
Eur. Phys. J. C (2023) 83:105
https://doi.org/10.1140/epjc/s10052-023-11169-8

Regular Article - Theoretical Physics

The effects of running gravitational coupling on three dimensional
black holes

Ángel Rincón1,a , Benjamin Koch2,3,5,b, Cristobal Laporte4,c, Felipe Canales5,d, Norman Cruz1,6,e

1 Departamento de Física, Universidad de Santiago de Chile, Avenida Ecuador 3493, Santiago, Chile
2 Institut fur Theoretische Physik, Technische Universitat Wien, Wiedner Hauptstrasse 8-10, 1040 Vienna, Austria
3 Atominstitut, Technische Universitat Wien, Stadionalle 2, 1020 Vienna, Austria
4 Institute for Mathematics, Astrophysics and Particle Physics (IMAPP), Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The

Netherlands
5 Instituto de Física, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Santiago, Chile
6 Center for Interdisciplinary Research in Astrophysics and Space Exploration (CIRAS), Universidad de Santiago de Chile, Av. Libertador Bernardo

O’Higgins 3363, Estación Central, Chile

Received: 2 June 2022 / Accepted: 26 December 2022 / Published online: 1 February 2023
© The Author(s) 2023

Abstract In the present work, we investigate the conse-
quences of running gravitational coupling on the properties
of the three-dimensional BTZ black hole. We take as starting
point the functional form of gravitational coupling obtained
in the context of asymptotic safe gravity theory. By using the
standard scale setting relation where k ∼ ξ/rn , we compute
the solution of the Einstein field equations. We get and ana-
lyze the horizon and the thermodynamic properties of this
new class of black hole solutions. The impact of the scale-
dependent parameter ξ on the cosmological “constant” and
metric functions are briefly discussed. We find that the null
energy condition is also violated in this setup when scale-
dependent gravity and Newton’s coupling (coming from the
asymptotic safety scenario of gravity) are simultaneously
taken into account.
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1 Introduction

A well-defined theory of quantum gravity remains as an open
problem and it is still a challenge in theoretical physics. Up
to now, at least 16 major approaches to quantum gravity
have been proposed in the literature (see [1] and references
therein), but none of these approaches has completely solved
the problem in a closed way. The most popular approaches
are probably loop quantum gravity (LQG) [2,3], certain mod-
ified gravity theories [4,5], as well as string theory [6–8]. The
aforementioned techniques are able to get insights into cer-
tain cosmological/astrophysical problems, e.g., Dark Energy,
Dark Matter, as well as the physics of black holes and singu-
larities of General Relativity. Even though these approaches
are very different, they have the common feature that they
can be mapped to effective generalizations of GR.

In this context of theories beyond Einstein gravity, we
should mention a particularly well known generalization: the
Brans–Dicke theory of gravity [9,10]. In Brans–Dicke (BD)
theory, the strength of the gravitational interaction is con-
trolled by a scalar field (Newton’s coupling). Thus, Newton’s
coupling is identified as a scalar field, G → φ−1. This leads
to a characteristic contribution to the classical field equations,
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which accounts for the modification of Newton’s coupling.
Based on this approach, there are many examples where the
basic parameters that enter into the effective action defining
the model (Newton’s coupling, the electromagnetic coupling,
and the cosmological constant, among others) become scale-
dependent (SD) functions [11–22]. Such an effect is quite
common since scale-dependence (at the level of the effective
action) is a generic feature of effective quantum field theory.

The inclusion of quantum features can be systematically
accounted for at different levels. Roughly speaking, we can
identify (at least) three different ways to modify the classical
solutions. One can categorize them as follows [23]:

(i) at the level of solution,
(ii) at the level of the equations of motion, and

(iii) at the level of the action.

While the first modification is by construction only rea-
sonable for tiny modifications of classical solutions, the other
two modifications can, in principle, give reasonable results
beyond this limit. In each of these applications, it is of cru-
cial importance for the observables how the quantum scale-
dependence and the corresponding scale-setting is imple-
mented. Several conceptually different approaches that can
be implemented in one of these modifications. Some of these
approaches are

(a) use the beta functions of the gravitational theory (e.g.
Asymptotic safety) to derive the SD couplings Gk, . . .

and set the scale in terms of a physical quantity describing
the observed system.

(b) treat the couplings, in particular, the gravitational cou-
pling as independent field G = G(x) and impose a
dynamic nature to this field, for example, by introduc-
ing a kinetic term for this field [9,10].

