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Abstract The ionization loss of a high-energy electron–
positron pair in thin targets is considered. The targets not
thinner than about 10 µm are discussed. The analogue of the
Landau distribution function is derived for this loss under
the condition when the Chudakov effect of the pair ioniza-
tion loss suppression is manifested. Expression for the most
probable value of the pair ionization loss EMP is obtained.
It is shown that the magnitude of Chudakov effect for EMP

can be noticeably different from the magnitude of this effect
for the restricted mean value of the pair ionization loss.

1 Introduction

The value of ionization energy loss of a fast particle travers-
ing thin target is stochastic. It is distributed according to
the law firstly derived by Landau [1]. Such a distribution,
known as straggling function, is asymmetric with respect
to its single maximum corresponding to the most probable
value of the ionization loss EMP . This value is one of the
key parameters of the straggling function. It is smaller than
the average value EAV of the particle ionization loss in the
target, defined by the Bethe–Bloch formula. EMP depends a
bit differently on the target thickness x than EAV . Namely,
EMP ∝ x(ln x + a), where a is some constant, and grows
faster than linearly with the increase of the target thickness,
while, naturally, EAV ∝ x . Straggling functions of various
particles in amorphous targets or disoriented crystals have
been extensively studied both theoretically [2–6] and exper-
imentally [7,8]. A series of studies has been performed for
the case of particle penetration through oriented crystals [9–
11] where the straggling functions have a more complicated
structure than in amorphous targets.
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In the above works it was the ionization loss by single
particles that was investigated, i. e. the loss under the con-
dition when the particles traverse the target one at a time.
As far as the quantity EAV is concerned, a series of works
has been devoted to the study of the influence of interference
effects on its value when several particles penetrate the tar-
get simultaneously. Probably, the most well-known effect of
this kind is the Chudakov effect (or King–Perkins–Chudakov
effect) [12,13]. It is the suppression of ionization energy loss
of a high-energy electron–positron pair in the vicinity of its
creation point in substance compared to the sum of inde-
pendent electron and positron ionization energy losses. It
occurs due to mutual screening (destructive interference) of
the electron’s and positron’s proper Coulomb fields. Due to
polarization of the substance the typical transversal scale of
these fields is 1/ωp, where ωp is the plasma frequency.1 The
scale of the pair divergence angle is m/E � 1, where m is
the electron mass and E is the pair energy. Thus, the elec-
tron’s and positron’s proper fields can interfere within the
distance l ∼ E/mωp from the creation point, which is the
region where the Chudakov effect is manifested. The anal-
ogous effect has been also considered for a proton cluster,
bound by a common electron, which experiences a “Coulomb
explosion” after its entrance into a target [14,15]. In this case,
however, one deals with constructive interference of the pro-
tons’ fields, which results in the enhancement of the disinte-
grated cluster energy loss compared to the sum of indepen-
dent energy losses of separate protons.

The Chudakov effect has been studied experimentally with
the use of cosmic ray photons for pair production in emul-
sions [13,16,17], which showed a fairly good agreement with
the theories of this effect for the mean ionization loss of the
pair [12,18–21]. In [22,23] there was reported the first proof-

1 We use the system of units where the speed of light c and the Planck
constant h̄ are equal to unity.
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of principle experiment of this kind, where the photons were
generated by high-energy electrons in an accelerator. It was
noted that such an approach allows for much more precise
determination of the pair energy and achievement of better
statistics. In this experiment the pairs were created by multi-
GeV photons impinging on thin upstream golden foils, while
the pair ionization loss was registered in a thin downstream
silicon detector with the active layer thickness of 16 µm sit-
uated on some distance from the foils. In this case it was the
most probable value of the pair ionization loss EMP that was
measured. It was defined from the straggling functions of the
pairs inside the detector. The obtained results showed some
discrepancy with the theories [12,18–21] of the mean ioniza-
tion loss of the pair. Namely, a more significant suppression
of the pair ionization loss, than the one expected from these
theories, was registered.

