

The RGE for a parameter xi , that in this context is a SMEFT
coefficient Ci or a SM parameter, is

μ
dxi
dμ

≡ βi
({x j }

)
, (9)

that defines theβ-function for the parameter. In general, when
the theory has multiple parameters, the β-function for xi can
contain terms proportional to integer powers of xi , but also
terms proportional to other parameters x j , i 	= j . In this
article we always consider the β-functions at one-loop level.

The β-functions of SMEFT coefficients (as well as
SMEFT contributions to the running of SM parameters) are
available in Refs. [6–8], the SM β-functions of gauge cou-
plings can be found for example in Ref. [11] and the β-
functions of Yukawa couplings, m2

H and λ in Ref. [10].3

The β-function for SMEFT coefficients must be linear in
the coefficients themselves by power counting. In fact, the
product of two dimension-six SMEFT coefficients would be
suppressed by a factor of 1/
4, negligible at O (

m2
H/
2

)
.

This allows to write the RGE’s for the Ci s introducing the
anomalous dimension matrix � (ADM),

μ
dCi
dμ

= 1

16π2 �i jC j . (10)

The indices i , j in the previous equation run on the whole
set of independent coefficients: � is a square 2499 × 2499
matrix. Clearly, theβ-function for the i-th coefficient isβCi =
�i jC j/(16π2).

A simple approximation consists in neglecting the μ

dependence of the right-hand side of Eq. (10) and taking
only linear order terms in ln (μF/μI), yielding

Ci (μF) = Ci (μI) + �i j (μI)C j (μI)
ln (μF/μI)

16π2 . (11)

While this drastic simplification may be appropriate for cases
in which the two energy scales are not too different, so that
the second term in Eq. (11) is a small correction, in general
the log on the right-hand side will become large, calling for
a resummation of log-enhanced terms.

To provide a more accurate solution of the system of first-
order differential equations in Eq. (10) is a non-trivial task
since the anomalous dimension matrix depends on μ through
the SM couplings, the running of which is in turn influenced
by SMEFT operators. The anomalous dimension matrix can
be written as

�i j (μ) = g2
1(μ)�

(g2
1)

i j + g2
2(μ)�

(g2
2)

i j + · · · , (12)

3 This reference uses a different convention for the Higgs sector
and for g1. The Higgs mass is m2

H = −m2/2 and the replacements
g1 → g1

√
5/3, λ → 2λ are required to convert their results into our

convention.

Table 3 Symmetry categories for operators in the SMEFT. nF indicates
the number of flavour indices for each category

Category Symmetry properties

0 0F scalar object

1 2F generic real matrix

2R 2F Hermitian matrix (Re)

2I 2F Hermitian matrix (Im)

5 4F generic real object

6R 4F two identical ψ̄ψ currents (Re)

6I 4F two identical ψ̄ψ currents (Im)

7R 4F two independent ψ̄ψ currents (Re)

7I 4F two independent ψ̄ψ currents (Im)

8R Cee (Re)

8I Cee (Im)

where the matrices on the right-hand side do not depend on
the renormalization scale. In general the �(gi) matrices can-
not be diagonalized simultaneously: an exact analytic solu-
tion of the system is then impossibile. One could proceed with
an hybrid scheme as commonly done in the Effective The-
ory for Weak interactions (WET) below the EW scale, where
QCD and QED corrections are implemented by resumming
the logs generated by the strong coupling only. However, in
the SMEFT the top Yukawa coupling is also large, calling for
the resummation of both strong and Yukawa contributions.

Thus, a numerical approach is required to obtain precise
results in the general case.4 More details about the imple-
mentation of this method are given in Sect. 3.2.

3 Description of the library

RGESolver is implemented in C++. We use the GNU Sci-
entific Library for the integration of the RGE’s (more infor-
mation about the numerical methods used are given below).
The whole code (including input and output) handles sepa-
rately real and imaginary parts of the parameters.

3.1 Flavour structure

Operators (or equivalently their coefficients) in the SMEFT
can be divided in different categories according to their sym-
metry properties as in Table 3,5 where we partially modify
the notation used in Table 14 of Ref. [5].

4 An approximate resummation of strong and Yukawa contributions
might be obtained by assuming the y2

t /αs ratio to be scale-invariant, as
suggested in Ref. [12].
5 It is worth noticing that there exists a symmetry class specific for the
operator Oee, since it has an additional symmetry following from ep

being a singlet under SU(3)C ⊗ SU(2)W (see Ref. [8]).