(c) impose a scaling nature for G(x) which is motivated by
the approach (a) and then solve the corresponding field
equations from (ii). This approach is implemented in this
paper.

In theories of gravity, the scale-dependence is expected to
modify the horizon, the thermodynamics as well as the quasi
normal spectra of classical black hole backgrounds. Also,
other well-known black hole effects have been reviewed in
light of this formalism. To be more precise, we can mention:
(i) the Sagnac effect [24] and, (ii) the evolution of trajecto-
ries of photons [25]. In the cosmological context there are a
few novel solutions within this formalism. The same occurs
in the level of wormhole solutions and relativistic compact
stars. For an exhaustive history of the implementation of the
formalism above-mentioned, please see [26–45] and refer-
ences therein.

In this paper, we make some progress on the topic of
quantum gravity by studying the well-known BTZ black hole
assuming an effective scale-dependent gravity in 2 + 1 dimen-
sions with a cosmological constant. With this in mind, we
then mix three different aspects, i.e., scale dependence, black
holes and gravity in three dimensions. They are, by them-
selves, a good inspiration to go beyond GR because those
aspects have an important motivation from the perspective
of quantum gravity.

This paper is organized as follows: after this introduc-
tion, we review the classical BTZ black hole solution with-
out angular momentum in Sect. 2. Subsequently, in Sect. 3
we show the basic ingredients of the SD like solutions and
their properties, i.e., the potential relation between SD grav-
ity and asymptotically safe gravity, the concrete solutions,
the horizon and invariants, the thermodynamics, and a com-
parative discussion of RG (RG) improvement and SD gravity
in the context of black hole physics. Before concluding, we
generalize the discussion by including a rotational degree of
freedom. Finally, in Sect. 5 we summarize our main findings.

2 Review of BTZ black hole solution

This section is devoted to the classical BTZ black hole solu-
tion [46,47], its line element, event horizons, and thermody-
namics. At first, the contribution of angular momentum will
be neglected. We will focus on the Einstein Hilbert action
with a cosmological term, which is the minimal coupling
between gravity and matter, and it is given by

I0[gμν] =
∫

d3x
√−g

[
1

2κ0

(
R − 2Λ0

)
+LM

]
, (1)

where g is the determinant of the metric field, LM is the
matter Lagrangian, Λ0 is the cosmological constant, κ0 ≡
8πG0 is the gravitational coupling, R is the Ricci scalar, and
finally gμν is the metric field. To obtain the Einstein field
equations, we vary the classical action with respect to the
metric field, leading to the field equations

Gμν + Λ0gμν = κ0Tμν, (2)

where Tμν is the energy momentum tensor associated to a
matter content defined as follow

Tμν ≡ T M
μν = −2

δLM

δgμν
+ LMgμν. (3)

Following the conventional route, in spherically symmetric
spacetimes, the line element is parametrized as

ds2 = −A0(r)dt
2 + B0(r)dr

2 + r2dφ2, (4)
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and, solving the Einstein’s field equation, one obtains the con-
ventional vacuum, spherically symmetric, neutral and non-
rotating BTZ black holes [46,47], namely

A0(r) ≡ −M0 +
(
r

	0

)2

, (5)

B0(r) ≡ A0(r)
−1, (6)

Λ0 ≡ − 1

	2
0

. (7)

By demanding that A(r0) = 0 one obtains the horizon radius

r0 = 	0M
1/2
0 . (8)

The curvature invariants of the solution are

R0 ≡ − 6

	2
0

, (9)

K0 ≡ 12

	4
0

. (10)

The corresponding Hawking temperature and the Bekenstein–
Hawking entropy are

T0(r0) = 1

4π

∣∣∣∣2G0M0

r0

∣∣∣∣, (11)

S0(r0) = AH

4G0
, (12)

the black hole area AH is then

AH (r0) =
∮

dx
√
h = 2πr0. (13)

Finally, the heat capacity is written as

C0(r0) = T
∂S

∂T

∣∣∣∣
r0

= S0. (14)

3 Scale-dependent like solution

In the context of scale-dependent gravity, we can solve the
gap equations of motion [48] exactly and afterward obtain
the metric functions and the corresponding shape of the run-
ning couplings. This is the usual approach followed in several
previous works, but now we will move to a closely related
but different approach, where one takes advantage of the
exact results provided by the asymptotic safety (AS) pro-
gram. The key ingredient for investigating the asymptotic
safety (AS) scenario is the gravitational average effective

action, a Wilson-type effective action that dictates the evolu-
tion of the SD [49–51] couplings,