In the present paper we obtain the straggling function of
electron–positron pairs in thin targets taking into account
the discussed above interference effect in the pair ionization
loss and calculate the corresponding value of the most prob-
able ionization loss EMP . The consideration is performed
both with the use of approach of [1], which allows obtaining
analytical expression for EMP , and with the use of a more
rigorous approach, which provides more accurate results for
straggling functions in very thin targets. It is shown that in
sufficiently thin targets the magnitude of Chudakov effect is
noticeably different for the quantities EMP and EAV , and
the value EMP is stronger suppressed due to this effect than
EAV . Therefore, it is essential to use the calculated value
of EMP , rather than EAV , for comparison with experimental
results on the most probable values of the pair ionization loss
in thin detectors.

2 Targets of moderate thickness

In order to obtain the straggling function for e+e− pairs in
a target of thickness x we follow the approach developed in
the seminal paper [1] for single particles. Let w(ε)dε be the
probability for the pair to lose energy in the interval (ε, ε+dε)

within the unit path. In this case the kinetic equation for the
straggling function of the pair is completely analogous to the
one describing such a function for single particles:

d f (x,Δ)

dx
=

εmax∫

0

dεw(ε)[ f (x,Δ − ε) − f (x,Δ)], (1)

where εmax is the maximum energy which the pair can trans-
fer to an atomic electron in a single collision, Δ is the energy
lost by the pair in the target. The straggling function f (x,Δ)

is different from zero only for positive Δ. The solution of this
equation with the initial condition f (0,Δ) = δ(Δ) reads

f (x,Δ) = 1

2π i

+i∞+a∫

−i∞+a

dp exp

{
pΔ

− x

εmax∫

0

dεw(ε)(1 − e−pε)

}
, (2)

where a can be put equal zero and integration with respect
to p performed along the imaginary axis. The integral with
respect to ε can be split into two parts and presented as

ε1∫

0

dεw(ε)(1 − e−pε) +
εmax∫

ε1

dεw(ε)(1 − e−pε). (3)

The quantity ε1 should satisfy the condition ε j � ε1 �
εmax, where ε j are the binding energies of the atomic elec-
trons. This allows expanding the exponent in the first inte-
gral up to the term linear in small parameter pε. This inte-
gral becomes equal to the mean value of the pair ionization
loss per unit path due to collisions with energy transfer not
exceeding ε1, multiplied by p. For this value we apply the
result from [18] and obtain

ε1∫

0

dεw(ε)(1 − e−pε) ≈ p

ε1∫

0

dεεw(ε)

= pη

x

{
ln

2mε1

ω2
p

− 2K0(ωps)

}
, (4)

where η = 4πne4x/m with n being the number of atomic
electrons per unit volume. In terms of conventional denom-
inations applied in the papers on straggling functions (see,
e. g., [1,3]) η = 2ξ . Numerical estimations will be further
made for silicon targets. In this case η/x ≈ 0.0356 keV/µm.
Here also K0 is the Macdonald function and s is the distance
between the electron and the positron in the direction orthog-
onal to the average velocity of the pair (see Fig. 1). Follow-
ing most of the papers on the theory of Chudakov effect, we
consider the simplest case when the electron and positron
energies are the same.

In order to calculate the second integral in (3) one needs
the expression for w(ε) in the range of ε where atomic elec-
trons can be considered as free (since ε1 � ε j ). It can be
expressed in terms of differential cross section of the energy
transfer from the pair to the electron as w(ε) = ndσ/dε. Let
us first calculate the cross section dσ/dq which is differen-
tial in the transverse momentum transfer. Being an invariant
quantity, it can be calculated in the pair rest frame. Let us
neglect the deflection of the high-energy particles constitut-
ing the pair from the straight lines during the pair motion in
the medium. In this case in the discussed frame of reference
one deals with a free atomic electron scattering on the static
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Fig. 1 Penetration of the target by the pair

potential of the pair in a polarized medium. The electron–
positron separation s, which is also an invariant, is supposed
to remain constant during the interaction time. Moreover,
we will consider this separation as almost constant within
the whole target. For the targets of moderate thickness, dis-
cussed in the present section, this is applicable for very high
energies of the pair, when the distance l of Chudakov effect
manifestation noticeably exceeds the target thickness x (e.
g., for x = 1 mm this implies E of at least several hundred
GeV). For very thin targets, discussed in the next section, the
lower bound for E is naturally much lower (for the case of
x = 16 µm, considered there, the pair energies E ≥ 1 GeV
are appropriate).