123

200 Page 6 of 13 Eur. Phys. J. C (2023) 83 :200

We work splitting real and imaginary part for each Ci .
For example, the real part of the coefficient of an Hermitian
2F operator is a (real) symmetric matrix, while the imagi-
nary part is a (real) antisymmetric matrix. Also the real and
imaginary part of symmetric 4F operators are in different
categories. This is not the case for non-Hermitian operators:
the real and imaginary parts of their coefficient do not have
any constraints, and they belong to categories 1 (2F) and 5
(4F). Clearly it is convenient to store and evolve only the
independent parameters, but for ease of use it is convenient
to be able to access the coefficients with any combination of
indices, not only the independent ones. We achieve this flexi-
bility by defining specific symmetry-aware getters and setters
for each category. For example, setting Re[C1,2

Hl(1)] = 0.5 via
S.SetCoefficient(“CHl1R”,0.5,1,2) (where S
is an instance of the RGESolver class) will lead to
S.GetCoefficient(“CHl1R”,2,1) returning the
value 0.5 due to Hermiticity.

3.2 Numerical implementation of renormalization group
evolution

As already mentioned, we use the routines provided by the
GNU Scientific Library (GSL, [13]) to perform the inte-
gration of the RGEs. Let �y be the vector that contains
all the independent parameters of the SMEFT. Introducing
t = ln(μ/GeV), the system in Eq. (9) can be rewritten as

d �y
dt

= �f(�y), (13)

where the right-hand side of the equation depends on t only
through �y. When all the symmetries of the operators are con-
sidered, the coefficients of operators at dimension-six level
are completely determined through 2499 independent real
parameters. The three gauge couplings g1, g2, g3, the Higgs
quartic coupling λ and the mass mH of the Higgs boson are
real scalars. Yukawa couplings Yu , Yd and Ye are 3 × 3 com-
plex matrices, each of which has 18 parameters.6 This yelds
59 further parameters, raising the total number to 2558: this
is the dimension of �y. The system in Eq. (9) is thus a 2558-
dimensional system of first order coupled differential equa-
tions. We use an adaptive stepsize routine to solve the system:
the stepsize h is changed throughout the integration in order
to match the estimated local error Ei with a user-defined
error level, to obtain the maximum efficiency. The desired
error level Di for each component is determined through

6 In the Yukawa sector not all of the 54 real parameters are observable:
only 13 parameters from this sector are independent (9 fermion masses
plus the 3 angles and one phase in the CKM matrix). However, above
the electroweak scale the β functions are naturally expressed in terms
of the Yukawa matrices rather than of the fermion masses and the CKM
matrix. Therefore, for the purpose of computing RG evolution it is more
convenient to consider general Yukawa matrices.

four parameters ay , adydt , εabs and εrel with the expression

Di = εabs + εrel

(
ay |yi | + hadydt

∣∣∣∣
dyi
dt

∣∣∣∣

)
(14)

The second term in brackets in the previous expression
ensures a correct estimation also for situations where some
components yi are very close to zero. The error is determined
not only from the value yi but also from its increment. In par-
ticular, we use ay =adydt = 1.

Ei can be estimated with the step-doubling technique, that
consists in advancing the solution from t to t + 2h in two
different ways (performing two steps of length h or one step
of length 2h) and taking the error as the difference between
the two. A more sofisticated and efficient error estimate is
possible for the embedded integration methods, where the
same evaluations of the function �f are used to compute two
different values of the solution at t + h. The error is taken as
the difference between the two values (see Section 16.2 of
Ref. [14]).

If Ei exceeds the desired error Di by more than 10% for
any component, the stepsize is reduced according to

h → h × 0.9 ×
(
E

D

)− 1
q

, (15)

where 0.9 is a safety factor (the error can only be estimated,
not accurately determined), q is the consistency order of the
method (i.e. the local error scales as hq+1) and E/D =
maxi (Ei/Di) is the maximum ratio of estimated and desired
error among the components.

If, instead, the estimated error is lower than the desired
one (precisely, when E/D < 50%) the stepsize is increased
according to

h → h × 0.9 ×
(
E

D

)− 1
q+1

. (16)

To avoid uncontrolled changes in the stepsize, the overall
scaling factor is limited to the range (1/5, 5). In RGESolver
the explicit embedded Runge–Kutta–Fehlberg method is
used (with initial stepsize h = ln(μ/
)/100), for which
q = 4.

It should be stressed that Eq. (14) refers to a local error:
there is no simple relation that connects the four parameters
to an estimate of the global error affecting the final result. We
tested the accuracy of the adaptive stepsize integration com-
paring it with a fixed-step integration with an high number
of steps. Using μI =
 = 1000 TeV and μF = 250 GeV as
energy scales, εabs = 10−16 and εrel = 10−4 for the adap-
tive integration and NFS = 1000 steps for the fixed stepsize
integration we obtained percentual differences � 10−5. The
initial conditions for SM parameters at the high energy scale
are obtained evolving them from μ ∼ v to
 with the pure
SM β-functions (namely neglecting SMEFT contributions).

123

Eur. Phys. J. C (2023) 83 :200 Page 7 of 13 200

The initial conditions for SMEFT coefficients are O (
1/
2

)
,

as prescribed by the power counting.

