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Abstract In this work, we derive two formulas encoding
the polarization direction and luminosity of synchrotron radi-
ations from the moving electrons in curved spacetime under
the geometric optics approximation. As an application, we
further study the polarized images of synchrotron radiations
from electron sources in Schwarzschild black hole spacetime
with a vertical and uniform magnetic field. In particular, by
focusing on the circular orbits of electrons on the equato-
rial plane, we show the polarized images of the synchrotron
radiations from these orbits for different observational angles
and discuss the variations of the polarization directions con-
cerning the angles.

1 Introduction

In 2019, the Event Horizon Telescope (EHT) Collaborations
published the first images of a supermassive black hole in
M87 [1]. This opened a new window to study various prob-
lems in strong-field gravity and the physics of accretion disks
via electromagnetic signatures. Very recently, the EHT Col-
laborations released the polarized images of the black hole
[2,3], which reveal a bright ring of emission with a twisting
polarization pattern and a prominently rotationally symmet-
ric mode.

Over the past few decades, people have been trying to sim-
ulate the polarimetric images of black holes to understand the
properties of the accretion disk and spacetime geometry [4–
14]. For some recent studies on the polarized images of the
black hole, see [15–22]. In these works, the synchrotron radi-
ation sources are considered charged fluids. The polarization
vector is first defined in the locally flat comoving reference
frame of fluids and then transformed to the laboratory frame
with a non-flat metric. One way to determine the polariza-
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tion vector radiated from the charged fluids is based on the
Boltzmann equation [23] and employing numerical simula-
tions. The other way is just to set the polarization vector
perpendicular to both the wave vector of the radiation and
the magnetic field in the fluid frame as a toy model [16].
The former results are more realistic. However, the cost of
numerical simulations is relatively high, and it is challenging
to see how to decouple astrophysical and relativistic effects.
Although the latter is a simplified model, it can help us intu-
itively understand the polarized image.

The polarized images originate from the polarized syn-
chrotron radiations from electrons orbiting the black hole.
Thus, theoretically, it is interesting to have a good insight into
the polarized synchrotron radiations from electrons as spots
orbiting a black hole. In this mechanism, the polarization
vector can be extracted from the electromagnetic radiations
of charged particles governed by the Maxwell equations.
As for the electromagnetic radiations of charged particles
in curved spacetime, a seminal work was made by DeWitt
and Brehme (DB) in [24], where they first studied the electro-
magnetic radiation damping in a gravitational field and gave
the expressions of the electromagnetic Green’s function and
electromagnetic field tensor in a curved spacetime using the
Hadamard expansion techniques. In particular, they found
the electromagnetic Green’s function would give rise to a
“tail” term that invalidates Einstein’s equivalence principle
(EEP). Moreover, the equations of motion of charged par-
ticles that they derived had a computation error, which was
corrected by Hobbs in [25]. This problem was generalized to
a charged body coupled to a Maxwell field on an arbitrary,
fixed curved background by Quinn and Wald (QW) in [26].
In the electromagnetic case, they postulated a “comparison
axiom” and then obtained their result, which exactly agreed
with that of DeWitt and Brehme, as corrected by Hobbs.
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In this work, we would like to consider electrons as source
spots and investigate the polarized images of synchrotron
radiations from electrons orbiting a black hole immersed in
a uniform magnetic field. Based on DB’s pioneering work
[24], we first work out two formulas encoding the direction
and luminosity of the radiation in a covariant way. These for-
mulas are valid for any curved spacetime. Then we focus on
the circular orbits of electrons accelerated only by a uniform
and vertical magnetic field on the equatorial plane in the
Schwarzschild black hole spacetime and apply our formu-
las to study the polarized images of synchrotron radiations
from these orbits. It is worth emphasizing that our formu-
las are wider than circular orbits. Compared to the method
developed in [16] where they consider the radiations of ion-
ized fluids, the polarizations of radiations from collisionless
charged particles we consider in this work are not only per-
pendicular to the magnetic field in the local rest frame of
charged particles; instead, all the components of the radi-
ations are included. In addition, we haven’t introduced the
degree of linear polarization in the current work. Though the
fluid method applies to high-density plasma, it needs to intro-
duce parameters of the accretion flow, such as the magnetic
field strength, in the local rest frame, which further depends
on the phenomenological assumption. The charged particles
in low-density accretion disks may have a relatively long free
path and be considered collisionless [27]. Thus, our method
developed in this paper has the potential to work in the mag-
netosphere with dilute plasma, where particle collisions can
be neglected for dynamical processes such as jets and so on
[28,29]. Moreover, since our formulas are all covariant, ana-
lyzing the radiations in this scheme in terms of a given back-
ground and an electromagnetic field has theoretical advan-
tages.