The potential of the pair in its rest frame can be found by
the Lorentz transformation of the corresponding scalar and
vector potentials in the laboratory frame. For a single particle
of the pair, which moves along the z-axis, they read [24]:

ϕL = e√
ρ2γ −2 + (z − vt)2

e−ωp

√
ρ2+γ 2(z−vt)2

,

AL = vϕL , (5)

where v = |v| is the particle velocity, ρ is the distance from
the z-axis to the observation point, γ is the particle Lorentz-
factor. Let us neglect the divergence of the pair and consider
the electron and positron as moving in parallel directions. In
this case the pair rest frame coincides with the rest frame of
each particle. The transformation of (5) to the pair rest frame
gives

ϕ(r) = e

r
e−ωpr , A = 0, (6)

with r being the distance from the particle. The transition
amplitude between the initial and final states of the incident
atomic electron reads

S f i = −ie
∫

d4xψ f (x)ϕp(x)γ0ψi (x), (7)

where γ0 is the gamma matrix, ψi, f are the plane waves of
the initial and final electron states, ϕp is the scalar potential
of the pair with the Fourier component

ϕp(q) = 4πe

q2 + ω2
p

(
1 − e−iqs). (8)

The vector s is directed from the electron (with the charge e)
to the positron. On the basis of (7) and (8) one obtains the
required cross section:

dσ

dq
= 16πe4 q(

q2 + ω2
p

)2

[
1 − J0(qs)

]
, (9)

where J0 is the Bessel function. Here we neglected the
term proportional to q2/p2

i , where pi is the electron initial
momentum. It is applicable due to the condition η � εmax,
which we assume to be valid. The obtained cross section has
the same form in the laboratory frame due to invariance of
dσ/dq itself, as well as of all the quantities which it includes
(from the very beginning the value of ωp refers to the labo-
ratory frame). Applying ε = q2/2m one finally obtains the
cross section of the pair energy transfer to an atomic electron
at ε � ε j and the corresponding probability w(ε):

w(ε) = η

x

1 − J0
(√

2mεs
)

(
ε + ω2

p/2m
)2 . (10)

In the integrand of the second integral in (3) this expression
for w(ε) can be considerably simplified. Indeed, the quan-
tity ω2

p/2m is much smaller than 1 eV and can be neglected
compared to ε � ε j . Moreover, for the mean ionization
potential of silicon I = 173 eV,

√
2mI ∼ 7.5 × 108 cm−1.

Since ε � I , the argument of J0 is large even if s is on the
order of interatomic distance (which is the minimum value of
s we will be interested in). Thus, one can neglect J0 in (10) as
well. As a result, the second integral in (3) can be calculated
in the same way as in [1], since the simplified expression for
w(ε) here becomes just twice as large as the corresponding
expression used in [1] for single particles.

Substituting the obtained result for (3) into (2) and inte-
grating here along the imaginary axis, one can present the
distribution function in the form, analogous to the one it has
for single particles:

f (x,Δ) = 1

πη

+∞∫

0

dye−πy/2 cos(yλ + y ln y), (11)

where

λ = Δ − η ln(η/ε′)
η

− 1 + Γ,

ln ε′ = ln(ω2
p/2m) + 2K0(ωps), (12)
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Γ is the Euler’s constant. Expression (11) differs from the
result [1] for single particles by the substitution ξ → η = 2ξ

and a different formula for ln ε′.
As a function of λ, the integral in (11) has a maximum at

λ ≈ −0.223. Thence, applying (12), one obtains the most
probable value of the ionization loss Δ of e+e− pair in a thin
target:

EMP (s) = η

{
ln

2mη

ω2
p

− 2K0(ωps) + 0.2

}
. (13)

Substituting here z = s/ϑ , where ϑ is the pair divergence
angle, one can express EMP in terms of distance z from the
pair creation point. Note that expression (13) is valid for a
pair of sufficiently high energy (E > 100 MeV), for which
the full value density effect takes place in the ionization loss.
In this case EMP does not depend on the energy of the pair.
The result (13) differs from the corresponding value ES

MP
for single particles by the substitution of ξ by η and the term
with K0. Due to the presence of η in the argument of the
logarithm, for s � ω−1

p the value (13) is larger than ES
MP by

a factor which exceeds 2. Thus, at large separations between
the electron and positron the most probable value of the pair
ionization loss slightly exceeds the sum of independent ES

MP
values for each particle of the pair (if the particles would have
traversed the target separately). This makes EMP different
from the mean value EAV of the pair ionization loss, which
for s � ω−1

p becomes equal to the sum of independent elec-
tron and positron mean ionization losses.

