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Abstract In this paper, we examine the behaviour of the
Euler–Heisenberg effective action in the presence of a novel
axial coupling among the gauge field and the fermionic
matter. This axial coupling is responsible to induce a CP-
violating term in the extended form of the Euler–Heisenberg
effective action, which is generated naturally through the
analysis of the box diagram. However, this anomalous model
is not a viable extension of QED, and we explicitly show that
the induced CP-violating term in the Euler–Heisenberg effec-
tive Lagrangian is obtained only by adding an axial coupling
to the ordinary QED Lagrangian. In order to perform our
analysis, we use a parametrization of the vector and axial
coupling constants, gv and ga , in terms of a new coupling
β. Interestingly, this parametrization allows us to explore a
hidden symmetry under the change of gv ↔ ga in some dia-
grams. This symmetry is explicitly observed in the analysis
of the box diagram, where we determine the λi coefficients
of LEH

ext. = λ1F2 +λ2G2 +λ3FG, specially the coefficient λ3

related with the CP-violating term due to the axial coupling.
As a phenomenological application of the results, we com-
pute the relevant cross section for the light by light scattering
through the extended Euler–Heisenberg effective action.

1 Introduction

Discrete symmetries play a major role in particle physics,
C as charge conjugation, P as parity transformation and T
as time reversal. They eventually led to Pauli’s CPT theo-
rem, a cornerstone of particle physics [1]. Naturally, there
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are many important and interesting examples where these
discrete symmetries (or a combination of them) are violated,
e.g. CP violation in the electroweak theory and the strong CP
problem in QCD [1], P violating effects in planar QFT [2].

As a direct consequence of these fundamental results,
there is currently interest in examining the validity of the CPT
theorem [3], as well as other combinations of these discrete
symmetries in phenomenological analysis. As a part of this
endeavour, a scenario where these violation effects could be
analyzed is within the nonlinear electrodynamics, in which
implications of these nonlinear electromagnetic effects are
being examined by several experiments [4–7].

It is well known that the parity breaking is a rich sce-
nario to introduce some important phenomena, even induc-
ing massive modes, regarding the behaviour of the electro-
magnetic field in three dimensions [2]. For instance, one
can cite to the quantum Hall effect as an important physi-
cal application where the topological effects of electromag-
netism are the framework to describe this physical phenom-
ena [8]. Hence, one should expect that the violation of parity
would be also interesting in the nonlinear corrections to the
four-dimensional electrodynamics.

Nonlinear electrodynamics has a long history, from the
early proposals of the light-by-light scattering in QED [9–
14] to the conceptual proposal of light-by-light scattering in
ultraperipheral heavy-ion collisions [15] as well as its exper-
imental verification by ATLAS Collaboration [4,5]. These
nonlinear terms in the electromagnetic field equations can
be understood in terms of quantum effects in the context of
effective field theories [16], resulting in the phenomena of
quantum self-coupling of electromagnetic waves in the vac-
uum.

Interestingly, the experimental verification of the light-by-
light scattering is important since it is now serving as a labo-
ratory to investigate physics beyond the standard model sce-
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narios. These models predict new particles that couple pre-
dominantly to photons, for instance, the search for the axion-
like particles [17,18]. On the theoretical side, we have seen
in recent years great interest in the study of further nonlinear
phenomena involving the physics beyond the standard model
of gauge bosons, exploring new possibilities and the novel
(quantum) behaviour of the electromagnetic waves [19–29].
Our proposal lies within this context, where we wish to con-
sider some generalization of these previous studies and con-
sider the implications of CP-violating effects into the photon
dynamics.

As we know, the CP-violating effects in the four photon
interactions do not exist in the Standard Model at tree-level.
However, there are some sources of photon interactions via
CP-violation in terms of multi-loop level, arising from the
weak interactions (CP-violating phase of the CKM matrix),
which are negligibly small [28,30].

Therefore, for the perturbative generation of the CP-
violating term in the photon sector, it is necessary that, at
least, one of these discrete symmetries (C or P) is broken.
To this end, we can add new couplings related with physics
beyond the standard model. These couplings are necessar-
ily axial and therefore both C and P symmetries in the
photon-matter couplings are automatically broken. Indeed,
only fermionic bilinear covariants such as axial-vector, axial-
tensor, etc, coupling with the photon can produce the CP-
violating term in the photon sector, see [28,31] for further
details. This means that only anomalous fermionic models
are related with the CP-violating part of the photon sector.
As discussed in [31], the CP-violating term in the photon
sector is only obtained from physically nonviable anoma-
lous models, and not from any fundamental field theory. As
a continuation of the discussion presented in [31], we intend
to explicitly show how these anomalous couplings induce a
CP-violating term in the Euler–Heisenberg effective action.

We start Sect. 2 by establishing the main aspects of the
considered model, with a gauge field that possesses both
vector and axial couplings, and its related symmetries. Fur-
thermore, we present some definitions regarding the effective
action formalism. In Sect. 3, we discuss some details involv-
ing the (low-energy) Euler–Heisenberg (EH) Lagrangian. In
particular, we focus in developing the four-photon scattering
matrix, and how to consider the different parity preserving
and parity violating contributions to the amplitude. Our main
analysis is presented in Sect. 4, where the evaluation of the
lowest-order contribution to the box diagram (with four pho-
ton legs) is fully considered. It is important to emphasize
that, since this amplitude needs to be regularized, we follow
the ’t Hooft–Veltman rule to perform algebraic manipula-
tions with γ5 within the dimensional regularization method.
Moreover, in Sect. 5 we analyze our results related with the λi
coefficients of the (parity-violating) Euler–Heisenberg effec-
tive action and discuss some particular issues. In Sect. 6, as a

phenomenological application of our results, we compute the
relevant cross section for the light by light scattering through
the extended Euler–Heisenberg effective action. Finally, we
present our conclusions and final remarks in Sect. 7.