The remaining parts of this paper are organized as follows.
In Sect. 2, we work out the expressions of the luminosity and
the polarization vector of synchrotron radiation after review-
ing DB’s work concisely. In Sect. 3, we complete other the-
oretical preparations for calculating the polarized images of
synchrotron radiations around a Schwarzschild black hole.
In Sect. 4, we show the polarized images for some specific
examples. We summarize and conclude this work in Sect. 5.

2 Synchrotron radiation in curved spacetime

In this section, we try to understand the synchrotron radia-
tion of charged particles in a curved spacetime under geo-
metric optics approximation. The electromagnetic radiations
of moving charged particles have been discussed in [24–26].
Here we first give a brief review of DB’s work, then we derive
two novel formulas on the luminosity and polarization vector
of radiations.

2.1 Bi-tensors and Green’s functions in curved spacetime

In flat spacetime, the radiations of a moving charged particle
have been well-studied [30]. By using the retarded Green’s
function, the gauge potential caused by a charged particle in
motion is simply

Aμ(x) = 4π

ˆ
d4x ′Gret

μα (x − x ′)Jα(x ′), (2.1)

where the moving charged particle induces the current

Jα(x ′) = e
ˆ

dτ Zα(τ )δ(4)(x ′ − z0(τ )). (2.2)

Zα is the 4-velocity of the particle and z0(τ ) characterize the
worldline of the particle. The corresponding gauge potential
is the Liénard-Wiechert potential. The corresponding field
strength consists of two parts: one part independent of the
acceleration is the static field, and the other, depending lin-
early on the acceleration, is the radiation field.

In curved spacetime, a similar radiation problem has been
addressed by DB in [24] to understand the radiation damp-
ing and the Equivalence Principle for the charged particle
in motion. Next, we would like to give a brief and neces-
sary review of the pioneering work by DB. A key point in
DB’s treatment is to develop the theory of bi-tensors connect-
ing the tensor fields at two different spacetime points, x and
z, to study the covariant Green’s functions. (For a different
approach using the vielbein formalism, see [25]) .

We closely follow DB’s conventions. Let z be the point of
the source, and x be other points in the spacetime. The letters
of the Greek alphabet α to κ are assigned to the point z, while
indices taken from λ to ω are left to the points x . For exam-
ple, zα and xμ are the coordinates of z and x , respectively.
s(x, z) is defined as the bi-scalar of the geodesic interval,
which denotes the geodesic length connecting x and z. We
can conclude that limz→x s(x, z) = 0, and we can see that
s(x, z) = ds(x) when considering z = x + dx , that is to
say, at this moment we can take s as the proper time of the
geodesic through the point x . Moreover, s > 0 denotes a
spacelike interval, and s < 0 means the interval is time-
like, while s = 0 defines the light cone. Given a sufficiently
large interval, s may change sign. However, if we focus on a
small neighborhood of a given source, the geodesic interval
is single-valued. Thus the covariant expansions can be per-
formed to identify the asymptotic forms of Green’s functions
containing the information of the electromagnetic waves. It
turns out to be convenient to introduce the quantity

σ ≡ ±1/2s2, (2.3)

to avoid the “branch point” problem, which is positive for
spacelike intervals and negative for timelike ones.
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Furthermore, in addition to the ordinary tensors, which
act on the point z or x , we need to introduce bi-tensors, of
which some indices refer to the point z and the other ones
refer to the point x . For example, we have a bi-vector Tμα ,
in which μ refers to the point x and α refers to the point
z. Then, it is useful to introduce the bi-vector of geodesic
parallel displacement, denoted by ḡμα(x, z), which plays the
role of transforming the given bi-tensor into a new bi-tensor
all of whose indices refer to the same point. The definition
of ḡμα is given by the following equations

∇νσ∇ν ḡμα = 0, ∇γ σ∇γ ḡμα = 0, lim
x→z

ḡ α
μ = δ α

μ .