4 Using RGESolver

4.1 Installation

RGESolver is a free software released under the GNU Gen-
eral Public License. The download can be performed directly
from the command line, typing in the terminal:

git clone
https://github.com/silvest/RGESolver
--recursive

More details can be found on the
dedicated GitHub webpage. The extended documentation
is also available here

Dependencies

The installation of RGESolver requires the availability of
CMake in the system (version 3.1 or greater). A description
of CMake and the instructions for its installation can be found
in the CMake website. We list below the dependencies that
need to be satisfied to succesfully install RGESolver:

• GSL: The GNU Scientific Library (GSL) is a C library
for numerical computations. More details can be found
on the GSL website.

• BOOST: BOOST is a set of libraries for the C++ program-
ming language. RGESolver requires only the BOOST
headers, not the full libraries, thus a header-only instal-
lation is sufficient. More details can be found on the
BOOST website.

• C++11: a C++ compiler supporting at least the C++11
standard.

If all dependencies are satisfied, the installation procedure
is completed typing in a terminal session in the downloaded
RGESolver directory:

mkdir build && cd build
cmake .. <options>
cmake --build .
cmake --install .

The available options are:

• -DLOCAL_INSTALL=ON: to install RGESolver in
the directory build/install (default: OFF).

• -DCMAKE_INSTALL_PREFIX=<RGESolver
installation directory>: the directory in which
RGESolver will be installed (default: /usr/local).
This variable cannot be modified when -DLOCAL_
INSTALL=ON is set.

• -DDEBUG_MODE=ON: to enable the debug mode (default:
OFF).

• -DBOOST_INCLUDE_DIR=<boost custom
include path>/boost/ :CMake checks forBOOST
headers availability in the system and fails if they are not
installed. Thus, if BOOST is not installed in the prede-
fined search path, the user can specify where it is with
this option. The path must end with the boost/ direc-
tory which contains the headers.

• -DGSL_CONFIG_DIR=<path to gsl-config>:
RGESolver uses gsl-config to get the GSL param-
eters. If this is not in the predefined search path, the user
can specify it with this option.

If no <options> are specified, the default installation will
be performed. Note that, depending on the setting of instal-
lation prefix, root privileges may be required (thus cmake
--install . should be replaced with sudo cmake
--install .).RGESolver can be uninstalled by typing
in the build directory of the RGESolver library the com-
mand (sudo) cmake --build . --target
uninstall.

4.2 Class methods

Here we briefly describe the most important methods avail-
able in RGESolver. The detailed documentation is avail-
able on GitHub.

Evolution

• void Evolve(std::string method, double
muI, double muF): performs the one-loop renor-
malization group evolution from μ = muI to μ = muF
(where muI and muF are expressed in GeV). The current
values of the SMEFT parameters are taken as initial con-
dition at μ = muI. After the evolution, they are updated
with the new values at μ = muF. The available methods
for the solution of the RGE’s are “Approximate” and
“Numeric”. The first method is faster than the latter,
but less accurate, as explained in Sect. 2.2.

• void EvolveSMOnly(std::string method,
double muI, double muF): same as Evolve,
but only for the SM parameters. The user should use
this method instead of Evolve when interested in pure
SM running. Using this function is the same of using
Evolve with all the SMEFT coefficients set to 0, but it

123

https://github.com/silvest/RGESolver
https://silvest.github.io/RGESolver/annotated.html
https://cmake.org/
https://www.gnu.org/software/gsl/
https://www.boost.org/
https://silvest.github.io/RGESolver/annotated.html

200 Page 8 of 13 Eur. Phys. J. C (2023) 83 :200

Table 4 SM parameters used by default to generate SM initial condi-
tions at an arbitrary scale. The scale at which these parameters are given
is μ = 173.6 GeV. We follow UTfit for what concerns the conventions
for the CKM matrix

Parameter Value

g1 0.3573

g2 0.6511

g3 1.161

λ 0.1297

m2
h [GeV2] 15650

sin θ12 0.2252

sin θ13 0.003675

sin θ23 0.0420

δ [rad] 1.1676

mu [GeV] 0.0012

mc [GeV] 0.640

mt [GeV] 162.0

md [GeV] 0.0027

ms [GeV] 0.052

mb [GeV] 2.75

me [GeV] 0.000511

mμ [GeV] 0.1057

mτ [GeV] 1.776

is faster since it computes only the evolution for the SM
parameters.

• void EvolveToBasis(std::string method,
double muI, double muF, std::string
basis): same as Evolve, but performs in addition the
flavour back-rotation described in Sect. 2.1 to go into the
selected basis (“UP” or “DOWN”). After the evolution,
the CKM matrix is computed.

• void GenerateSMInitialConditions(...):
generates the initial conditions for Standard Model
parameters (g1, g2, g3, λ, m2

h, Yu, Yd , Ye) at the scale
muFin (in GeV), using one-loop pure SM beta func-
tions. At such scale, the CKM matrix is computed.
The generation can be done starting from user-defined
low-energy input or using the default values summarized
in Table 4 (the arguments to be passed to the function are
different in the two cases, see the documentation for the
details and Sect. 4.3 for an example). In case of user-
defined input, this method should be used with usual
fermion hierarchy (smallest mass for the 1st generation
and greatest mass for the 3rd without mass degeneracy
for all up and down quarks and for charged leptons).