∂t�k = 1

2
STr

[(
�

(2)
k + Rk

)−1
∂t Rk

]
. (15)

The formulation of the functional renormalization group
equation (15) relies on the introduction of the infrared regu-
lator, while the supertrace represents a sum over all internal
indices as well as an integration over spacetime. For the study
of three-dimensional BTZ black holes, we restrict the grav-
itational part of �k to the Euclidean Einstein–Hilbert (EH)
action,

�EH
k [gμν] =

∫
d3x

√−g

[
1

2 κk

(
R − 2Λk

)
+ LM

]
. (16)

The effective field equations, obtained from a variation of
(16) with respect to gμν(x), are [29]:

Rμν − 1

2
Rgμν + Λ(r)gμν = −�tμν (17)

where the G-varying part �tμν is computed to be [29]

�tμν = Gk

(
gμν� − ∇μ∇ν

)
G−1

k . (18)

Further, when the truncation (16) (supplemented by a gauge-
fixing and ghost actions) is inserted back in Eq. (15), the beta
functions for the three-dimensional gravitational coupling
and their corresponding anomalous dimension using a Litim-
regulator in the Feynman–de Donder gauge reads [52–55],

βg = (1 + ηN ) ηN = B1 g

1 − g B2
(19)

where the coefficients B1,2 depend on the cosmological con-
stant as well as various technical details involved in the imple-
mentation of RG techniques. In the limit where |B1| � |B2|,
the resulting G(r) ≡ G(k = k(r)) is approximately given
by,

G(r) = G0

1 + G0 B1 k
. (20)

Once one knows the solutions of the RG equations, the
scale needs to chosen. This can be done following differ-
ent approaches [56–59]. One possible pathway to preserve
the diffeomorphism invariance of the equations is identify-
ing the RG scale as a carefully chosen function of dynamical
variables. This identification results from applying the vari-
ational principle to k by promoting k to a field at the level
of the effective action and setting the RG scale in terms of
dynamical variables [60–63]. In this work we use a inverse
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power law scale-setting, k ≡ (ζ/r)2, where ζ is an unde-
termined constant. This type of straightforward power-law
makes sure that quantum gravity corrections vanish for large
radii. Redefining the denominator of G(r) as ξ2 ≡ G0 B1 ζ 2,
Eq. (20) can be written as,

G(r) = G0

[
1 +

(
ξ

r

)2 ]−1

. (21)

In the rest of the paper, G0 = 1.

3.1 Solution

Taking advantage of the particular form of the gravitational
coupling G(r), we can solve the field equations (17). The
metric functions A(r), B(r) as well as the cosmological
parameter Λ(r) are found to be

A(r) = A0(r) + 1

3
M0

[
24 − 6

(
ξ

r

)2

+
(

ξ

r

)4

− 24

(
ξ

r

)−2

ln

(
1 +

(
ξ

r

)2
) ]

, (22)

B(r) =
[

1 −
(

ξ

r

)2 ]6

A(r)−1, (23)

Λ(r) = −
A(r)

(
1 + ξ2

r2

) (
1 − 3 ξ2

r2

)
+ M0

(
1 − ξ2

r2

)4

r2
(

1 − ξ
r

)6 (
1 + ξ

r

)6 (
1 + ξ2

r2

)2 .

(24)

At this point, some comments are in order. It should be
noticed that the lapse function A(r) can be split into the
classical part, A0(r), plus corrections intrinsically related to
the scale-dependent scenario and parametrized by the energy
scale k ∝ (ξ/r)2. What is more, we observe an unusual prop-
erty of the line element: the combination gtt grr 	= −1 which
is surprising since it differs from the findings in numerous
other results in the context of SD black holes [45] and the
so-called SD scenario [26–45]. In these studies it was also
shown that if the so called Null Energy Condition (NEC) is
fulfilled, then necessarily, the metric potentials gtt · grr = 1.
Thus, the NEC is violated by the solution (22, 23). Never-
theless, this new solution still recovers the classical solution
when we turn off the dimensionless parameter ξ = ξ/x0.
Thus we have:

lim
ξ→0

A(r) = A0(r), (25)

lim
ξ→0

B(r) = A0(r)
−1, (26)

lim
ξ→0

Λ(r) = Λ0. (27)

Thus, the new solution contains the classical one and also
modifies the black hole properties at short distances.