For a local vector Vμ at the point x , it can be generated from
Vα at the point z by parallel displacement along the geodesic
from z to x , that is, Vμ = ḡ α

μ Vα . Similarly, one can easily
apply the geodesic parallel displacement to local tensors of
arbitrary order. For our work, we will not show more details
of bi-tensors, which can be found in [24].

Since we are interested in electromagnetic radiations, we
next turn to the solutions of the covariant vector wave equa-
tions, which take the form

∇ν∇ν Aμ + R ν
μ Aν = Jμ, (2.4)

in the Lorenz gauge ∇μAμ = 0. Green’s functions for the
vector wave functions can be obtained from the Hadamard’s
“elementary solution” [31]

G(1)
μα = (2π)−2

(
uμασ−1 + vμα log σ + wμα

)
(2.5)

by moving into the complex plane, where, uμα, vμα,wμα

are bi-vectors. As a result, the “symmetric” Green’s function
Ḡμα(x, z) can be found in this form [24]

Ḡμα(x, z) = (8π)−1[uμαδ(σ ) − vμαθ(−σ)] (2.6)

where δ(σ ) is the δ-function and θ is the Heaviside func-
tion with uμα ∝ ḡμα and vμα being determined by solving

the source free equation ∇ν∇νG
(1)
μα + R ν

μ G(1)
να =0. The term

uμαδ(σ ) shows that a sharp pulse of electromagnetic radi-
ation travels along the null geodesics between the source z
and the field x , with its polarization vector being parallel-
transported. The other term vμαθ(−σ) in the Green’s func-
tion, often referred to as the “tail” term, describes the electro-
magnetic radiations produced by the source whose geodesic
intervals s(z, x) are timelike. It shows that the sharp pulse
can develop a “tail” due to the scattering with the “bump” in
curved spacetime. Then the retarded Green’s function that we
desire for the vector wave equation can be formally expressed
as

Gret
μα(x, z) = 2[�(x), z]Ḡμα(x, z), (2.7)

where z is the source point, �(x) is an arbitrary spacelike
hypersurface containing the field point x , and [�(x), z] =
1 − [z, �(x)] = 1 when z lies to the past of �(x) and

Fig. 1 A diagram of radiations at the field point x on a spacelike hyper-
surface �(x). Zα is the 4-velocity of the charged source

[�(x), z] = 0 when z lies to the future. In Fig. 1, we show
the radiations received at a field point x on �(x).

2.2 Electromagnetic fields near a point particle

The Green’s functions Ḡμα(x, z) cannot be solved pre-
cisely in generic curved spacetimes. Nevertheless, we can
do covariant expansions of Ḡμα(x, z) around z to obtain the
electromagnetic fields generated from the source in the very
near region of point z. In particular, since we are interested
in the synchrotron radiations emitted from non-geodesic
charged particles, we only need to include the contributions
from the history of the particle at and before the point z0 to
determine the electromagnetic field at point x in Fig. 1. As
shown in Fig. 1, Zα is the tangent vector of the world line
of the source, and the proper time is set to be τ . For any
τ , one always has a certain spacelike hypersurface � whose
normal vector is Zα . Then the induced metric on � can be
defined as hαβ = gαβ + ZαZβ . At the proper time τ� , the
source arrives at the point z. We introduce a fixed field point
x which has a small spatial distance ε deviated from z� on
the hypersurface �, and in terms of the induced metric, we
can have the following relation:

hαβ∇ασ∇βσ = ε2 + O(ε3). (2.8)

This relation tells us that the quantities like ∇μσ are of order
O(ε). For each geodesic interval s connecting the source
point z and the field point x , following the results in [24], we
can have the expansions of the bi-vectors:

uμα =
[

1 − 1

12
Rβγ ∇βσ∇γ σ + O(ε3)

]
ḡμα,
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vμα = −1

2
ḡβ

μ

(
Rαβ − 1

6
gαβR

)
+ O(ε), (2.9)

and

∇β∇ασ = gαβ + 1

3
R γ δ

α β ∇γ σ∇δσ + O(ε3),

∇β ḡμα = −1

2
R γ

δαβ∇γ σ + O(ε2),

∇βuμα =
(

−1

2
ḡδ

μR
γ

δαβ − 1

6
ḡμαR

γ
β

)
∇γ σ + O(ε2).