2 The model and main features

In this section, we introduce the model and fix our notation.
The parity-violating extension of the QED minimal coupling
for the Dirac fermions in the presence of an external gauge
field is given by the following action

Sψ =
∫

d4x ψ̄(x)
[
γ μ

(
i∂μ − (gv + gaγ5)Aμ

) − m
]
ψ(x),

(2.1)

where the interacting Lagrangian density is

Lint = −ψ̄γ μ(gv + gaγ
5)Aμψ, (2.2)

where gv and ga refer to the coupling of the external gauge
field to the vector and axial vector current, respectively. We
observe that the axial part of the Lagrangian (2.2) violates the
parity (P) and charge conjugation (C) symmetry, which is odd
under P and C. Thus, unlike the usual QED, this model does
not respect the parity and charge conjugation symmetry, but
also CP conjugation is satisfied. An obvious consequence of
the C-violation is that the Furry theorem is no more satisfied
in this model. Another important comment is in regard of the
anomalous nature of this coupling. Actually, this axial-vector
coupling originates the very same Adler–Bardeen anomaly
known from the usual vector coupling of the photon [32,33].

In order to perform our perturbative analysis, we introduce
a parametrization to consider the parity-conserving (vector)
and the parity-violating (axial-vector) coupling constants in
a simpler fashion

gv + gaγ
5 = βeαγ 5

, (2.3)

so that it is readily obtained

gv = β cosh α, ga = β sinh α, β2 = g2
v − g2

a . (2.4)

It is important to remark that in this new notation, the pres-
ence of a new symmetry gv ↔ ga is verified in the n-point
function of the gauge field, see comment below.

In terms of this parametrization, the Lagrangian density
(2.1) is rewritten as

Lψ = ψ̄(x)
[
γ μ

(
i∂μ − βeαγ 5

Aμ

) − m
]
ψ(x). (2.5)

As a result, the Feynman rule for the fermion–photon interac-
tion is simply given by−iβγ μeαγ 5

, having the same structure
as the usual QED with the additional factor eαγ 5

.
In regard to the symmetries of the Lagrangian (2.5), we

observe that, with massless fermions, it is invariant under the
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following gauge transformation

ψ(x) → eiβe
αγ 5

θ(x)ψ(x), ψ̄(x) → ψ̄(x) eiβe
αγ 5

θ(x),

Aμ(x) → Aμ(x) − ∂μθ(x). (2.6)

Moreover, we notice that in the case of ga → 0 and gv → 0,
the usual vector gauge transformation, UV (1), and the axial
gauge transformation, UA(1), are restored, respectively.1

The one-loop effective action 	 for the gauge field Aμ is
defined as follows

	[A] = −iTr ln
(
i /∂ − βeαγ 5

/A − m
)
, (2.7)

or equivalently in a convenient form for the perturbative anal-
ysis

	[A] =
∞∑
n=1

∫
d4x1 . . .

∫
d4xn

× 	μ1...μn (x1, . . . , xn) Aμ1(x1) . . . Aμn (xn).

(2.8)

Here, 	μ1...μn is the n-point function of the gauge field which
is defined as

	μ1...μn (x1, . . . , xn) = −βn

n

∫ n∏
i=1

d4 pi
(2π)4 δ

(
n∑

i=1

pi

)

×e
i

n∑
i=1

pi .xi
�μ1...μn (p1, . . . , pn) ,

(2.9)

where the overall minus sign comes from the fermionic loop
and �μ1...μn indicates the amplitude of a graph with n exter-
nal photon legs.

As a final remark, we can realize from Eq. (2.9) that
	μ1...μn is proportional to the following power of the new
(parametrized) coupling constant βn = (g2

v − g2
a)

n
2 . How-

ever, the dependence of 	μ1...μn on the coupling constants
gv and ga does not arise only from βn since we have a factor
eαγ 5

for each vertex (included in �μ1...μn ) that depends on
gv and ga . As we shall see in Sect. 4, in the case of interest
n = 4, we have terms proportional to β4e4αγ 5

and β4e2αγ 5

within Eq. (2.9) as

β4e4αγ 5 = (g4
v + g4

a + 6g2
vg

2
a) + 4(g3

vga + gvg
3
a)γ

5,

(2.10)

β4e2αγ 5 = (g4
v − g4

a) + 2(g3
vga − gvg

3
a)γ

5. (2.11)

1 As a matter of fact, we also observe the presence of this axial vector
current for the photon in a non-hermitian and PT symmetric extension
of QED [34], where this coupling is related with the (pseudoscalar)
mass term ψ̄γ5ψ , and it is necessary in order to preserve the gauge
symmetry.

We can straightforwardly notice that β4e4αγ 5
and β4e2αγ 5

are completely symmetric and anti-symmetric under the
exchange of gv ↔ ga , respectively. Nevertheless, only
terms proportional to β4e4αγ 5

will contribute to the extended
Euler–Heisenberg Lagrangian as shown in Sect. 4; although
finite, the remaining parts contribute to different effective
action other than the Euler–Heisenberg one. Therefore, this
result allows us to undercover that the effective Lagrangian
is symmetric under gv ↔ ga .

3 Construction of the extended Euler–Heisenberg
Lagrangian

In order to construct the one-loop effective action for the
description of the light by light scattering, some comments
are in order. There are strong constraints such as gauge and
Lorentz invariance that should be considered in this construc-
tion. Accordingly, a gauge invariant expression to describe
the four-photon interaction can be built from the field strength
tensor Fμν with proper contractions, leading to a Lorentz
scalar Lagrangian. Moreover, since our interaction term in
(2.2) violates parity, we shall have an additional term in the
extended EH Lagrangian, which is absent in its usual version.

Based on these comments, there are three kinds of terms
with mass dimension 8 that respect both gauge and Lorentz
invariance, as well as the parity violation, as below

F2, G2, FG (3.1)

with the definitions

F = FμνF
μν = −2(E2 − B2),

G = GμνF
μν = 4(E.B), (3.2)

andGμν = 1
2εμνρσ Fρσ is the dual of the field strength tensor

Fμν = ∂μAν − ∂ν Aμ. Taking into account these considera-
tions, the full structure of the extended EH Lagrangian can
be expressed as the following

LEH

ext = λ1F2 + λ2G2 + λ3FG, (3.3)

where λ1, λ2 and λ3 are the effective coupling constants
with mass dimension −4 in a four dimensional space-time.
Under parity, E → −E and B → B, the quantities F and
G transform as scalar and pseudo-scalar, respectively. Con-
sequently, F2 and G2 are parity-even, whereas FG is parity-
odd. This parity-odd term is not present in the ordinary EH
action. Furthermore, since under charge conjugation the field
strength changes as Fμν → −Fμν , the full Lagrangian (3.3)
is charge-conjugation invariant. Therefore, the quantities F2

and G2 are CP-even (CP-conserving) while FG is CP-odd
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(CP-violating) and hence the full Lagrangian (3.3) is not CP-
invariant.