3.2 Horizon and invariants

At this point, we should investigate how the lapse function
evolves. In particular, the event horizon, rH , is obtained
demanding grr (rH ) = 0, which means that at r = rH ,
the corresponding hypersurface is everywhere null. In the
context of classical gravity, the BTZ solution has a simple
and analytical expression for its horizon. However, this does
not hold for the quantum counterpart. In particular, given
the logarithmic contribution, no analytic solutions are found.
Despite of that, one still can make progress for a certain
region of the solution when ξ is small enough. Thus, taking
grr (rH ) = 0 and considering ξ small we have

−M0 + r2

	2
0

+ 6ξ2

	2
0

− 4M0ξ
2

r2 = 0, (28)

where the horizon is given by

r2
H = 1

2
r2

0

[
1 − 6ξ2

r2
0

+
√

1 + 4ξ2

r2
0

+ 36ξ4

r4
0

]
. (29)

Please, notice that the value r0 is the classical horizon pro-
vided by B0(r0)

−1 = 0. We also observe that when ξ → 0,
the classical BTZ solution is immediately recovered. It is
essential to point out that the black hole horizon is always
smaller than the classical counterpart, as can be verified by
making a subsequent approximation to the event horizon.
Thus, when the parameter ξ is small, we finally obtain

rH ≈ r0

[
1 −

(
ξ

r0

)2 ]
(30)

Note that an unexpected pole at r ∼ ξ , absent in the classical
solution, seems to emerge in this approach. However, since
(30) is obtained from an expansion in small ξ , this pathol-
ogy lies outside the validity of the expansion. The region
with r ≤ ξ , is not covered in this approximation and the
black hole horizon is then computed in the region r > ξ .
Figure 1 shows the corresponding Newton’s coupling (left)
and the cosmological coupling (right). Figure 2 shows the
corresponding metric potentials. The left panel shows A(r)
against the radial coordinate, whereas the right panel shows
B(r)−1, again versus the radial coordinate. In Fig. 2 (right),
notice: (i) the clear divergence when r → ξ , and (ii) the
horizon decreases when ξ increases. In this solution should
be noticed the non-trivial relation between A(r) and B(r).
Thus, when ξ → 0, the Schwarzschild ansatz is retained;
otherwise, such condition is violated. In this case, such vio-
lation is directly related to the approach used to obtain the
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Fig. 1 Left panel: Gravitational Newton’s coupling from a given
parametrization in asymptotically safe gravity. Right panel: Cosmo-
logical coupling Λ(r) for a given G(r). In all four figures we fix

G0 = 1, M0 = 1 and 	0 = 1. The color code is as follows: (i) solid
black line, for ξ = 0, (ii) dotted blue line, for ξ = 0.010, (iii) dashed
red line, for ξ = 0.100, (iv) dot-dashed green line, for ξ = 0.150

explicit form of Newton’s coupling. Figure 3 shows the black
hole horizon in two different cases: (i) the numerical com-
putation, obtained by computing B(rH )−1 = 0 (left panel),
and (ii) the approximated computation, considering leading
corrections on ξ only (according to expression (30) on right
panel).

Now, we will move to the computation of the Ricci and the
Kretschmann scalars. In this case, both quantities are slightly
more complicated than the classical counterpart because the
Schwarzschild ansatz is not valid. Firstly, the Ricci invariant,
taking into account the two metric potentials, is then

R = − 6r12
(
r2 − 5ξ2

)
	2

0(r − ξ)7(ξ + r)7

− 8M0r8
(
ξ2 + 3r2

) (
ξ6 − 7ξ2r4 − 12ξ4r2 + 2r6

)
(r − ξ)7(ξ + r)7

(
ξ2 + r2

)2

+
48M0r12

(
r2 − 5ξ2

)
ln

(
ξ2

r2 + 1
)

ξ2(r − ξ)7(ξ + r)7 . (31)

By taking just the dominant term in the ξ expansion, we
obtain

R ≈ R0

[
1 +

(
8	2

0M0

3r4 + 2

r2

)
ξ2

]
. (32)

Secondly, we can compute the Kretschmann scalar K defined
as

K ≡ Rαβγ δR
αβγ δ. (33)

Although possible, the complete expression is not simple, so
we avoid showing it. Instead, we expand up to leading order

in ξ , i.e.,

K ≈ K0

[
1 +

(
16	2

0M0

3r4 + 4

r2

)
ξ2

]
. (34)

We notice that the two scalars {R, K } have singular points
at r ± ξ = 0, which are just an artifact of the ξ expansion
competing with the limit of r → 0.