Here we emphasize that the so-called higher order terms
O(ε2) and O(ε3) mean the related terms involve two and
three covariant derivatives of σ , respectively. Thus, the above
expansions are valid for any geodesic interval s, even for the
geodesic intervals on the light cone with s = 0.

With the expansions of Green’s functions, the retarded
gauge potential of a point charged particle reads

Aret
μ = 4πe

ˆ +∞

−∞
Gret

μαZ
αdτ

= −e
[
uμαZ

α(∇βσ Zβ)−1
]
τ=τ0

+ e
ˆ τ0

−∞
vμαZ

αdτ

where we have defined τ0 as the proper time of the point
particle at the point z0 in Fig. 1, and e is the particle’s charge.
The corresponding electromagnetic field strength tensor can
be obtained by straightforward differentiation

F ret
μν = 2e[Zα∇[μσuν]α(Zβ Zγ ∇β∇γ σ )(Dτ σ )−3

−(ZαDτ∇[μσuν]α + Dτ Z
α∇[μσuν]α)(Dτ σ )−2

+Zα(∇[μuν]α + ∇[μσvν]α)(Dτ σ )−1]τ=τ0

−2e
ˆ τ0

−∞
dτ Zα∇[μvν]α (2.10)

where we have introduced the derivative operator along the
vector Zα , that is, Dτ ≡ Zβ∇β . In Eq. (2.10), the lead-
ing terms of F ret

μν are of order O(ε−2), and they are, in fact,
from the Coulomb potential, which would give a renormal-
ization of the mass of the point particle but won’t contribute
to the radiations. The subleading terms being of orderO(ε−1)

from the lightlike part would contribute to the radiations
mostly. The synchrotron radiations originating from the grav-
ity involving curvature tensors are of order O(ε0) both in
the lightlike part and in the “tail” part. The radiations from
the complicated “tail” term involve the integrations over the
whole history of the particle, and they won’t be observed
if we only keep them for a limited time interval. Moreover,
such radiations are sub-leading but could be significant in a
strong gravitational field.

2.3 Synchrotron radiations and polarization vector

Next, we turn to find out the electromagnetic radiations and
synchrotron radiations generated by a non-geodesic point

particle acted upon by the Lorentz force and extract the cor-
responding electric component as the polarization vector, as
well as its strength.

Note that the geodesic interval between the point z0 and
the point x is on the light cone; thus, we are allowed to define
∇ασ ≡ εkα at the point z0, where kαkα = 0 is a null vector
along the light cone. Then, it’s easy to conclude that at the
point x , we have ∇μσ = −ḡ α

μ ∇ασ = −εkμ. After some
calculations, the electromagnetic field tensor in Eq. (2.10)
can be expanded and rewritten as

F ret
μν =

∞∑
d=−2

F (d)
μν εd + (tail part), (2.11)

where

F (−2)
μν = 2e

[
Zαk[μ ḡν]α(kηZ

η)−3]
τ=τ0

(2.12)

F (−1)
μν = 4e

[
k[ν ḡμ]α(kβDτ Z

[β Zα])(kηZ
η)−3

]
τ=τ0

(2.13)

F (0)
μν = 2e

{
k[ν ḡμ]αZα

×
(

1

3
R θ δ

γ β kθkδZ
β Zγ + 1

12
Rβγ kβkγ

)
(kηZ

η)−3

+
(

1

2
k[ν ḡ δ

μ]R
γ

δαβ + 1

6
k[ν ḡμ]αR γ

β

)
kγ Z

αZβ(kηZ
η)−2

+1

6
ḡθ[ν ḡμ]αR δ γ

θ β kγ kδZ
αZβ(kηZ

η)−2

−Zα

[
kγ

(
1

2
ḡβ

[ν ḡ
δ

μ]R
γ

δαβ + 1

6
ḡβ

[ν ḡμ]αR γ
β

)

+1

2
k[ν ḡ β

μ]
(
Rαβ − 1

6
gαβ R

) ]
(kηZ

η)−1
}

τ=τ0

(2.14)