We mention that the Standard Model contains sources of
photon interactions via CP violation at the higher multi-loop
level from the weak interactions (from the phase in the CKM
matrix), or from the QCD θ -term, and in both cases they are
negligibly small [28,30]. Given the suppression of the stan-
dard model contribution, we shall analyze the effects of this
CP-odd new coupling, λ3, in the photon-photon scattering in
Sect. 6.

The values of the coupling constants λi are determined
from the one-loop quantum corrections, including the effects
of the generalized interaction (2.2). To achieve this goal, we
determine the total amplitude of the four-photon scattering as
a function of the three coupling constants λ1, λ2 and λ3: first,
we will establish the tensor structure of the total amplitude of
the process γ γ → γ γ through the Lagrangian (3.3); second,
we will evaluate the low-energy limit (p2 � m2) of the
Feynman amplitudes related with the process γ γ → γ γ

by considering the interaction term (2.2). At last, we will
compare and match the obtained results in both methods,
allowing us to fix the values of the coupling constants λi .

Let us decompose the full effective Lagrangian (3.3) into
three pieces LEH

ext = ∑3
i=1 Li , where we have defined

L1 = λ1F2, L2 = λ2G2, L3 = λ3FG. (3.4)

The contribution of the parity-conserving (P.C.) parts, L1 =
λ1F2 and L2 = λ2G2, into the amplitude for four-photon
scattering is given by [22]

M1 + M2 = (
�

μνρσ

(1) + �
μνρσ

(2)

)
(p1, p2, p3, p4)

×ε1με3νε4ρε2σ . (3.5)

where εi ≡ ε(pi ) are the polarization vectors corresponding
to the pi photon four-momenta. In addition, in order to obtain
the correct amplitude, we shall sum over all simultaneous
permutations of (p1, p2, p3, p4) and (μ, σ, ν, ρ). As a matter
of fact, this corresponds to 24 permutations of the external
photon legs which are included in the amplitudes as

�
μνρσ

(1) =
24∑
i=1

�
μνρσ

(1,i) (p1, p2, p3, p4),

�
μνρσ

(2) =
24∑
i=1

�
μνρσ

(2,i) (p1, p2, p3, p4), (3.6)

where the first contributions are straightforwardly obtained
[22]

�
μνρσ
(1,1)

= 4λ1

[
− (p1.p3)(p2.p4)gμνgρσ

+ 2(p1.p3)gμν p4σ p2ρ − p1ν p3μ p4σ p2ρ

]
, (3.7)

�
μνρσ
(2,1)

= 8λ2

[
(p1.p3)(p4.p2)gμνgρσ − 2(p1.p3)gμν p4σ p2ρ

+ p1ν p3μ p4σ p2ρ + (p1.p3)gνρ p4σ p2μ

+ (p4.p2)p1ν p3ρgμσ + (p3.p4)p1ν p2μgρσ

+ (p1.p3)p4ν p2ρgμσ − p1ν p3ρ p4σ p2μ

− (p1.p3)(p4.p2)gμσ gνρ − (p1.p3)p4ν p2μgρσ

− (p3.p4)p1ν p2ρgμσ

]
. (3.8)

After performing the complete permutations in (3.6) and sim-
plifying it, we find that the complete parity-conserving ampli-
tude reads
(
�μνρσ

)
P.C

= 32(λ1 − λ2)
[
pσ

1 pμ
3 pρ

3 p
ν
4 + pσ

1 pρ
3 p

μ
4 pν

4

− pν
1 p

ρ
1 p

σ
3 pμ

4 + pρ
1 p

σ
3 pμ

4 pν
4 − pν

1 p
ρ
1 p

μ
3 pσ

4

+ pν
1 p

μ
3 pρ

3 p
σ
4

]
− 32λ2

[
pρ

1 p
σ
1 pμ

3 pν
4

+ pν
1 p

σ
1 pρ

3 p
μ
4 − pρ

1 p
μ
3 pσ

3 pν
4

− pν
1 p

ρ
3 p

σ
3 pμ

4 − pρ
1 p

μ
3 pν

4 p
σ
4 − pν

1 p
ρ
3 p

μ
4 pσ

4

]
(3.9)

where
(
�μνρσ

)
P.C

≡ �
μνρσ

(1) + �
μνρσ

(2) . It is worth men-

tioning that in Eq. (3.9) only terms without the metric are
present, since the rest of the terms cancelled by applying the
energy–momentum conservation.

Similarly, we can express the contribution of the parity-
violating (P.V) term, L3 = λ3FG, for the amplitude as the
following

M3 = �
μνρσ

(3) (p1, p2, p3, p4)ε1με3νε4ρε2σ , (3.10)

with the definition

(
�μνρσ

)
P.V

= �
μνρσ

(3) =
24∑
i=1

�
μνρσ

(3,i) (p1, p2, p3, p4),

(3.11)

accounting for all possible permutation of the external photon
legs. The first contribution is found as

�
μνρσ

(3,1) = 8λ3

(
pν

1 p
μ
3 − gμν(p1.p3)

)
ε p2 p4ρσ , (3.12)

where we have defined the condensed notation ε pi p jρσ ≡
piξ p jηε

ξηρσ .
Inserting (3.12) back into (3.11) and summing over all

remaining permutations, we get

(
�μνρσ

)
P.V

= 32λ3

[
pσ

1 pμ
3 ενp3 p4ρ + pσ

1 pμ
4 ενp3 p4ρ

− pρ
1 p

σ
4 εμνp1 p3 + pρ

1 p
μ
4 ενp1 p3σ

+ pρ
1 p

μ
4 ενp3 p4σ − pν

1 p
σ
3 εμp1 p4ρ

+ pν
1 p

μ
3 ε p1 p4ρσ − pν

1 p
μ
3 ε p3 p4ρσ
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+ pσ
3 pν

4εμp1 p4ρ + pρ
3 p

σ
4 εμνp1 p3

+ pρ
3 p

ν
4εμp1 p3σ + pρ

3 p
ν
4εμp1 p4σ

]
. (3.13)

Therefore, the total amplitude for the light by light scattering
can be cast as

Mtotal =
(
�μνρσ

)
P.C

ε1με3νε4ρε2σ

+
(
�μνρσ

)
P.V

ε1με3νε4ρε2σ . (3.14)

We can see in Eq. (3.14) that the first term corresponds to
the parity-preserving piece of the QED, while the second
piece is the novel part corresponding to the parity-violating
effects. In the next section, we will compute explicitly the
total amplitude of the photon-photon scattering by consider-
ing the generalized interacting Lagrangian (2.2).