3.3 Thermodynamics

In order to get a better comprehension of the underlying
physics of this scale-dependent black hole solution, we inves-
tigate how the black hole thermodynamics is modified or if
the inclusion of a running gravitation coupling modifies the
physical features. We thus compute the Hawking tempera-
ture, the Bekenstein–Hawking entropy, and the specific heat.
First of all, the temperature is defined by

TH (rH ) = 1

4π

∣∣∣∣ lim
r→rH

∂r gtt√−gtt grr

∣∣∣∣, (35)

which yields

TH (rH ) = T0(rH )

[
1 +

(
ξ

rH

)2
]−1

. (36)

The above expression allows obtaining the black hole tem-
perature in terms of the event horizon. An explicit form of the
temperature is not possible to achieve, albeit we can expand
when the SD parameter is close to zero to get,

TH (ξ � 1) ≈ T0(r0)

[
1 + 1

3

(
ξ

r0

)4 ]
. (37)
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Fig. 2 Metric potentials for the obtained solutions for different values
of ξ assuming a concrete parametrization of Newton’s coupling inspired
in asymptotically safe gravity. Left panel: A(r) versus radial coordinate.
Right panel: B(r)−1 versus radial coordinate. In all four figures we fix

G0 = 1, M0 = 1 and 	0 = 1. The color code is as follows: (i) solid
black line, for ξ = 0, (ii) dotted blue line, for ξ = 0.010, (iii) dashed
red line, for ξ = 0.100, (iv) dot-dashed green line, for ξ = 0.150

Fig. 3 Black hole horizon rH against the classical black hole mass M0
for different values of the parameter ξ . Left panel: Exact black hole
horizon obtained numerically by solving B(rH )−1 = 0, versus M0.
Right panel: Approximated horizon obtained for a small value of the

parameter ξ , maintaining just the leading correction. The color code
is as follows: (i) solid black line, for ξ = 0, (ii) dotted blue line, for
ξ = 0.010, (iii) dashed red line, for ξ = 0.100, (iv) dot-dashed green
line, for ξ = 0.150

Fig. 4 Black hole temperature TH against the classical black hole mass
M0 for different values of the parameter ξ . Left panel: Exact black
hole temperature obtained numerically by solving Eq. (36), versus M0.
Right panel: Approximated black hole temperature obtained for a small

value of the parameter ξ , maintaining just the leading correction (using
Eq. (37)). The color code is as follows: (i) solid black line, for ξ = 0,
(ii) dotted blue line, for ξ = 0.010, (iii) dashed red line, for ξ = 0.100,
(iv) dot-dashed green line, for ξ = 0.150
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Fig. 5 Bekenstein Hawking entropy SH against the classical black hole
mass M0 for different values of the parameter ξ . Left panel: Exact black
hole entropy obtained numerically by solving Eq. (39), versus M0. Right
panel: Approximated black hole entropy obtained for a small value of

the parameter ξ , maintaining just the leading correction (using Eq. (40)).
The color code is as follows: (i) solid black line, for ξ = 0, (ii) dot-
ted blue line, for ξ = 0.010, (iii) dashed red line, for ξ = 0.100, (iv)
dot-dashed green line, for ξ = 0.150

Another useful window to understand the thermody-
namic properties of a black hole is the Bekenstein–Hawking
entropy. It is well-known (from Brans–Dicke theory [64–68])
that the entropy of black hole solutions in D + 1 dimensions
(with varying Newton’s constant) satisfies the following rela-
tion:

SH (rH ) = 1

4

∮
r=rH

dD−1x

√
h

G(x)
, (38)

where hi j is the induced metric (at the horizon rH ). In 2 + 1
dimensions and circularly symmetric solution, the last inte-
gral is easy to compute. The induced metric for constant t
and r slices is ds = rdφ. Also, G(x) = G(rH ) is constant
along the horizon. Finally, the entropy is

SH (rH ) = 2πrH
4G(rH )

= S0(rH )

[
1 +

(
ξ

rH

)2
]

. (39)

Just like before, we cannot obtain analytical solutions for the
entropy. Instead, an approximated solution is taken in the
regime where ξ is small. Thus, in terms of the classical black
hole horizon, we have

SH (ξ � 1) ≈ S0(r0)

[
1 − 1

3

(
ξ

r0

)4 ]
. (40)

Finally, regarding the specific heat, we consider the relation

CH (rH ) = SH . (41)

We thus confirm it is always positive. The later means that
the positivity of the specific heat will ensure local thermal
stability of the black hole [69].

Of particular interest are re following comments:

1. One observes that the inclusion of a running Newton’s
coupling makes the black hole horizon smaller than the
classical counterpart. Such a feature profoundly impacts
its thermodynamical properties, since relevant quantities
are evaluated at the horizon.