In Eq. (2.11), the electromagnetic radiations of charged parti-
cles involve a tail term which gets contribution only from the
spacetime curvature. Due to the presence of a tail term, the
EEP is invalid for the electromagnetic radiations of charged
particles in curved spacetime. Nevertheless, as the leading
order of the tail part is of O(ε0), if we focus on the photons
with high enough frequency, the tail part can be dropped and
only F (−2)

μν and F (−1)
μν terms survive. As a result, the EEP

is valid for electromagnetic radiations of charged particles
under the approximation of geometrical optics. Our results
are consistent with Eq. (23) in QW’s paper [26].

Moreover, the term F (−2)
μν corresponds to the electromag-

netic field generated by the Coulomb potential. And a nonva-
nishing F (−1)

μν would give a non-trivial electromagnetic radi-
ations dependent on the 4-acceleration of charged particles
Dτ Zα . In other words, if the charged particles move along
geodesic trajectories, this term would vanish, so we focus
on the particles in non-geodesic motions in the following
discussion.
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When charged particles of mass m are only impacted by
a magnetic field

Dτ Z
α = e

m
Fα

β Z
β, (2.15)

electromagnetic radiations are the so-called synchrotron radi-
ations, which have an excellent property of polarization
encoding the information of the source and the magnetic
field. Therefore, it is fascinating to have a careful study of
synchrotron radiations.

The electric vector can be extracted from the electric com-
ponents in F (−1)

μν via a timelike tetrad

Eμ ≡ 1

ε
F (−1)μνξν, (2.16)

where ξν is the timelike component of a local Minkowski
frame that can be chosen arbitrarily. The form of F (−1)

μν of a
general electromagnetic wave can always be rewritten as

F (−1)
μν ≡ kμAν − kνAμ, (2.17)

where Aμ can be read from the expression (2.13)

Aμ = −4e
[
ḡμα(kβDτ Z

[β Zα])(kηZ
η)−3

]
τ=τ0

. (2.18)

Taking into account the conditions, k ·k = 0 and k ·A = 0, we
obtain the luminosity of the synchrotron radiations emitted
by the source Zα:

L = 4πε2EμEμ = 4π(kρ Z
ρ)2(AσAσ ), (2.19)

Plunging the definition of kα into the Eq. (2.8) we have
kαZα = 1. Combining with this relation, we substitute the
expression of Aμ into L and finally find the luminosity

L = 4π |kβDτ Z
β Zα − Dτ Z

α|2τ=τ0
. (2.20)

Next, we move to the polarization vector of the syn-
chrotron radiations. Because the polarization vector f μ ∝
Eμ should be normalized and transverse along the null
geodesic, we have f μ fμ = 1, f μkμ = 0. Note that a gen-
eral polarization vector of the electromagnetic wave has four
components but only one physical degree of freedom. The
reason is that apart from the above two constraints, gauge
freedom exists. We can see that the physical information of
the polarization vector remains unchanged if one chooses dif-
ferent observers. Considering the fact that ξμ can be regarded
as the 4-velocity of an observer, we change ξ to ξ ′, it is not
hard to check that the variation δ f μ ≡ f ′μ − f μ satisfies
δ f μδ fμ = 0, δ f μkμ = 0, which means that it is propor-
tional to the 4-momentum of radiation, i.e., δ f μ ∝ kμ. In this
sense, f ′μ is indistinguishable from f μ: they differ only by
a gauge transformation proportional to kμ. Moreover, from
Eq. (2.17), we can see that

f μ ∼ F (−1)μνξν = (Aνξ
ν)kμ − (kνξ

ν)Aμ. (2.21)

The first term (Aνξ
ν)kμ ∝ kμ is just a gauge term that can be

dropped, and therefore without loss of generality, the polar-
ization vector can be taken as

fμ = Aμ√
A2

= N−1
[
ḡμα(kβDτ Z

[β Zα])
]
τ=τ0

, (2.22)

where we have normalized the vector appropriately by a fac-
tor N−1. Here we would like to stress that one can recover the
term (Aνξ

ν)kμ ∝ kμ in Eq. (2.21) from the expression in Eq.
(2.22) under a certain observer denoted by ξμ by requiring

f μξμ = 0, (2.23)

which can be easily derived by the definition of polarization
vector f μ.