4 Perturbative analysis

In this section, we study the lowest order contribution to
the four-photon interaction by performing the one-loop anal-
ysis through the underlying theory at the low-energy limit
(p2 � m2). First, we consider the n = 4 term of the per-
turbative series (2.8), corresponding to the so-called box dia-
gram, depicted in Fig. 1. Using the aforementioned Feynman
rules, the amplitude of this diagram is given by

i�μνρσ

(1) = −β4
∫

d4k

(2π)4 tr

[
(/k1 + m)γ μeαγ 5

(/k + m)γ νeαγ 5
(/k3 + m)γ ρeαγ 5

(/k34 + m)γ σ eαγ 5

(k2
1 − m2)(k2 − m2)(k2

3 − m2)(k2
34 − m2)

]
, (4.1)

where (pμ
1 , pσ

2 , pν
3 , pρ

4 ) are the momenta of the external
legs, satisfying the energy–momentum conservation p1 =
p2 + p3 + p4. Moreover, we have introduced the condensed
notation ki ≡ k − pi and ki j ≡ k − pi − p j .

As we have discussed above, in order to find the total
amplitude for the 4-point function, we have to consider all
of 24 permutations namely,

�μνρσ
total =

24∑
i=1

�
μνρσ

(i) . (4.2)

Fig. 1 The box diagram contributing to 〈AAAA〉

To compute the expression (4.1), first we apply the Feyn-
man parametrization which yields

i�μνρσ
(1)

= −β4	(4)

∫
dX

∫
dω�

(2π)ω

Nμνρσ

(�2 − �)4 , (4.3)

here we have used � = k−u with u = xp1 +(y+z)p3 + yp4

and
∫
dX ≡ ∫ 1

0 dx
∫ 1−x

0 dy
∫ 1−x−y

0 dz. Moreover, by means
of simplicity of notation, we have introduced

Nμνρσ = tr
[
(/� + /u1 + m)γ μeαγ 5

(/� + /u + m)γ νeαγ 5

× (/� + /u3 + m)γ ρeαγ 5
(/� + /u34 + m)γ σ eαγ 5

]
,

(4.4)

with the definitions ui = u − pi and ui j = u − pi − p j , and
also

� = x(x − 1)p2
1 + (y + z)[(y + z) − 1]p2

3 + y(y − 1)p2
4

+ 2[y(y − 1) + yz](p3.p4)

+ 2x(z + y)(p3.p1) + 2xy(p4.p1) + m2. (4.5)

By means of definiteness, an important remark about the
evaluation of (4.3) is in order because the integral should be
regularized (it is logarithmically divergent). Since we have
chosen to use the dimensional regularization and the ampli-
tude involves a γ5 matrix, it is necessary to use the ’t Hooft–
Veltman rule in order to correctly define the γ5 within the
dimensional regularization [35,36].

The ’t Hooft–Veltman method consists in the splitting of
the ω dimensional spacetime into two parts: a 4-dimensional
(physical) and a (ω − 4)-dimensional subspace∫

dω� →
∫

dωQ =
∫

d4�

∫
dω−4L . (4.6)

In this case, the internal momentum is expressed as below

��Q =	 �+ 	 L =
(
γ 0�0 + · · · + γ 3�3

)

+
(
γ 4L4 + · · · + γ ω−1Lω−1

)
(4.7)

where we have denoted the internal momentum as L for the
remaining ω − 4 components.

Within the ’t Hooft–Veltman rule, the γ5 algebra is written
as
{
γ5, γ

μ
} = 0, μ = 0, 1, 2, 3 (4.8)[

γ5, γ
μ
] = 0, μ = 4, . . . , ω − 1, (4.9)

and all other familiar rules are still valid, including the algebra
{
γ μ, γ ν

} = 2gμν, μ, ν = 0, 1, . . . , ω − 1, (4.10)
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with the metric tensor components gμν = diag (+1,−1, . . . ,

−1). We observe that all the external momenta pi remain 4-
dimensional, this implies that�L2 = −L2 and�L�� + ���L = 0.

Consequently, applying the ’t Hooft–Veltman rule in (4.4)
i.e. � → � + L , we find

Nμνρσ = tr
[
( /Q + /u1 + m)γ μeαγ 5

( /Q + /u + m)γ νeαγ 5

× ( /Q + /u3 + m)γ ρeαγ 5
( /Q + /u34 + m)γ σ eαγ 5

]
.

(4.11)

We then observe the presence of two possibly divergent
terms, those proportional to �4 and L4. We shall focus our
discussion on these terms, showing how they cancel and thus
imply in the finiteness of the quantum effective action.

The numerator (4.11) can be split into two parts according
to the power of m as below

Nμνρσ = Nμνρσ
1 + Nμνρσ

2 , (4.12)

where, Nμνρσ
1 and Nμνρσ

2 include the odd and even powers
of m, respectively. Furthermore, we can write these terms in
regard to the power of m as the following

Nμνρσ
1 = Nμνρσ

(mu3)
+ Nμνρσ

(mu�2)
+ Nμνρσ

(m3u)
+ Nμνρσ

(muL2)
, (4.13)

Nμνρσ
2 = Nμνρσ

(�4)
+ Nμνρσ

(�2u2)
+ Nμνρσ

(u4)
+ Nμνρσ

(�2m2)

+ Nμνρσ

(m2u2)
+ Nμνρσ

(m4)
+ Nμνρσ

(L4)
+ Nμνρσ

(L2u2)

+ Nμνρσ

(L2�2)
+ Nμνρσ

(L2m2)
. (4.14)

A first observation is that since every term inNμνρσ
1 includes

a trace of an odd number of gamma matrices, we conclude
that Nμνρσ

1 = 0. Thus, we now insert Nμνρσ
2 into (4.3) and

arrange it according to the power of the internal momentum
� as the following

i�μνρσ

(1,a) = − β4	(4)