Input and output

Getters and setters take as first argument a string (name), that
identifies the corresponding parameter. The names that must
be used to correctly invoke these functions are reported in

Table 5 Standard Model parameters in RGESolver. The last 3 labels
of this table must be used with the GetCKMAngle method. All the
others must be used with the GetCoefficient method

Coefficient Name

g1 g1

g2 g2

g3 g3

λ lambda

m2
h [GeV2] mh2

Re(Yu) YuR

Im(Yu) YuI

Re(Yd) YdR

Im(Yd) YdI

Re(Ye) YeR

Im(Ye) YeI

sin θ12 s12

sin θ13 s13

sin θ23 s23

Table 6 SMEFT coefficients without flavour indices in RGESolver

Coeff. Name

Classes 1–3

CG CG

CG̃ CGtilde

CW CW

CW̃ CWtilde

CH CH

CH� CHbox

CHD CHD

Class 4

CHG CHG

CHG̃ CHGtilde

CHW CHW

CHW̃ CHWtilde

CHB CHB

CH B̃ CHBtilde

CHWB CHWB

CHW̃ B CHWtildeB

Tables 5, 6, 7 and 8. The functions for non-scalar coefficients
take as additional arguments the flavour indices (2 or 4), that
must be in the interval [0:2].

• void SetCoefficient(std::string name,
double val): setter function for the scalar parame-
ters. Sets the parameter name equal to val.

• double GetCoefficient(std::string name):
getter function for the scalar parameters. Returns the
parameter name.

123

http://www.utfit.org/UTfit

Eur. Phys. J. C (2023) 83 :200 Page 9 of 13 200

Table 7 SMEFT coefficients with two flavour indices in RGESolver

Coeff. Name Sym.

Class 5

Re(CeH) CeHR WC1

Im(CeH) CeHI WC1

Re(CuH) CuHR WC1

Im(CuH) CuHI WC1

Re(CdH) CdHR WC1

Im(CdH) CdHI WC1

Class 6

Re(CeW) CeWR WC1

Im(CeW) CeWI WC1

Re(CeB) CeBR WC1

Im(CeB) CeBI WC1

Re(CuG) CuGR WC1

Im(CuG) CuGI WC1

Re(CuW) CuWR WC1

Im(CuW) CuWI WC1

Re(CuB) CuBR WC1

Im(CuB) CuBI WC1

Re(CdG) CdGR WC1

Im(CdG) CdGI WC1

Re(CdW) CdWR WC1

Im(CdW) CdWI WC1

Re(CdB) CdBR WC1

Im(CdB) CdBI WC1

Class 7

Re(CHl(1)) CHl1R WC2R

Im(CHl(1)) CHl1I WC2I

Re(CHl(3)) CHl3R WC2R

Im(CHl(3)) CHl3I WC2I

Re(CHe) CHeR WC2R

Im(CHe) CHeI WC2I

Re(CHq(1)) CHq1R WC2R

Im(CHq(1)) CHq1I WC2I

Re(CHq(3)) CHq3R WC2R

Im(CHq(3)) CHq3I WC2I

Re(CHu) CHuR WC2R

Im(CHu) CHuI WC2I

Re(CHd) CHdR WC2R

Im(CHd) CHdI WC2I

Re(CHud) CHudR WC1

Im(CHud) CHudI WC1

• void SetCoefficient(std::string name,
double val, int i, int j): setter function for
the parameters with two flavour indices. Sets the param-
eter name[i,j] equal to val.

Table 8 SMEFT coefficients with four flavour indices in RGESolver

Coeff. Name Sym.

Class 8 (L̄ L)(L̄ L)

Re(Cll) CllR WC6R

Im(Cll) CllI WC6I

Re(Cqq(1)) Cqq1R WC6R

Im(Cqq(1)) Cqq1I WC6I

Re(Cqq(3)) Cqq3R WC6R

Im(Cqq(3)) Cqq3I WC6I

Re(Clq(1)) Clq1R WC7R

Im(Clq(1)) Clq1I WC7I

Re(Clq(3)) Clq3R WC7R

Im(Clq(3)) Clq3I WC7I

Class 8 (L̄ R)(L̄ R)

Re(Cquqd(1)) Cquqd1R WC5

Im(Cquqd(1)) Cquqd1I WC5

Re(Cquqd(8)) Cquqd8R WC5

Im(Cquqd(8)) Cquqd8I WC5

Re(Clequ(1)) Clequ1R WC5

Im(Clequ(1)) Clequ1I WC5

Re(Clequ(3)) Clequ3R WC5

Im(Clequ(3)) Clequ3I WC5

Class 8 (R̄R)(R̄R)