The fact that for large s the value of EMP exceeds the
doubled value of ES

MP can be illustrated by the following
consideration. Let the straggling function for a single elec-
tron in a target of thickness x be f (x,Δ). The straggling
function f (2x,Δ) in the target of thickness 2x is defined by
a convolution [6]

f (2x,Δ) =
Δ∫

0

f (x, ε) f (x,Δ − ε)dε, (14)

since the particle ionization losses in each layer of thickness
x , which comprise the target, are independent. As noted,
the value of ES

MP , corresponding to this function, exceeds
the doubled value of ES

MP corresponding to the function
f (x,Δ). For s � ω−1

p the ionization losses of the electron
and positron of the pair are independent. Thus, for such s the
ionization loss of the pair in a target of thickness x is analo-
gous to the ionization loss of a single electron2 in the target of
thickness 2x , and the straggling functions in these cases are
the same. Therefore, for s � ω−1

p the most probable value
EMP of the pair ionization loss in a target of thickness x

2 Presently we do not distinguish between the struggling functions of
high-energy electrons and positrons, which is justified at least for Δ ∼
ES
MP .

should be equal to the corresponding value for a single elec-
tron in a target of thickness 2x . Hence, EMP should exceed
the doubled value of the most probable ionization loss ES

MP
for a single electron in a target of thickness x .

Concerning the mean value EAV of the pair ionization
loss, with the logarithmic accuracy it is defined as [18]

EAV (s) = η

{
ln

2mεmax

ω2
p

− 2K0(ωps)

}
. (15)

For our estimations we take εmax equal to the electron (or
positron) energy γm. In this case expression (15) differs from
the exact expression for the mean total value of the pair ion-
ization loss by a term on the order of unity in braces, which
is small compared to the logarithm at high energy of the pair.
Further we will make numerical estimations of EAV for the
pair energy of E = 1 GeV.

For thin targets it might be more convenient to consider
not the mean total value of the ionization loss EAV , but the
restricted one EAV (R). It is a part of the value EAV due to
collisions with energy transfer not exceeding some value εR ,
which is smaller than the maximum energy transfer εmax

defined by the collision kinematics. It is caused by the fact
that fast delta-electrons originating from the collisions with
a large energy transfer ε > εR may leave the target with-
out depositing a considerable amount of their energy inside
it. The energy transferred by the incident particle to such
electrons will not be registered in this case. The value of
EAV (R) is defined by the expression (15) with the substitu-
tion εmax → εR . The value of εR is usually chosen to be on
the order of the energy at which the electron range coincides
with the target thickness.

In order to investigate the magnitude of Chudakov effect
for EMP it is convenient to consider the ratio of this quan-
tity as a function of s to its value EMP (∞) at s � ω−1

p :
αMP = EMP (s)/EMP (∞). The analogous ratios αAV =
EAV (s)/EAV (∞) and αAV (R) = EAV (R)(s)/EAV (R)(∞)

can be introduced for EAV and EAV (R) as well. Numerical
estimations on the basis of (13) and (15) show that generally
αAV > αAV (R) > αMP and the difference between these
quantities increases with the decrease of the target thickness.
The numerical results for αMP , αAV and αAV (R) will be pre-
sented in the next section (see Fig. 3) where we treat more
accurately the case of very thin targets in which the differ-
ence in the magnitude of Chudakov effect for EMP and EAV

(or EAV (R)) is the most noticeable. Though, as will be noted,
expression (13) nicely works for calculation of αMP (how-
ever, not EMP itself) even in sufficiently thin targets.

3 Very thin targets

The consideration presented in the previous section, based on
the method applied in [1], does not properly take into account
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the fact that atomic electrons are not free but exist in bound
states in atoms. As shown (see [6] and refs. therein), for sin-
gle particles in silicon targets such a consideration is valid for
moderate target thickness of more than about 1 mm. In thin-
ner targets this approach results in a shape of the straggling
function which is different from the one obtained experi-
mentally. Though, its maximum position, corresponding to
EMP , is not considerably shifted from (13) in this case. In
the present section we apply a more accurate approach for
calculation of a e+e− pair straggling function, which is valid
also for targets of thickness much less than 1 mm, presently
called very thin targets.