∫
dX

∫
dωQ

(2π)ω

×
Nμνρσ

(m4)
+ Nμνρσ

(m2u2)
+ Nμνρσ

(u4)

(�2 − L2 − �)4 , (4.15)

i�μνρσ

(1,b) = − β4	(4)

∫
dX

∫
dωQ

(2π)ω

×
Nμνρσ

(�2u2)
+ Nμνρσ

(�2m2)
+ Nμνρσ

(L2u2)
+ Nμνρσ

(L2m2)
+ Nμνρσ

(L2�2)

(�2 − L2 − �)4 ,

(4.16)

i�μνρσ

(1,c) = − β4	(4)

∫
dX

∫
dωQ

(2π)ω

Nμνρσ

(�) + Nμνρσ

(L)

(�2 − L2 − �)4 . (4.17)

The explicit form of these terms inNμνρσ
2 can be found in the

Appendix A, Eqs. (A.1)–(A.10), and also the L dependent
terms in N are similar to those of �.

Now, we can show how the divergent contributions in
(4.17) are cancelled independently. As mentioned above, we
have the following logarithmically divergent terms

∫
d4�

(2π)4
dω−4L

(2π)ω−4
1

(�2 − L2 − �)4 tr
[
e4αγ 5

/�γ μ/�γ ν/�γ ρ/�γ σ
]

(4.18)∫
d4�

(2π)4
dω−4L

(2π)ω−4
1

(�2 − L2 − �)4 tr
[
/Lγ μ /Lγ ν /Lγ ρ /Lγ σ

]
,

(4.19)

we notice that both terms have similar tensor structure
(due to the trace operation). Thus, the tensor and regu-
larized structure is nearly common for the above �4 and
L4 terms and we can use it to apply our considerations.
Hence, we can evaluate straightforwardly the momentum
integration with help of (A.1) and use of the identity

QδQτ Qξ Qη → Q4

ω(ω+2)

(
gδτ gξη + gδξ gτη + gδηgτξ

)
, and

show that both contributions are proportional to 	
(

ε
2

)
, where

ε = 4 − ω → 0+, and also to the tensor structure

Ñμνρσ = 1

4

(
gδτ gξη + gδξ gτη + gδηgτξ

)

× Tr
[
e4αγ 5

γ δγ μγ τ γ νγ ξγ ργ ηγ σ
]
,

= 1

4

(
gδτ gξη + gδξ gτη + gδηgτξ

)

× Tr
[(

cosh(4α) + sinh(4α)γ 5
)

× γ δγ μγ τ γ νγ ξγ ργ ηγ σ
]
, (4.20)

while the L contribution in Eq. (4.19) is obtained from (4.20)
as α = 0. Moreover, we notice that the terms including
cosh(4α) and sinh(4α) refer to the parity-preserving and
parity-violating contributions, respectively. However, in the
usual QED, there is only terms with α → 0, so that β → gv .

Finally, making use of this result and by taking into
account all the 24 (tensor and momentum) permutations of
(4.17), and also performing the relevant traces through Feyn-
Calc program, in both parity-preserving and parity-violating
pieces, we find that

�μνρσ
total

∣∣∣
div.

=
24∑
i=1

�
μνρσ

(i,c)

∣∣∣
div.

= 0, (4.21)

which is in accordance to the result of the usual QED. Thus,
we arrive at the same finite result for the total amplitude as
in Eq. (4.2).

After showing the UV-finiteness of the total amplitude,
we are now ready to obtain the generalized expression for the
Euler–Heisenberg effective Lagrangian. Thus, by making use
of the standard Feynman integrals, we arrive at the following
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expressions for the finite part

�
μνρσ

(1,a) = − β4

16π2

∫
dX

1

�2

[
Nμνρσ

(m4)
+ Nμνρσ

(m2u2)
+ Nμνρσ

(u4)

]
,

(4.22)

�
μνρσ

(1,b) = β4

16π2

∫
dX

1

�

[
Ñμνρσ

(u2)
+ Ñμνρσ

(m2)

+ N̂μνρσ

(u2)
+ N̂μνρσ

(m2)
+ N̂μνρσ

(0)

]
, (4.23)

the quantities with tilde and hat in (4.23) indicate the inte-
grated expressions of (4.16) over the internal momenta � and
L .

Assuming on-shell photons, p2
i = 0, the expression � in

(4.5) changes to

� = m2(1 + ξ), (4.24)

where

ξ = 2y(y − 1 + z)
( p3.p4

m2

)
+ 2x(z + y)

( p3.p1

m2

)

+2xy
( p4.p1

m2

)
. (4.25)

Now, in the low-energy limit the photon energies are small
compared to the fermionic mass m, i.e. pi .p j � m2. Under
these considerations, we obtain

�
μνρσ

(1,a) = − β4

16π2

1

m4

∫
dX

[
Nμνρσ

(m4)
+ Nμνρσ

(m2u2)
+ Nμνρσ

(u4)

]

×
[
1 − 2ξ + 3ξ2

]
, (4.26)

�
μνρσ

(1,b) = β4

16π2

1

m2

∫
dX

[
Ñμνρσ

(u2)
+ Ñμνρσ

(m2)

+ N̂μνρσ

(u2)
+ N̂μνρσ

(m2)
+ N̂μνρσ

(0)

][
1 − ξ + ξ2

]
.

(4.27)

As we have previously mentioned, we observe that �
μνρσ

(1,a)

and �
μνρσ

(1,b) are UV finite.
To determine the generalized Euler–Heisenberg effective

action, we should concentrate in examining the term which
includes four momenta of the external photons, i.e. Nμνρσ

(u4)
in (4.26), and also discarding the ξ � 1 parts. Thus, using
the explicit form of Nμνρσ

(u4)
in (A.9), we find

�
μνρσ

(1,a)

∣∣∣ξ
0

u4
= − β4

16π2m4 Tr
(
[cosh(4α) + sinh(4α)γ 5]

× γ δγ μγ τ γ νγ ξγ ργ ηγ σ
) ∫

dXu1δuτu3ξu34η.