Re(Cee) CeeR WC8R

Im(Cee) CeeI WC8I

Re(Cuu) CuuR WC6R

Im(Cuu) CuuI WC6I

Re(Cdd) CddR WC6R

Im(Cdd) CddI WC6I

Re(Ceu) CeuR WC7R

Im(Ceu) CeuI WC7I

Re(Ced) CedR WC7R

Im(Ced) CedI WC7I

Re(Cud(1)) Cud1R WC7R

Im(Cud(1)) Cud1I WC7I

Re(Cud(8)) Cud8R WC7R

Im(Cud(8)) Cud8I WC7I

Class 8 (L̄ R)(R̄L)

Re(Cledq) CledqR WC5

Im(Cledq) CledqI WC5

Class 8 (L̄ L)(R̄R)

Re(Cle) CleR WC7R

Im(Cle) CleI WC7I

Re(Clu) CluR WC7R

Im(Clu) CluI WC7I

Re(Cld) CldR WC7R

Im(Cld) CldI WC7I

Re(Cqe) CqeR WC7R

Im(Cqe) CqeI WC7I

123

200 Page 10 of 13 Eur. Phys. J. C (2023) 83 :200

Table 8 continued

Coeff. Name Sym.

Re(Cqu(1)) Cqu1R WC7R

Im(Cqu(1)) Cqu1I WC7I

Re(Cqu(8)) Cqu8R WC7R

Im(Cqu(8)) Cqu8I WC7I

Re(Cqd(1)) Cqd1R WC7R

Im(Cqd(1)) Cqd1I WC7I

Re(Cqd(8)) Cqd8R WC7R

Im(Cqd(8)) Cqd8I WC7I

• double GetCoefficient(std::string name,
int i, int j): getter function for the parame-
ters with two flavour indices. Returns the parameter
name[i,j].

• void SetCoefficient(std::string name,
double val, int i, int j, int k, int l):
setter function for the parameters with four flavour
indices. Sets the parameter name[i,j,k,l] equal to
val.

• double GetCoefficient(std::string name,
int i, int j, int k, int l): getter function
for the parameters with four flavour indices. Returns the
parameter name[i,j,k,l].

• double GetCKMAngle(std::string name),
double GetCKMPhase(): getter methods to access
CKM matrix parameters. These methods should be
called only after methods that choose a specific flavour
basis (as GenerateSM InitialConditions() or
EvolveToBasis()), in which case the CKM matrix
is updated.

• double GetCKMRealPart(int i, int j),
double GetCKMImagPart(int i, int j): get-
ter functions for the real and imaginary part of the (i, j)
element of the CKM matrix. These methods should be
called only after methods that choose a specific flavour
basis (as GenerateSM InitialConditions() or
EvolveToBasis()), in which case the CKM matrix
is updated. The indices must be in the range [0:2].

• void SaveOutputFile(std::string
filename, std::string format): saves the cur-
rent values of the SMEFT parameters in the filefilename.
Currently, the only available format is Susy Les Houches
Accord “SLHA” ([15]).

Numerical integration parameters

Here we list the methods related to the parameters that control
the numerical evolution, as described in Sect. 3.2:

• void Setepsrel(double epsrel): sets εrel equal
to epsrel (the default value is εrel = 5 × 10−3).

• double epsrel(): returns εrel.
• void Setepsabs(double epsabs): sets εabs equal

to epsabs (the default value is εabs = 10−13).
• double epsabs(): returns εabs.

General methods

• RGESolver(): the default constructor.
• ∼RGESolver(): the default destructor.
• Reset(): resets all the SMEFT coefficients to 0 and the

SM parameters to their default value (in the up basis).
εabs and εrel are reset to their default value. This function
should be called after the evolution, if the same instance
of the class is used for another run.

4.3 Writing and compiling a program using the library

We discuss here the usage of the main methods of the class,
in order to make the reader acquainted with RGESolver’s
functionalities. The examples discussed in this section can
be found in the Examples directory repository. Let us start
with the simplest case: the renormalization group evolution
from an high-energy scale
 = 10,000 GeV to μLow = 250
GeV with a single non-zero SMEFT coefficient at the starting
scale, namely CHG . We do not report the whole program
here, but we discuss just the crucial steps. This program is
available under the name ExampleEvolution.cpp. The
library must be included with

#include "RGESolver.h"

Inside the main, an instance of the class must be created:

RGESolver S;

We define the two energy scales (given in GeV) and we set
the initial condition.

double Lambda = 10000.;
double muLow = 250.;
S.SetCoefficient("CHG",
1./(Lambda*Lambda));

The (numeric) evolution is then performed using the line

S.Evolve("Numeric", Lambda, muLow);

At this point, the user can access the evolved coefficients
via the GetCoefficient() methods (see Tables 5, 6, 7

123

https://github.com/silvest/RGESolver/tree/main/Examples

Eur. Phys. J. C (2023) 83 :200 Page 11 of 13 200

and 8 for a list of all the names to be used). For example, this
line prints on the terminal the evolved value of CHG .