Let us obtain the expression for straggling function on the
basis of a more detailed consideration of the cross section of
the incident e+e− pair energy transfer to an atomic electron.
Just like for single incident particles, this cross section can be
divided into contributions from close and distant collisions:
σ = σc + σd . The distant collision part σd can be calcu-
lated with the use of equivalent photon method, following
the approach applied in [25–27] for consideration of K -shell
ionization. In this method the value of σd per a single atomic
electron can be presented as

σd = 1

Z

∑
j

∫
dN j

dω
σ

j
ph(ω)dω, (16)

where Z is the atomic number of the substance, σ
j
ph(ω) is

the photoionization cross section of the j-th atomic shell,
dN j/dω is the spectral density of the equivalent photon num-
ber for the electromagnetic field of the pair.3 It can be found
as

dN j

dω
= (4π2ω)−1

∫
|Eω|2d2ρ, (17)

whereEω is the Fourier component of electric field of the pair.
Let us again neglect the non-parallelism of the electron and
positron trajectories and direct the z-axis along the velocities
of the particles. In this case, provided the energy of the pair
is sufficiently high, Eω can be presented in the form of the
following Fourier expansion [28]:

Eω = − ie

π
ei

ω
v
z
∫

d2q
q

q2 + Ω2 e
iqρ

(
1 − e−iqs), (18)

where Ω2 = ω2/γ 2 +ω2
p. Substituting it to (17) and follow-

ing the procedure analogous to the one applied in [27] for a
single particle, one obtains

dN j

dω
= 2e2

πω

{
ln

2mω j

Ω2 −2K0(Ωs)+ΩsK1(Ωs)−1

}
, (19)

3 Its value depends on the atomic shell number [see formula (19)].

where K1, like K0, is the Macdonald function. Here we
restricted the region of integration with respect to q, which
can be considered as the transferred momentum, by the value
q0 = √

2mω j . It is defined as the inverse of the minimum
impact parameter ρ0 of the electron or positron with respect
to the atomic electron. This parameter is usually chosen to
equal the Bohr radius of the electron orbit at the considered
atomic shell [25,29] with the ionization potential ω j .

The photoionization cross section of an atom with Z elec-
trons σph = ∑

j
σ

j
ph can be expressed in terms of oscillator

strength distribution function f (ε) as [30]

σph(ω) = 2π2e2Zh̄

mc
f (ε), (20)

where, for convenience, we restored the quantities c and
h̄. The function f (ε) can be approximated by a set of δ-
functions corresponding to different atomic shells [5] as
f (ε) = ∑

j
Fjδ(ε − ε j ), where ε = h̄ω, ε j = h̄ω j and

Fj = Z j/Z . Here Z j is the number of electrons at the j-th
shell. Substituting (19) and (20) to (16) and considering ω as
the energy ε transferred during the collision, at γ � ω j/ωp

for each j , one obtains the distant collision contribution to
the differential cross section of e+e− pair energy transfer to
an atomic electron:

dσd

dε
= 4πe4

m

∑
j

Fj

ε j

{
ln

2mε j

ω2
p

− 2K0(ωps)

+ ωpsK1(ωps) − 1

}
δ(ε − ε j ). (21)

The close collision part dσc/dε is defined by the expres-
sion (10) divided by n, since in such collisions the atomic
electron is considered as free. Following [5,8], we will apply
the approximation in which the atomic electron is consid-
ered as free from the very ionization edge ε = ε j , while for
ε < ε j the cross section dσc/dε is set equal zero. In [8] it
was demonstrated that such an approximation for dσc/dε,
together with the model for dσd/dε as a set of δ-functions,
nicely work for the description of experimental results on
single particle straggling functions in thin silicon detectors.4

In the present case it is also possible to neglect the sec-
ond term in the denominator of (10) and the term with J0 in
the nominator. Concerning the term with J0, this might seem
inapplicable, since presently we consider the cross section