(4.28)

Now, by making use of Eq. (2.4) to return to the (gv, ga) cou-
plings, and separating Eq. (4.28) into the parity-conserving

(P.C) and parity-violating (P.V) contributions, we have

(
�

μνρσ

(1,a)

∣∣∣ξ
0

u4

)
P.C

= − (g4
v + g4

a + 6g2
vg

2
a)

16π2m4

× Tr
(
γ δγ μγ τ γ νγ ξ γ ργ ηγ σ

)

×
∫

dX u1δuτu3ξu34η, (4.29)

(
�

μνρσ

(1,a)

∣∣∣ξ
0

u4

)
P.V

= −4(g3
vga + gvg3

a)

16π2m4

× Tr
(
γ 5γ δγ μγ τ γ νγ ξγ ργ ηγ σ

)

×
∫

dX u1δuτu3ξu34η. (4.30)

A first comment about these expressions is that in the limit
ga → 0, the P.V contribution vanishes and the value of P.C
reduces to the ordinary result. Furthermore, we observe that
both contributions, P.C and P.V, are totally symmetric under
the exchange of gv ↔ ga , corroborating our arguments of
the presence of this symmetry for the n = 4 point function.
However, this symmetry property is in disagreement with the
behaviour of the results found in Ref. [24]. But we should
emphasize that our symmetry arguments are general, since
the parametrization (2.4) is independent of the perturbative
analysis (that reflects the generality of our arguments).

After performing the remaining traces and taking the
integral over the Feynman parameters in (4.29) and (4.30)
through FeynCalc program, we should apply all of the 24
permutations

(
�μνρσ

∣∣∣ξ
0

u4

)
P.C

=
24∑
i=1

(
�

μνρσ

(i,a)

∣∣∣ξ
0

u4

)
P.C

,

(
�μνρσ

∣∣∣ξ
0

u4

)
P.V

=
24∑
i=1

(
�

μνρσ

(i,a)

∣∣∣ξ
0

u4

)
P.V

, (4.31)

which finally lead to the following expression of the total
parity-preserving contribution

(
�μνρσ

∣∣∣ξ
0

u4

)
P.C

= (g4
v + g4

a + 6g2
vg

2
a)

60π2m4

×
[

7

3

(
pρ

1 p
σ
3 pν

4 p
μ
3 + pρ

1 p
ν
4 p

σ
4 pμ

3 − pν
4 p

ρ
1 p

σ
1 pμ

3

+ pν
1 p

σ
3 pμ

4 pρ
3 + pν

1 p
μ
4 pσ

4 pρ
3 − pμ

4 pν
1 p

σ
1 pρ

3

)

+
(
pν

1 p
ρ
1 p

σ
4 pμ

3 − pν
4 p

ρ
3 p

σ
1 pμ

3 − pν
1 p

ρ
3 p

σ
4 pμ

3

− pμ
4 pν

4 p
σ
1 pρ

3 + pν
1 p

ρ
1 p

μ
4 pσ

3 − pμ
4 pν

4 p
ρ
1 p

σ
3

)]
, (4.32)
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and also to the total parity-violating contribution

(
�μνρσ

∣∣∣ξ
0

u4

)
P.V

= − i(g3
vga + gvg3

a)

24π2m4

[
pσ

1 pμ
3 ενp3 p4ρ

+ pσ
1 pμ

4 ενp3 p4ρ − pρ
1 p

σ
4 εμνp1 p3

+ pρ
1 p

μ
4 ενp1 p3σ + pρ

1 p
μ
4 ενp3 p4σ

− pν
1 p

σ
3 εμp1 p4ρ + pν

1 p
μ
3 ε p1 p4ρσ

− pν
1 p

μ
3 ε p3 p4ρσ + pσ

3 pν
4εμp1 p4ρ

+ pρ
3 p

σ
4 εμνp1 p3 + pρ

3 p
ν
4εμp1 p3σ

+ pρ
3 p

ν
4εμp1 p4σ

]
. (4.33)

One should note that in Eq. (4.33) the coefficient i arises from
the trace of γ 5 with the gamma matrices. Now that we have
evaluated the one-loop effective action for the generalized
parity-violating coupling, we are in a position to determine
the effective couplings λi ’s by comparing these results to
those from Sect. 3.

5 Determination of the effective couplings (λ1, λ2, λ3)

At this stage, we can determine the value of three coupling
constants appearing in the effective Lagrangian (3.3)

LE .H

ext. = λ1F2 + λ2G2 + λ3FG. (5.1)

This can be achieved by matching the results found in
Eqs. (3.9) and (4.32) for the parity-preserving piece

(
�μνρσ

)
P.C

=
(
�μνρσ

∣∣∣ξ
0

u4

)
P.C

, (5.2)

as well as Eqs. (3.13) and (4.33) for the parity-violating part

(
�μνρσ

)
P.V

=
(
�μνρσ

∣∣∣ξ
0

u4

)
P.V

. (5.3)

After some algebraic manipulations, we obtain the values of
(λ1, λ2) from Eq. (5.2), while (5.3) gives us the value of λ3.
These expressions are summarized as

λ1 = 1

512π2m4

[
16

45
g4
v + 32

15
g2
vg

2
a + 16

45
g4
a

]
,

λ2 = 1

512π2m4

[
28

45
g4
v + 56

15
g2
vg

2
a + 28

45
g4
a

]
,

λ3 = − i

768π2m4

[
g3
vga + gvg

3
a

]
. (5.4)

Since the one-loop 4-point function is symmetric under the
change of gv ↔ ga , it was expected that the effective cou-
plings λi present a similar behaviour, as verified in (5.4).
Here, as we have mentioned above, we observe again that

the values of the coupling constants are different from those
obtained in the Ref. [24], that do not display such a symmetric
behaviour.

To clarify this issue, let us consider two cases in the inter-
acting Lagrangian (2.2), or equivalently in the effective cou-
plings (5.4):

λEH
1 = g4

v

1440π2m4 , λEH
2 = 7g4

v

5760π2m4 , λ3 = 0, (5.5)

that correspond to the two limiting cases: ga = 0, gv 	= 0
and gv = 0, ga 	= 0.

Both cases, in contrast to [24], lead to the same result for
the three effective coupling constants as the following which
coincides exactly with effective couplings of an ordinary
parity-conserving Euler–Heisenberg Lagrangian [16,22].