The formulas (2.20) and (2.22) are the main results of our
work. They may reduce to those in flat spacetime, according
to the EEP. More importantly, they can be applied to explore
the polarized structure of synchrotron radiations in curved
spacetime without resorting coordinate transformations.

3 Polarization of synchrotron radiations around a
Schwarzschild black hole

As an application of Eq. (2.22), let us study the polarized
image of synchrotron radiations in the Schwarzschild black
hole spacetime. The Schwarzschild metric takes the form

ds2 = −
(

1 − 2M

r

)
dt2 +

(
1 − 2M

r

)−1

dr2

+r2(dθ2 + sin2 θdφ2), (3.1)

where M is the mass of the black hole. For simplicity, we
assume the black hole is immersed in a uniform magnetic
field [32] with a nonzero component of the gauge field1

Aφ = 1

2
Br2 sin2 θ, (3.2)

where B is a constant standing for the strength of the uniform
magnetic field. In particular, we want to emphasize that the
model we consider here does not involve the backreaction of
the magnetic field to the background spacetime. The space-
time is still characterized by the Schwarzschild black hole
metric.

3.1 The motion of source

In this work, the source of our interest is composed of
the large number of electrons moving in the region near a
Schwarzschild black hole. Since the Schwarzschild black
hole is bathed in a uniform magnetic field, the equation of

1 The analysis of the polarized images employed by our method has
been applied to a Melvin magnetic field in [33].
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motion of electrons must include a Lorentz force term [34].
For such an equation, one cannot obtain a general analytical
solution. To simplify our discussions, we will constrain the
charged particles’ motion to the equatorial plane vertical to
the uniform magnetic field and consider their circular orbits.
Thus, the tangent vector of the world line of the source takes

Zα = (ṫs, ṙs, 0, φ̇s), (3.3)

where we have set θs = π/2, rs = const with the subscript
s signifying the source, and the · means the derivative with
respect to the proper time τ . Because the energy E = −mZt

and angular momentum L = mZφ + q Aφ are conserved
along the world line of the source, where m and q are the
mass and the charge of the source, respectively, we can obtain

ṙ2
s = R(rs) ≡ E2 −

(
1 − 2M

rs

)

+
[

1 + r2
s

( L
r2
s

− B
)2

]
= 0, (3.4)

from the normalization condition of 4-velocity, that is,
ZαZα = −1. Note that in Eq. (3.4), we reparameterize
B, E, L as

B ≡ qB

2m
,

E ≡ E/m = ṫs

(
1 − 2M

rs

)
,

L ≡ L/m = φ̇sr
2
s + Br2

s . (3.5)

In our convention,B is always set to be positive, as a negative
B system is equivalent to a positive B system via a reflection
transformation. Thus, a positive L corresponds to a prograde
orbit and a negative one to a retrograde orbit, see Fig. 2. For
circular orbits, one further has R′(rs) = 0 corresponding to
r̈s = 0, with “ ′ ” the derivative with respect to r , which gives

rs

( L
r2
s

− B
) [ L

r2
s

(
1 − 3M

rs

)
+ B

(
1 − M

rs

)]
− M

r2
s

= 0.

(3.6)

Note that E does not appear in Eq. (3.6). Thus we can use this
equation to identify the reparameterized angular momentum
L for given rs and B. Then, plunging L, B and rs in Eq.
(3.4), one can obtain the reparameterized energy E . Then
the 4-vector Zα can be completely determined. The initial
conditions we need to know are the source orbit’s radius and
the magnetic field’s strength around the black hole.

In addition, only some of the timelike circular orbits are
stable. For example, for a vacuum Schwarzschild black hole,
the timelike circular orbits inside r = 6M are unstable, and
the critical radius is known as the innermost stable circular
orbit (ISCO). In the following, we would like to focus on
the situation in the radial position of the source located from
rs = 6M to rs = 10M .