std::cout<<"CHG("<<muLow<<"GeV):"
<<S.GetCoefficient("CHG")<<std::endl;

The user should compile this program typing in the termi-
nal7

g++ -o app ExampleEvolution.cpp
‘rgesolver-config --cflags‘
‘rgesolver-config --libs‘

If the RGESolver library is not in the predefined search
path (as usually is the case for local installation), it may be
necessary to specify the path needed for compilation and link-
ing against RGESolver. A rgesolver-config script
is available in the <CMAKE_INSTALL_PREFIX>/bin
directory, which can be invoked with the following options:

• −−cflags: to obtain the include path needed for com-
pilation against RGESolver.

• −−libs: to obtain the flags needed for linking against
RGESolver.

A more advanced example can be found in
ExampleBackRotation.cpp. The goal is to perform
the evolution from
 = 10,000 GeV to μLow = 250 GeV
and perform the back-rotation. The default initial conditions
for the SM parameters in Table 4 are given at the scale μ =
173.65 GeV. It is possible to generate the initial conditions
for the SM parameters at any scale, both evolving the default
input or using a different set of values.
We thus define our custom input, starting from the energy
scale at which the input is given:

double SMinputScale = 91.0;

We then define the masses of the fermions (in GeV), the CKM
parameters (the CKM phase must be expressed in radians),
the gauge couplings, the quartic coupling and the Higgs’ mass
squared (in GeV2):

double Muin[3] = {0.002, 1.2, 170.};
double Mdin[3] = {0.006, 0.05, 5.2};
double Mein[3] = {0.0005, 0.1, 1.2};
double s12in = 0.225;
double s13in = 0.003675;
double s23in = 0.042;

7 Mac users might need to add the flag -std=c++11: (or greater).

double deltain = 1.17;
double g1in = .35;
double g2in = .65;
double g3in = 1.2;
double lambdain = 0.14;
double mh2in = 15625.;

The initial conditions at the scale
 are thus generated in the
down basis through the solution of the pure SM RGE’s (via
numeric integration) simply using:

S.GenerateSMInitialConditions(
SMinputScale,Lambda,"DOWN","Numeric",
g1in,g2in,g3in,lambdain,mh2in,
Muin,Mdin,Mein,
s12in,s13in,s23in,deltain);

As anticipated, the user can also take advantage of the default
low-energy input for the SM parameters via:

S.GenerateSMInitialConditions(
Lambda,"DOWN","Numeric");

Having generated the initial conditions for the SM param-
eters, the user can thus set the values of the SMEFT coef-
ficients at the scale
 and perform the evolution to μLow,
as done before. We don’t discuss this since the syntax is the
same of the previous case.

The evolution and the back-rotation (in the down basis)
are performed via:

S.EvolveToBasis(
"Numeric",Lambda,muLow,"DOWN");

Since this method computes also the CKM matrix, we can
access its parameters or its elements using the dedicated get-
ter functions. For example, the following lines print on-screen
sin θ12 at the scale muLow:

std::cout<<"Sin(theta12)("<<
muLow<< " GeV): "
<<S.GetCKMAngle("s12")<< std::endl;

5 Execution times and comparison with DSixTools

We tested our code against DSixTools ([4,5]), a Mathe-
matica package for the handling of the SMEFT (and

123

200 Page 12 of 13 Eur. Phys. J. C (2023) 83 :200

Table 9 Comparison between DSixTools and RGESolver. The
first (last) three values refer to the approximate solution (numeric solu-
tion)

�max
 (TeV)

4.8 × 10−6 1

4.8 × 10−6 10

5.1 × 10−6 100

1.2 × 10−5 1

1.2 × 10−5 10

4.2 × 10−5 100

the Low-energy Effective Field Theory, but we focus on
the SMEFT part of the package). DSixTools solves the
SMEFT RGE’s numerically and via the approximation
described in Sect. 2.2, as RGESolver does. We performed
an evolution from
 to μLow = 250 GeV with both codes
to compare the values of the coefficients after the evolution.
The initial conditions at the high energy scale
 for the SM
parameters are obtained using pure SM RGE’s to run them
up to such scale. We setO (

1/
2
)

initial conditions for every
SMEFT coefficient at μ =
.8 The result of this comparison
is displayed in Table 9.
To compare the two results, we introduce �max = max|CRi
(μLow) − CDi (μLow)|/(1/
2), with CR(D)

i (μLow) the evolved
coefficient computed by RGESolver (DSixTools).
We observe that the two codes produce the same results up
to O (

10−5/
2
)

(O (
10−6/
2

)
) in the case of numeric solu-

tion (approximate solution). Clearly, the agreement is better
for the simpler solution, namely the approximate one.