Therefore, we realize that considering the pure-vector
interaction (even-parity) or the pure-axial interaction (odd-
parity) of the gauge field with fermionic matter leads to an
identical effective action, which is parity-preserving. In the
other words, the interaction term with a distinct behaviour
under parity produces a parity-conserving effective action.
While the case gv 	= 0, ga 	= 0 yields us a generalized
effective Euler–Heisenberg action with parity-conserving
and parity-violating terms (5.4).

As the last case, we consider the V + A and V − A inter-
actions, which corresponds to ga = ±gv , respectively,

LV+A = −gvψ̄γ μ(1 + γ 5)Aμψ,

LV-A = −gvψ̄γ μ(1 − γ 5)Aμψ, (5.6)

and find the effective coupling constants as follows

λ1

∣∣∣
ga=±gv

= g4
v

180π2m4 ,

λ2

∣∣∣
ga=±gv

= 7g4
v

720π2m4 ,

λ3

∣∣∣
ga=±gv

= ∓ ig4
v

384π2m4 . (5.7)

Naturally, as we expected, the values of the constants λi ’s
(5.7) are also in disagreement with the results obtained in
[24].

6 γ γ → γ γ differential cross section

In order to examine the phenomenology of the effective
action (5.1), with the couplings (5.4), it is interesting to cal-
culate the differential cross section for the light by light scat-
tering. We would like to recall that, although the follow-
ing analysis should contain terms from the interference of
QED with the standard model’s lowest order parity-violating
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terms, we have already discussed that these standard model’s
contribution are negligible, and shall not be considered here.

Therefore, to start the analysis of the differential cross
section for the light by light scattering, we first consider the
tensorial structure of the total amplitude in (3.14) as the fol-
lowing

�μνρσ =
(
�μνρσ

)
P.C

+
(
�μνρσ

)
P.V

. (6.1)

As a first check, we verify the Ward identity by inserting
Eqs. (3.9) and (3.13) back into (6.1), and then contracting
the resulting expression with the external momenta, which
give the following

p1μ�μνρσ = p2σ �μνρσ = p3ν�
μνρσ = p4ρ�μνρσ = 0.

(6.2)

This result is expected since the effective Lagrangian (5.1)
is constructed from the gauge invariant quantities F and G.
The unpolarized differential cross section is proportional to
the average of the absolute square of the total amplitude as
1
4

∑ |M|2 that includes the following sum over the photon
polarization states

2∑
λ=1

ε∗
μ(p, λ)εν(p, λ) = −gμν + Lμν, (6.3)

where Lμν is a longitudinal part which contraction with
�μνρσ vanishes, due to the Ward identity (6.2). In the center
of mass frame (CM), we define ω as the photon energy and
θ as the departure angle of the final state photons. Hence, the
unpolarized differential cross section is given by

dσ

d�

∣∣∣
CM

=
(

278g8
a + 3561g6

ag
2
v + 11014g4

ag
4
v

+3561g2
ag

6
v + 278g8

v

) (
ω6

m8

)
[7 + cos(2θ)]2

66355200π6 .

(6.4)

It is worth noticing that the presence of the CP-violating term
λ3FG does not change the angular distribution of the differ-
ential cross section of the QED description. Rather, its con-
tribution is only as a numerical factor; therefore, an enhance-
ment in regard of the usual value measured in the related cross
section could be a signal of the presence of parity violation
in QED.

Here, we mention that the obtained result (6.4) is also
symmetric under the exchange of ga ↔ gv . Moreover, in the
pure-vector and pure-axial coupling limits, we arrive at

lim
ga→0

dσ

d�

∣∣∣
CM

= lim
gv→0

dσ

d�

∣∣∣
CM

= 139g8
v

33177600π6

(
ω6

m8

)
[7 + cos(2θ)]2 .

(6.5)

We observe that these limiting cases yield us the same result,
which coincides exactly with the standard differential cross
section for the photon-photon scattering in the usual QED
[12,37], as expected.

7 Conclusion

In this paper, we have perturbatively examined the Euler–
Heisenberg effective action in the presence of an axial cou-
pling of the gauge field with the fermionic matter (that might
be ascribed to new physics, for instance, dark matter parti-
cles [25]). These novel coupling effects are responsible for
generating a CP-violating term FG in the effective action.
We emphasize that the axial anomalous term added is not
an acceptable extension of QED and thus the induced CP-
violating term in the usual Euler–Heisenberg model as an
effective Lagrangian can be obtained only from this anoma-
lous theory, and not from any fundamental field theory. One
important aspect of our analysis is in regard of the regular-
ization to the Feynman amplitude. Since the amplitude of the
process γ γ → γ γ is divergent, and we have the presence
of an axial coupling in terms of the γ5 matrix, we presented
a detailed analysis of the algebraic manipulations using the
’t Hooft–Veltman rule. We have shown the presence of two
possibly divergent terms, and discussed how their contribu-
tions are cancelled when 24 permutations in the box diagram
are considered.

Another point is related to a hidden symmetry of the
vector and axial couplings, which was observed in terms
of a proper parametrization. The piece of the 4-point func-
tion contributing to the extended Euler–Heisenberg effective
Lagrangian is written in terms of the parametrized couplings
β4e4αγ 5 = (g4

v + g4
a + 6g2

vg
2
a) + 4(g3

vga + gvg3
a)γ

5, which
allows us to verify that it is symmetric under the change of
gv ↔ ga . Furthermore, this observation also allowed us to
conclude that the usual Euler–Heisenberg effective action,
which is parity-preserving, can be generated whether by the
pure-vector interaction (even-parity) or the pure-axial inter-
action (odd-parity), see Eq. (5.5). It is important to remark
that our results are in contrast to those of Ref. [24]. But we
believe that, although following different approaches, a cru-
cial point showing the correctness of our analysis is the pres-
ence of the aforementioned symmetry in the λi coefficients
of the extended Euler–Heisenberg effective Lagrangian, see
Eq. (5.4). Actually, this hidden symmetry of the box graph
under gv ↔ ga is absent in the results of Ref. [24].

We proceeded with a phenomenological application of the
generalized effective action, considering the effects of the
CP-violating term (as a possible new physics phenomenon),
to compute the differential cross section related to the photon-
photon scattering. As a result, we found that the angular dis-
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tribution of the differential cross section in the presence of
CP-violating term does not modify, except some changes in
the numerical coefficients. Hence, the effects of the parity-
violating term could be measured in terms of the enhanced
value of the cross section. It is worth to mention that the
interference of the standard model CP-violating contribution
(from the phase in the CKM matrix or from the θ -term in
QCD), with the one in the present analysis, are by far smaller
[28,30] and thus not considered.