Fig. 2 A diagram of retrograde (L < 0) and prograde (L > 0) orbits of
electrons. We set the direction of the magnetic field 
B along the positive
axis of z. θo is the inclination angle of the observer

3.2 Propagation of light and image of source

Up to now, we have known the information on the orbits of the
source and the polarization vector of synchrotron radiations
caused by the source. However, since our final task is to
find out the information on the polarization of synchrotron
radiations at the position of an observer, which is generally
placed at infinity, we have to figure out the propagation of
electromagnetic waves from the source to the observer. For
simplicity, we only consider high-frequency emissions such
that we can use the geometric optics approximation to deal
with the propagation problem. That is to say, the emissions
that spread away from the source go along null geodesics in
spacetime.

Null geodesics in Schwarzschild black hole spacetime
have been studied very clearly [35]. Here we only introduce
some basic physical quantities and useful formulas. In our
convention, we use kμ to denote the 4-momentum of photons.
Even though there is spherical symmetry in the spacetime of
a Schwarzschild black hole such that the source can be fixed
at θs = π/2, the observers are not necessarily on the equa-
torial plane. Thus kθ cannot be set to zero in general. Along
the null geodesics, there are three conserved quantities, the
energy ω and the angular-momentum l and Carter constant
Q2,

ω = −kt , l = kφ, Q2 = k2
θ + k2

φ

sin2 θ
. (3.7)

Then, from kμkμ = 0, one can find

kt/ω =
(

1 − 2M

r

)−1

, kr/ω = ±
√
R(r)

r2 ,

kθ /ω = ±
√

(θ)

r2 , kφ/ω = λ

r2 sin2 θ
, (3.8)
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where,

R(r) = r4 − (r2 − 2Mr)ρ2, (3.9)

(θ) = ρ2 − λ2

sin2 θ
(3.10)

with the impact parameters λ ≡ l/ω and ρ2 ≡ Q2/ω2. Next,
consider an observer with the coordinate (to, ro, θo, φo). The
position of the photons reaching the eyes of the observer
can be described in terms of celestial coordinates, which are
usually chosen as

α = − λ

sin θo
,

β = ±o

√
(θo), (3.11)

where ±o = sign(kθ
o ) denotes the sign of kθ in the

observer’s frame. Alternatively, for convenience, one can use
the polar coordinates (ρ, ϕ) instead of the Cartesian coordi-
nates (α, β). The two coordinate frames are related by

ρ =
√

α2 + β2 = Q

ω
, tan ϕ = β

α
. (3.12)

Then, considering the null geodesics connecting the source
(ts, rs, π/2, φs) to the observer (to, ro, θo, φo), one integrate
Eq. (3.8) and has

Ir = Gθ , �φ = φo − φs = λGφ, (3.13)

where

Ir =
 ro

rs

dr

±r
√
R(r)

, Gθ =
 θo

π/2

dθ

±θ

√
(θ)

,

Gφ =
 θo

π/2

csc2 θdθ

±θ

√
(θ)

(3.14)

with the notation
ffl

indicating that these integrals are path
integrals along the photon trajectories. And the symbols
±r = sign(kr ) and ±θ = sign(kθ ) indicate the sign of kr

and kθ , which switch at radial and angular turning points,
respectively. Let m̄ be the number of times light rays cross
the equatorial plane from the source to the observer. One can
find

Gθ = 1

ρ
arccos

(
− sin ϕ√

sin2 ϕ + cot2 θo

)
+ m̄π

ρ
. (3.15)

Here and hereafter, we set M = 1 for simplicity and with-
out loss of generality. In addition, different values of m̄ cor-
respond to the (m̄ + 1)th image on the observers’ screen.
In this work, we would like to focus on the primary image
and secondary image of the source. Now, from Eqs. (3.11–
3.15), one can completely obtain the image of the source on
the observer’s screen, given the spacetime coordinates of the
source and the observer.