2. When ξ is taken to be small, both the temperature and the
entropy show corrections proportional to ξ4. On the one
hand, the temperature slightly increases with respect to
the classical solution, and, on the other hand, the entropy
slightly decreases, again, compared to the classical result.

3. The pole located at r → ξ introduces additional features
compared with the BTZ solution. Thus, as can be observed
in Fig. 3, we only are considering vales r < ξ < ∞.
One further observes in Figs. 4 and 5 that, the classical
solution and our solution converge for large M0. In the
opposite regime, for small values of the classical mass,
we lose predictivity, and on-trivial features appear. Such
effects strongly depend on the explicit form of Newton’s
coupling.

3.4 RG-improvement vs scale-dependence in black holes

At this point, it is convenient to emphasize the conceptual
differences between the most frequently used approach to
incorporate quantum corrections in black hole physics, the
RG-improvement formalism [21,70–73], and the method-
ology exploited in this work, the scale-dependence gravity
[26–45].

– The traditional approach in RG-improvement formalism
(introduced in [70]) demands that, after an adequate set
of gravitational coupling, the classical black hole solu-
tions are “adapted” through G0 → Gk = G(k(r)), and
it is assumed that the classical background is properly
“improved”. The connection between the renormaliza-
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tion scale k and the corresponding radial coordinate is
always subject to speculation (for a detailed discussion,
see [62,74,75] and references therein). However, one can
infer an appropriate relation between these two parame-
ters by dimensional analysis.
This approach has the advantage that it explicitly incor-
porates the information from explicit quantum gravity
calculations. Nevertheless, it has the disadvantage that
the improved solutions are not solutions of any known
equations of motion or the extremum of a (known) effec-
tive action.

– The scale-dependence gravity approach, in the form as it
is used in [26–45] has the advantage that improved equa-
tions of motion (17) are solved directly, making sure that
any solution found for this is automatically extremizing a
reasonable system. However, the shortcut of using energy
conditions, came at the cost of loosing the information
from the actual quantum gravity beta functions.

Thus, both approaches have advantages and disadvantages.
In this paper, we used a mixture of both, taking only the
desirable features of each. The information from the quan-
tum gravity sector has been embedded through the scale-
dependence of the running gravitational coupling (21), while
the integration of the equation of motion (17) ensures con-
sistent BH solutions. Therefore, the highlights of the RG-
improvement and SD gravity have been incorporated in such
that we obtain a well-defined black hole solutions in 2 + 1
dimensions.

4 SD rotating solution

In what follows we generalize the above solution and dis-
cussion to include rotation. Let us start by considering main-
taining rotational symmetry and considering a line element
of the form

ds2 = − f (r)dt2 + h(r)dr2 + r2
[
N (r)dt + dφ

]2
, (42)

where f (r), h(r) N (r) are functions that must be obtained
from the effective Einstein’s field equations. Also, follow-
ing the same ideas of the non-rotating solution, we use the
same concrete functional form of G(r) and also obtain the
cosmological function Λ(r), algebraically. Then all the other
functions are obtained by analytically integrating the remain-
ing equations of motion. We obtain the set of functions
{ f (r), h(r),Λ(r),G(r), N (r)}. In practice, this straight for-
ward integration comes with several technical problems. The
solutions can be consistently obtained as follows: (i) first,
we compute de G(r) using the same arguments as the non-

rotating case

G(r) = G0

[
1 +

(
ξ

r

)2 ]−1

. (43)

(ii) We replace G(r) into the effective equations, and also
we eliminate Λ(r) algebraically. Now, the task is to obtain
{ f (r), h(r), N (r)}. (iii) We then compute N (r), from the
off-diagonal part of the field equations which reads

d

dr
ln

(
N ′(r)

)
= 7ξ4 − 3r4 + 8ξ2r2

r
(
r4 − ξ4

) . (44)

The last equation is a second order differential equation,
which has two free parameters. They are selected in such a
way that classical limit for the shift function, N (r), is recov-
ered. Thus, the solution take the simple form

N (r) = N0(r)δ(r, ξ), (45)

where N0(r) corresponds to the classical shift function, i.e.,

N0(r) = − J0

2r2 (46)

and the multiplicative correction δ(r, ξ) turns out to be

δ(r, ξ) ≡
[

− 7 + 2ξ2

r2 − ξ4

3r4 + 8r2

ξ2 ln

(
1 + ξ2

r2

) ]
. (47)