Let us briefly discuss RGESolver’s efficiency perfor-
mances. We report in Table 10 the execution times that we
measured (referring to a PC whose specifications are shown
in Table 11). The execution times consider not only the evo-
lution, but also the input/output (setting the initial conditions
for the SMEFT parameters and accessing them after the evo-
lution). These times should not be taken as exact, but as an
order-of-magnitude estimate.

This result should be compared to the execution times of
DSixTools, that can be up to O (20 s) (O (10 s)) for the
numeric (approximate) solution. This package performs a
consistency check on the input that affects heavily the exe-
cution time for large inputs. Such impact is ∼ 8 s for the
input used in the comparison between the two programs.

Conversely, considering just 3 non vanishing independent
operators at μ =
, the execution time is O (10 s) (O (2 s))
for the numeric (approximate) solution.

8 For SMEFT coefficients with flavour indices, we set 	= 0 at least one
entry for each operator.

Table 10 Execution times of C++ programs that use RGESolver

Operation Time

Approximate solution O (2 ms)

Numeric solution O (50 ms)

Numeric solution + generation
of SM initial conditions +
back-rotation

O (100 ms)

Table 11 Technical specifications of the computer used for the test

CPU Intel© CoreT M i7-6500U CPU @2.50GHz×4

RAM 7,7 GiB

OS Ubuntu 20.04.2 LTS

6 Conclusions

RGESolver is an open-source C++ library that performs
the renormalization group evolution in the context of the
SMEFT at dimension-six level, in the most general flavour
scenario. Only operators that preserve baryon and lepton
number are considered. RGESolver was designed to be
easy to use, highly efficient and suitable to perform extensive
phenomenological analysis. To this aim, it will be included in
HEPfit ([3]), a multipurpose and flexible analysis frame-
work that can be used for fitting models to experimen-
tal and theoretical constraints. RGESolver outperforms
DSixTools in execution time by two orders of magnitude,
while retaining an excellent accuracy. Further details and the
full documentation can be found on GitHub.

Acknowledgements SDN would like to thank his colleagues (and
friends) from Rome and Padua for their contributions to early tests of
RGESolver and A. Vicente, whose help was essential to complete the
comparison between RGESolver and DSixTools. This work was
supported in part by the Italian Ministry of Research (MIUR) under
grant PRIN 20172LNEEZ. The Feynman diagrams shown in this work
were drawn with TikZ-Feynman [16].

Data Availibility Statement The manuscript has associated data in a
data repository. [Authors’ comment: The code release described in this
manuscript is available at https://doi.org/10.5281/zenodo.7639023.]

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adaptation,
distribution and reproduction in any medium or format, as long as you
give appropriate credit to the original author(s) and the source, pro-
vide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indi-
cated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permit-
ted use, you will need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.
Funded by SCOAP3. SCOAP3 supports the goals of the International
Year of Basic Sciences for Sustainable Development.

123

https://github.com/silvest/RGESolver
https://doi.org/10.5281/zenodo.7639023
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Eur. Phys. J. C (2023) 83 :200 Page 13 of 13 200

References

1. W. Buchmuller, D. Wyler, Effective Lagrangian analysis of new
interactions and flavor conservation. Nucl. Phys. B 268, 621–653
(1986). https://doi.org/10.1016/0550-3213(86)90262-2

2. B. Grzadkowski, M. Iskrzynski, M. Misiak, J. Rosiek,
Dimension-six terms in the standard model Lagrangian.
JHEP 10, 085 (2010). https://doi.org/10.1007/JHEP10(2010)085.
arXiv:1008.4884 [hep-ph]

3. J. De Blas et al., HEPfit: a code for the combination of
indirect and direct constraints on high energy physics models.
Eur. Phys. J. C 80(5), 456 (2020). https://doi.org/10.1140/epjc/
s10052-020-7904-z. arXiv:1910.14012 [hep-ph]

4. A. Celis, J. Fuentes-Martin, A. Vicente, J. Virto, Dsix-
Tools: the standard model effective field theory toolkit. Eur.
Phys. J. C 77(6), 405 (2017). https://doi.org/10.1140/epjc/
s10052-017-4967-6. arXiv:1704.04504 [hep-ph]

5. J. Fuentes-Martin, P. Ruiz-Femenia, A. Vicente, J. Virto, Dsix-
Tools 2.0: the effective field theory toolkit. Eur. Phys. J. C 81(2),
167 (2021). https://doi.org/10.1140/epjc/s10052-020-08778-y.
arXiv:2010.16341 [hep-ph]

6. E.E. Jenkins, A.V. Manohar, M. Trott, Renormalization group evo-
lution of the standard model dimension six operators I: formalism
and lambda dependence. JHEP 10, 087 (2013). https://doi.org/10.
1007/JHEP10(2013)087. arXiv:1308.2627v4 [hep-ph]

7. E.E. Jenkins, A.V. Manohar, M. Trott, Renormalization group
evolution of the standard model dimension six operators II:
Yukawa dependence. JHEP 01, 035 (2014). https://doi.org/10.
1007/JHEP01(2014)035. arXiv:1310.4838v3 [hep-ph]