Acknowledgements We would like to express our especial thanks to
M. Chaichian for his valuable comments and many illuminating dis-
cussions. Also, we thank M.M. Sheikh-Jabbari and M. Mohammadi
for their insightful comments and suggestions. R.B. acknowledges par-
tial support from Conselho Nacional de Desenvolvimento Científico e
Tecnológico (CNPq Projects no. 305427/2019-9 and no. 421886/2018-
8) and Fundação de Amparo à Pesquisa do Estado de Minas Gerais
(FAPEMIG Project no. APQ-01142-17).

DataAvailability Statement This manuscript has no associated data or
the data will not be deposited. [Authors’ comment: This is a theoretical
study and no experimental data has been listed.]

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adaptation,
distribution and reproduction in any medium or format, as long as you
give appropriate credit to the original author(s) and the source, pro-
vide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indi-
cated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permit-
ted use, you will need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.
Funded by SCOAP3. SCOAP3 supports the goals of the International
Year of Basic Sciences for Sustainable Development.

Appendix A: The explicit form of Nμνρσ

2

Here, we present the explicit form of the six terms appeared
in the relation (4.14)

Nμνρσ
2 = Nμνρσ

(�4)
+ Nμνρσ

(�2u2)
+ Nμνρσ

(u4)
+ Nμνρσ

(m2�2)

+ Nμνρσ

(m2u2)
+ Nμνρσ

(m4)
+ Nμνρσ

(L4)

+ Nμνρσ

(L2u2)
+ Nμνρσ

(L2�2)
+ Nμνρσ

(m2L2)
,

as the following

Nμνρσ

(�4)
= �δ�τ �ξ �ηTr

[
e4αγ 5

γ δγ μγ τ γ νγ ξ γ ργ ηγ σ
]
,

(A.1)

Nμνρσ

(�2u2)
=

[
u3ξu34η�δ�τ + uτu34η�δ�ξ + �δ�ηuτu3ξ

+ �τ �ξu1δu34η + �τ �ηu1δu3ξ + �ξ �ηu1δuτ

]

× Tr
[
e4αγ 5

γ δγ μγ τ γ νγ ξγ ργ ηγ σ
]
, (A.2)

Nμνρσ

(m2�2)
= m2�δ�τ

[
Tr

(
e2αγ 5

γ δγ μγ τ γ νγ ργ σ
)

+ Tr
(
γ δγ μγ νγ τ γ ργ σ

)
+ Tr

(
e2αγ 5

γ δγ μγ νγ ργ τ γ σ
)

+ Tr
(
e−2αγ 5

γ μγ δγ νγ τ γ ργ σ
)

+ Tr
(
γ μγ δγ νγ ργ τ γ σ

)
+ Tr

(
e2αγ 5

γ μγ νγ δγ ργ τ γ σ
)]

, (A.3)

Nμνρσ

(L4)
= LδLτ Lξ LηTr

[
γ δγ μγ τ γ νγ ξγ ργ ηγ σ

]
, (A.4)

Nμνρσ

(m2L2)
= m2LδLτ

[
Tr

(
γ δγ μγ τ γ νγ ργ σ

)
+ Tr

(
γ δγ μγ νγ τ γ ργ σ

)
+ Tr

(
γ δγ μγ νγ ργ τ γ σ

)
+ Tr

(
γ μγ δγ νγ τ γ ργ σ

) + Tr
(
γ μγ δγ νγ ργ τ γ σ

)
+ Tr

(
γ μγ νγ δγ ργ τ γ σ

)]
, (A.5)

Nμνρσ

(L2�2)
= �δ�τ Lξ Lη

[
Tr

(
e2αγ 5

γ δγ μγ ξγ νγ ηγ ργ τ γ σ
)

+ Tr
(
e2αγ 5

γ ξγ μγ ηγ νγ δγ ργ τ γ σ
)

+ Tr
(
e2αγ 5

γ δγ μγ τ γ νγ ξγ ργ ηγ σ
)

+ Tr
(
e−2αγ 5

γ ξγ μγ δγ νγ τ γ ργ ηγ σ
)

+ Tr
(
γ δγ μγ ξγ νγ τ γ ργ ηγ σ

)
+ Tr

(
γ ξγ μγ δγ νγ ηγ ργ τ γ σ

)]
, (A.6)

Nμνρσ

(L2u2)
= Lξ Lη

[
u1δu34τ Tr

(
e2αγ 5

γ δγ μγ ξγ νγ ηγ ργ τ γ σ
)

+ u3δu34τ Tr
(
e2αγ 5

γ ξγ μγ ηγ νγ δγ ργ τ γ σ
)

+ u1δuτ Tr
(
e2αγ 5

γ δγ μγ τ γ νγ ξγ ργ ηγ σ
)

+ uδu3τ Tr
(
e−2αγ 5

γ ξγ μγ δγ νγ τ γ ργ ηγ σ
)

+ u1δu3τ Tr
(
γ δγ μγ ξγ νγ τ γ ργ ηγ σ

)
+ uδu34τ Tr

(
γ ξγ μγ δγ νγ ηγ ργ τ γ σ

)]
, (A.7)

Nμνρσ

(m2u2)
= m2

[
u1δ

(
uτ Tr

(
e2αγ 5

γ δγ μγ τ γ νγ ργ σ
)

+ u3τ Tr
(
γ δγ μγ νγ τ γ ργ σ

)
+ u34τ Tr

(
e2αγ 5

γ δγ μγ νγ ργ τ γ σ
))

+ uδu3τ Tr
(
e−2αγ 5

γ μγ δγ νγ τ γ ργ σ
)

+ uδu34τ Tr
(
γ μγ δγ νγ ργ τ γ σ

)
+ u3δu34τ Tr

(
e2αγ 5

γ μγ νγ δγ ργ τ γ σ
)]

, (A.8)

Nμνρσ

(u4)
= u1δuτu3ξu34ηTr

(
e4αγ 5

γ δγ μγ τ γ νγ ξ γ ργ ηγ σ
)
,

(A.9)

Nμνρσ

(m4)
= m4Tr

(
γ μγ νγ ργ σ

)
. (A.10)
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