The integration constant is defined such that the classical
solution is recovered when ξ → 0 on the function δ(r, ξ),
namely

lim
ξ→0

δ(r, ξ) = 1. (48)

(iv) Knowing G(r) and N (r), we can obtain a relation
between f (r) and h(r) and verify that they are not reciprocal.
Thus, we finally obtain, with help of the reduced equations,
that

h(r) =
[

1 −
(

ξ

r

)2 ]6

f (r)−1, (49)

which coincides with the non-rotating case. (v) Finally, we
will obtain the lapse function f (r) from the remaining dif-
ferential equation

d2 f

dr2 + a(r)
d f

dr
+ b(r) f + c(r) = 0, (50)

where the functions {a(r), b(r), c(r)} are defined as

a(r) = −3ξ4 + r4 + 8ξ2r2

r
(
r4 − ξ4

) , (51)
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b(r) = 8
(
ξ4 + 2ξ2r2

)
r2

(
r4 − ξ4

) , (52)

c(r) = − 2J 2
0

(
r2 − ξ2

)7

r12
(
ξ2 + r2

) (
r4 − ξ4

) . (53)

Again, the integration constants can be chosen in such a way
that the generalized solution mimics the classical black hole
solution, namely

f (r) = −M(r) + r2

	2
0

+ J (r)2

4r2 . (54)

At this point some comments are in order. Firstly, notice that
the new solution resembles the classical one in its structure,
although now the mass and angular momentum parameters
are replaced by SD functions, which are defined as

M(r) = M0δ(r, ξ), (55)

J (r)2 = J 2
0 δ(r, ξ)2. (56)

Second, when J0 → 0 the non-rotating case is obtained.
Finally, notice that albeit Λ0 → Λ(r), the term with such
coupling parameter is not disturbed in the lapse function.
(vi) The function h(r) is directly computed by using (49), to
obtain

h(r) =
[

1 −
(

ξ

r

)2 ]6[
− M(r) + r2

	2
0

+ J (r)2

4r2

]−1

. (57)

(vii) As final step, we replace all the functions and their
derivatives into the expression for the cosmological coupling
Λ(r) to finally obtain

Λ(r) = 1

9	2
0ξ

4
(
r2 − ξ2

)6 (
ξ2 + r2

)2

×
[

24	2
0r

8 ln

(
1 + ξ2

r2

)(
2J 2

0

(
ξ8 + 6ξ2r6

− 15ξ4r4 − 8ξ6r2
)
−6J 2

0 r
4
(
r2 − 3ξ2

)

×
(
ξ2 + r2

)
ln

(
1 + ξ2

r2

)

+ 3M0ξ
2r4

(
r2 − 3ξ2

) (
ξ2 + r2

) )

+ ξ4
(

− 9r12
(
r2 − 3ξ2

) (
ξ2 + r2

)

−
(
−3ξ6 + 12r6 − 39ξ2r4 + 14ξ4r2

)

× J 2
0 	2

0

(
−ξ6 + 12r6 + 3ξ2r4 + 2ξ4r2

)

− 12	2
0M0r

8
(
ξ6 + 6r6 − 15ξ2r4 − 8ξ4r2

))]
.

(58)

The last function looks quite complicated, but we can check
that it is the generalized cosmological coupling by simple
substituting into the effective Einstein’s field equations. As
a sanity check, we can expand around ξ ∼ 0. We find

Λ(r) = Λ0

[
1 + 2ξ2

r2

]
+ O(ξ3). (59)

Now, with this rotating solution we will briefly study the
thermodynamics of the rotating case.

4.1 Thermodynamics

As we discuss in the non-rotating case, we can compute the
Hawking temperature using the expression

TH (rH ) = 1

4π

∣∣∣∣ lim
r→rH

∂r gtt√−gtt grr

∣∣∣∣. (60)

Thus, as the combination
√−gtt grr 	= 1, we expect to have

a correction given by the SD Newton’s coupling. Rewriting
the expression we finally obtain

TH (rH ) = 1

4π

∣∣∣∣2M0

rH

[
1 +

(
ξ

rH

)2
]−1

�

∣∣∣∣. (61)

More precisely, we have

TH (rH ) = 1

4π

∣∣∣∣2M0G(rH )

rH
�

∣∣∣∣. (62)

The last expression is the exact one for the black hole temper-
ature. We observe that an SD Newton’s coupling modifies the
classical temperature, albeit the expression looks exactly the
same that its classical counterpart replacing G0 by G(r). We
also recognize that both the classical and SD solution tem-
perature are vanishing for the extremal condition, i.e., when
Jmax