8. R. Alonso, E.E. Jenkins, A.V. Manohar, M. Trott, Renormal-
ization group evolution of the standard model dimension six
operators III: Gauge coupling dependence and phenomenology.
JHEP 04, 159 (2014). https://doi.org/10.1007/JHEP04(2014)159.
arXiv:1312.2014v4 [hep-ph]

9. E.E. Jenkins, A.V. Manohar, P. Stoffer, Low-energy effective
field theory below the electroweak scale: operators and matching.
JHEP 03, 016 (2018). https://doi.org/10.1007/JHEP03(2018)016.
arXiv:1709.04486 [hep-ph]

10. Luo Mx, Y. Xiao, Two loop renormalization group equations in the
standard model. Phys. Rev. Lett. 90, 011601 (2003). https://doi.
org/10.1103/PhysRevLett.90.011601. arXiv:hep-ph/0207271

11. M. Srednicki,QuantumField Theory (Cambridge University Press,
Cambridge, 2007). https://doi.org/10.1017/cbo9780511813917.
031

12. A.J. Buras, M. Jung, Analytic inclusion of the scale depen-
dence of the anomalous dimension matrix in Standard Model
Effective Theory. JHEP 06, 067 (2018). https://doi.org/10.1007/
JHEP06(2018)067. arXiv:1804.05852 [hep-ph]

13. M.C. Galassi, J. Davies, J. Theiler, B. Gough, G. Jungman, P. Alken,
M. Booth, F. Rossi, R. Ulerich, GNU Scientific Library. Network
Theory, Ltd. (2019)

14. W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery,Numer-
ical Recipes in C (2nd Ed.): The Art of Scientific Computing, 2nd
edn. (Cambridge University Press, Cambridge, 1992)

15. B.C. Allanach, SUSY Les Houches Accord 2. Comput. Phys. Com-
mun. 180, 8–25 (2009). https://doi.org/10.1016/j.cpc.2008.08.004.
arXiv:0801.0045 [hep-ph]

16. J. Ellis, TikZ-Feynman: Feynman diagrams with TikZ. Comput.
Phys. Commun. 210, 103–123 (2017). https://doi.org/10.1016/j.
cpc.2016.08.019. arXiv:1601.05437 [hep-ph]

123

https://doi.org/10.1016/0550-3213(86)90262-2
https://doi.org/10.1007/JHEP10(2010)085
http://arxiv.org/abs/1008.4884
https://doi.org/10.1140/epjc/s10052-020-7904-z
https://doi.org/10.1140/epjc/s10052-020-7904-z
http://arxiv.org/abs/1910.14012
https://doi.org/10.1140/epjc/s10052-017-4967-6
https://doi.org/10.1140/epjc/s10052-017-4967-6
http://arxiv.org/abs/1704.04504
https://doi.org/10.1140/epjc/s10052-020-08778-y
http://arxiv.org/abs/2010.16341
https://doi.org/10.1007/JHEP10(2013)087
https://doi.org/10.1007/JHEP10(2013)087
http://arxiv.org/abs/1308.2627v4
https://doi.org/10.1007/JHEP01(2014)035
https://doi.org/10.1007/JHEP01(2014)035
http://arxiv.org/abs/1310.4838v3
https://doi.org/10.1007/JHEP04(2014)159
http://arxiv.org/abs/1312.2014v4
https://doi.org/10.1007/JHEP03(2018)016
http://arxiv.org/abs/1709.04486
https://doi.org/10.1103/PhysRevLett.90.011601
https://doi.org/10.1103/PhysRevLett.90.011601
http://arxiv.org/abs/hep-ph/0207271
https://doi.org/10.1017/cbo9780511813917.031
https://doi.org/10.1017/cbo9780511813917.031
https://doi.org/10.1007/JHEP06(2018)067
https://doi.org/10.1007/JHEP06(2018)067
http://arxiv.org/abs/1804.05852
https://doi.org/10.1016/j.cpc.2008.08.004
http://arxiv.org/abs/0801.0045
https://doi.org/10.1016/j.cpc.2016.08.019
https://doi.org/10.1016/j.cpc.2016.08.019
http://arxiv.org/abs/1601.05437

	RGESolver: a C++ library to perform renormalization group evolution in the Standard Model Effective Theory
	Abstract
	1 Introduction
	2 Theoretical framework: the SMEFT
	2.1 Flavour basis and back-rotation
	2.2 Solution of the renormalization group equations

	3 Description of the library
	3.1 Flavour structure
	3.2 Numerical implementation of renormalization group evolution

	4 Using RGESolver
	4.1 Installation
	Dependencies

	4.2 Class methods
	Evolution
	Input and output
	Numerical integration parameters
	General methods

	4.3 Writing and compiling a program using the library

	5 Execution times and comparison with DSixTools
	6 Conclusions
	Acknowledgements
	References