4 Though, since in this model a single effective excitation energy ε j is
applied for the j-th atomic shell in (21), the model might be expected
to be valid in the case when the average number of collisions experi-
enced by the particle in the target is not very small. For silicon targets
this results in the appropriate target thickness of more than about ten
microns.
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at energies ε > ε j , but not only ε � ε j , as we did in the
previous section. However, taking into account this term for
ε ∼ ε j would result in violation of self-consistency of our
model since in this region of ε, as noted, the cross section
dσc/dε is applied in the form, typical for free atomic elec-
trons, which it has at ε � ε j . Thus, dσc/dε reads:

dσc

dε
= 4πe4

m

∑
j

Fj

ε2 θ(ε − ε j ), (22)

where θ is the Heaviside step function. Expressions (21) and
(22) lead to the following formula for the mean value of the
pair ionization loss in the target:

EAV (s) = nx

εmax∫

0

dσ

dε
dε

= η

{
ln

2mεmax

ω2
p

− 2K0(ωps) + ωpsK1(ωps) − 1

}
.

(23)

It differs from the result (15) by the term [ωpsK1(ωps)−1] in
braces. For s < ω−1

p , where the Chudakov effect is the most
significant, this term is close to zero. For s � ω−1

p it tends to
−1 and remains small compared to the logarithmic term in
(23). Thus, the result for EAV , obtained with the use of the
equivalent photon method, is very close to the result of [18]
and the derived expression for dσ/dε can be considered as
a valid approximation of the exact interaction cross section.
Nevertheless, in order to be completely compatible with our
consideration in the previous section, where the expression
(15) for EAV was applied, we will neglect the small term
[ωpsK1(ωps) − 1] in (21), which results in neglecting the
same term in (23), and apply the following expression for
the probability of the pair ionization energy loss w(ε) =
ndσ/dω:

w(ε) = η

x

∑
j

[
Fj

ε j

{
ln

2mε j

ω2
p

− 2K0(ωps)

}
δ(ε − ε j )

+ Fj

ε2 θ(ε − ε j )

]
. (24)

It differs from the corresponding expression for single par-
ticles (for γ � ε j/ωp for each j), derived in [8], by the
substitution of ξ by η and the term with K0 in braces.

In order to obtain the expression for f (x,Δ) it is necessary
to substitute (24) into (2) and calculate the corresponding
integral. Following the procedure applied in [5] for single
particles, one obtains

f (x,Δ) = 1

πη

+∞∫

0

dy exp
{ − πy/2 + g(y, η)

}

× cos
[
yΔ/η + h(y, η)

]
, (25)

where

g(y, η) =
∑
j

{
yFjSi

(
yε j/η

) − N j
[
1 − cos

(
yε j/η

)]}
,

h(y, η) =
∑
j

{
yFjCi

(
yε j/η

) − N j sin
(
yε j/η

)}
, (26)

Si and Ci are the sine and cosine integral functions, defined
in such way that at t → +∞: Si(t) = π/2, Ci(t) = 0. The
function (25) has the same structure as the one derived in [5]
for single particles, but differs from it by the substitution of
ξ by η and the expression for the mean number of collisions
N j with the atomic electrons at j-th shell, which is presently

N j = η
Fj

ε j

{
ln

2mε j

ω2
p

− 2K0(ωps) + 1

}
. (27)

At large target thickness x , when η � ε j for each j , the
function (25) coincides with (11).

For numerical estimations we apply the following effec-
tive values of ε j for K, L and M atomic shells in silicon
targets [8]: εK = 4033 eV, εL = 241 eV and εM = 17 eV.
Here also FK = 2/14, FL = 8/14 and FM = 4/14. Figure 2
shows the examples of straggling functions of e+e− pairs in
silicon targets of various thickness calculated on the basis
of (11) and (25). The example of a target with x = 16 µm
is chosen since a silicon detector of this thickness has been
applied in the experiment [22,23] discussed above. We see
that, like in the case of single particles, in thin targets the dis-
tribution (25) is broader than (11). For not very small x the
maximum positions of these distributions do not noticeably
differ, which allows applying the expression (13) in this case
as well. This difference, however, becomes a bit larger with
the decrease of x . At small x a hump appears in the distri-
bution (25) on the right of its maximum, which is associated
with the small probability of collision with K-shell electrons
in this case (for details see [5]). The experimental results
[8] for single particles however suggest that the treatment of
straggling functions on the basis of the expression (24) may
exaggerate the magnitude of this hump5; though, even in this
case, it provides a rather accurate result for the position of
the straggling function maximum (which is the main object
of our present interest).