0 ≡ 	0M0. In particular, we recall that � takes the usual
form

� =
√√√√1 −

(
J0

M0	0

)2

. (63)

Finally, we will discuss the Bekenstein–Hawking entropy
for the rotating case. In this case, the black hole horizon
is then modified, but the definition of the entropy maintain
its form, i.e., we can apply the same formula as before, but
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Fig. 6 Left panel: Black hole horizon, rH , against the classical black
hole mass M0, for different values of the parameter ξ . We have assumed
J0 = 1, 	0 = 1 and G0 = 1. Right panel: Scaled Black hole temper-
ature, T̃H , against the classical angular momentum parameter J0 for
different values of the parameter ξ . We have assumed M0 = 1, 	0 = 1

and G0 = 1. For educative purposes we have rescale TH as follow:
T̃H (ξ = 0.00) = 1.00TH , T̃H (ξ = 0.15) = 1.02TH , T̃H (ξ = 0.20) =
1.05TH , T̃H (ξ = 0.25) = 1.07TH , The color code is as follows: (i)
black line, for ξ = 0.00, (ii) orange line, for ξ = 0.15, (iii) cyan line,
for ξ = 0.20, (iv) red line, for ξ = 0.25

now considering the generalized (rotating) metric potentials.
Thus, we have

SH (rH ) = AH (rH )

4G(rH )
= S0(rH )

[
1 +

(
ξ

rH

)2
]

. (64)

We observe that both the temperature and the entropy gener-
alize the classical solutions and are consistent with previous
results in the context modified 2 + 1 dimensional black holes
[33].

Notice that both, temperature and entropy, depend on the
black hole horizon, which is modified by the inclusion of
angular momentum. Although rH is not analytical, we still
can get insights by solving it numerically. Thus, we show in
Fig. 6 (left) the behaviour of the new horizon. We observe
that, as occurs in the classical solution, the black hole horizon
has a minimum value, determined by the condition � = 0,
i.e., when the angular momentum takes its extreme value
Jmax

0 = M0	0. Thus, from that value the horizon increases.
The Fig. 6 (left) also shows that the scale-dependent black
hole horizon is smaller than its classical counterpart, being
consistent with other scale-dependent black hole solutions.
Regarding the temperature, TH has a natural cut-off which
is reached when � = 0. For educative purposes, we plot TH
against J0 to show that, irrespectively of the value of ξ , such
feature is preserved, namely, a natural cut-off emerge for
Jmax

0 = M0	0, see Fig. 6 (right). Also, the scale-dependent
temperature is larger than its classical counterpart. To make
the difference visible we exaggerate this effect in Fig. 6
(right) rescaling properly the temperature (see labels).

5 Concluding remarks

In the present article, we have studied effect a running gravi-
tational coupling on the well-defined BTZ black hole solution
offering an alternative view to previous works. A brief dis-
cussion regarding how the horizon is modified when New-
ton’s coupling evolves as well as a comparison when the
running parameter ξ is taken as a small value is treated. Tak-
ing advantage of the lapse function, we have obtained the
event horizon numerically, and we have contrasted its value
with the approximated one. We observed that the new values
of the event horizon are smaller than those obtained from
the classical case, meaning that the black hole is strongly
modified from a thermodynamic point of view. Then, we
computed the basic properties in black hole thermodynam-
ics, i.e., the Hawking temperature, the Bekenstein Hawking
entropy and specific heat. We observed that all the quantities
are corrected by the incorporation of quantum features. We
observe new poles appear on the invariants R and K absent
in the classical solution. Of particular interest is the fact that
the black hole is locally stable, verified via the computa-
tion of the specific heat, a result which is also true in the
classical case. We observe that when we consider Newton’s
coupling coming from AS as input, and include it in the SD
formalism, the result is the violation of the NEC, and thus
a violation of the Schwarzschild relation. Last but not least,
we briefly discussed the rotating case. We observe obtain an
analytical solution which is consistent with the classical case
[46] and with the original rotating SD version of the BTZ
black hole [33] in the appropriate limit(s). We can obtain
analytical expressions for shift function N (r), the cosmo-
logical function Λ(r), and the corresponding metric poten-
tials { f (r), h(r)}. We show that the thermodynamics is also
robust, i.e., the temperature and the entropy maintain their
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functional form, in comparison with the classical counter-
part. This reveals that, although non-trivial, the BTZ black
hole is compatible with the inclusion of quantum features,
making a minimum amount of changes and identifications.
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