5 At least, it seems to be the case for the single-particle analogue of
(24) [8].
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Fig. 2 Straggling functions of a high-energy e+e− pair in a silicon
target for two values of the target thickness x . Solid lines – calculation
on the basis of (25), dashed lines – on the basis of (11). Separation
between the particles in the pair is s = 0.5ω−1

p

Figure 3 demonstrates the dependence of ratios αMP , αAV

and αAV (R) on s for the target thickness of 16 µm. The quan-
tity αMP is calculated numerically with the use of expression
(25). It turns out that the obtained dependence for αMP in this
case almost coincides with the one, calculated on the basis
of (13) for this thickness. Thus, one concludes that although
expression (13) does not provide an accurate result for the
absolute value of EMP in sufficiently thin targets, it is still
applicable here for calculation of the relative suppression of
EMP compared to its value at s � ω−1

p . Following [22], for
the considered target thickness we apply the value εR = 100
keV for calculation of EAV (R) and estimation of the quantity
αAV (R). The figure shows that the magnitude of Chudakov
effect (i. e. the magnitude of the pair ionization loss sup-
pression) is different for EMP and EAV , as well as for EMP

and EAV (R). This difference grows with the decrease of sep-
aration s between the particles in the pair. For the smallest
separations we presently consider, which are on the order
of interatomic distance a0 ∼ 0.1 nm, the relative difference
(αAV − αMP )/αMP reaches about 85% for the chosen tar-
get thickness, while the value of (αAV (R) − αMP )/αMP is
around 45%.

Figure 3 shows that the value EMP is stronger suppressed
due to Chudakov effect than EAV (R). As noted, in the exper-

Fig. 3 Dependence of the relative value of EMP (thick solid line), EAV
(dot-dashed line) and EAV (R) (thin solid line) on separation between
the electron and positron in a silicon target of 16 µm thickness; αAV is
estimated for the pair energy of E = 1 GeV

iment [22,23] there was registered a stronger suppression
of the pair ionization loss, than it was expected from the
available theories for EAV (R). Thus, the application of the
theory, developed in the present paper, to the analysis of mea-
surements [22,23] may improve (at least partially) the coin-
cidence between the experimental results and the theoreti-
cal predictions. As shown in [23], a comprehensive analysis
of the discussed experiment, however, requires taking into
account such factors as angular and energy distribution of
particles in the pair, their multiple scattering and uncertainty
in the position of the pair creation point, the net influence of
which was quite noticeable under the conditions of this exper-
iment. These effects are expected to widen the straggling
function. They may also cause some shift of the position of
its maximum. For the major part of the investigated interval
of the pair energies the main impact on f (x,Δ), according to
[23], is expected from the angular distribution of the particles
in the pair, while the influence of the other factors (particu-
larly, multiple scattering) should be much less pronounced.
The analysis of this experiment, taking into account all the
mentioned effects, is beyond the scope of the present paper
and could be performed elsewhere. For some discussion of
this experiment see also [28].

Let us also note that, according to [31], the fact that the
trajectories of the particles in the high-energy pair are not
parallel play role just for extremely thin targets of thickness
less than about 0.1 µm and the approximation of parallel
electron and positron velocities works well under the con-
ditions discussed in the present paper (provided s does not
noticeably change within the target). In this case the angular
distribution of the particles in the pair influences upon the
ionization energy loss due to the fact that the pair divergence
angle affects the distance s between the particles inside the
target.
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4 Conclusion

In this paper the straggling function of a high-energy
electron–positron pair is calculated under the condition of
manifestation of the Chudakov effect in the pair ionization
loss. The expression for the most probable value of the pair
ionization loss EMP is derived. The consideration is made
both with the use of approach, which neglects the effects
of atomic electron binding, valid in the targets of moderate
thickness, and with the use of a more rigorous approach,
which allows taking into account such effects and is valid in
much thinner targets as well. It is shown that in sufficiently
thin targets the value of EMP can be noticeably stronger
suppressed due to Chudakov effect than the total EAV or
restricted EAV (R) mean value of the pair ionization loss. The
approach, developed in Sect. 3, could be also applied for the
study of straggling functions of larger groups of high-energy
particles in very thin detectors in the case when interference
effects are significant in the particle ionization energy loss.
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