3.3 Penrose–Walker constant

In this subsection, we study polarization information trans-
mission along null geodesics connecting the source and
the observer. Note that, for a spacetime of Petrov type-D
[15], there is a conserved quantity along the geodesics for
a parallel-transported and transverse vector, dubbed as the
Penrose–Walker (PW) constant, which is typically written
as

κ = 2r [(kμl̂μ)( f ν n̂ν) − (kμm̂μ)( f ν ˆ̄mν)]
≡ ω (κ1 + iκ2) , (3.16)

for a Schwarzschild black hole spacetime. In the above for-
mula, r is the radial coordinate introduced in the metric (3.1),
kμ is the 4-momentum of photons, f μ is the polarization vec-
tor, κ1,2 are rescaled real part and imaginary part of PW con-
stant, and {l̂μ, n̂μ, m̂μ, ˆ̄mμ} are the Newman-Penrose tetrads
taking the form

l̂ = 1√
2

(
1 − 2

r

)
[
∂t +

(
1 − 2

r

)
∂r

]
,

n̂ = 1√
2

(
1 − 2

r

)
[
∂t −

(
1 − 2

r

)
∂r

]
,

m̂ = 1√
2r

[
∂θ + i

sin θ
∂φ

]
,

ˆ̄m = 1√
2r

[
∂θ − i

sin θ
∂φ

]
. (3.17)

From Eq. (3.16), we can see that all the information of polar-
ization is encoded in the PW constant at the source, thus con-
sidering the light rays connecting the source and the observer,
we can decode the information of polarization at the observer.
On the screen of observers, the polarization vector can be read
from the PW constant as


E = (Eα, Eβ),

= 1

ρ2 (βκ2 + ακ1, βκ1 − ακ2). (3.18)

3.4 Image fluxes

In this subsection, we turn our attention to the calculations of
the image fluxes. Since the source in this work is a charged
particle with a finite size, Eq. (2.20) cannot be directly used to
give the total flux of the image on the screen. The formalism
for dealing with such a problem was developed in [36] for
an extremal black hole and was generalized to include the
non-extreme case in [37]. In this paper, we closely follow the
method presented in [37], which has been applied to calculate
the observational signature for near-extremal black holes in
the modified theory in [38,39].
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Firstly, we introduce the Newtonian flux, which is related
to the luminosity by

FN = L

4πr2
o
, (3.19)

where ro is the distance between the observer and the source.
The distance ro can be large, ro � 1. Then, we assume that
the source has a minimal proper radius b � 1 emitting with
the intensity Is in the rest frame of the source. The relation
between the intensity and the luminosity is given by

Is = L

4π2b2 . (3.20)

Taking the gravitational effect into account, we find the fluxes
of the image

Fo =
‹

dαdβ

r2
o

g4 Is = A
πb2 g

4FN , (3.21)

where g = νo/νs is the redshift factor and A = ‚
dαdβ is

the area of the image.
To determine the area of the image A, we would like to

introduce a local Minkowski coordinate system (T, X,Y, Z)

in the neighborhood of the source so that we have

T e(t) + Xe(r) + Ye(φ) − Ze(θ) = (xμ − xμ
� )∂μ, (3.22)

where xμ
� are the position coordinates of the source and e(i)

are the tetrad of the source. In this work we choose e(i) to be

e(t) = γ
∂t + �s∂φ√−gtt

, e(r) = ∂r√
grr

,

e(θ) = ∂θ√
gθθ

, e(φ) = γ

(
vs

∂t√−gtt
+ ∂φ√

gφφ

)
, (3.23)

with �s = dφ
dt being the angular velocity of the source and

γ = 1√
1 − v2

s

, vs =
√

gφφ

−gtt
�s . (3.24)

Using the terminology introduced in [37], we call the sur-
face T = X = 0 the “source screen” and denote by (Ys, Zs)

the position of the intersection of a light ray with the source
screen. Then the area of the image becomes

A =
‹

dαdβ =
∣∣∣∣

∂(α, β)

∂(Ys, Zs)

∣∣∣∣
‹

dYsdZs, (3.25)

where
∣∣∣ ∂(α,β)
∂(Ys ,Zs )

∣∣∣ is the Jacobian determinant between (α, β)

and (Ys, Zs). In addition, the projection of the hemisphere of
the source onto the screen is an ellipse with an area
‹

dYsdZs = πb2

|k̂ · X̂ | , (3.26)

where the unit vector k̂ is given by

k̂ = 1

k(t)

(
k(r) X̂ + k(φ)Ŷ − k(θ) Ẑ

)
. (3.27)

Then we can read the area of the image

A = πb2

|k̂ · X̂ |

∣∣∣∣
∂(α, β)

∂(Ys, Zs)

∣∣∣∣ , (3.28)

and find that the image flux takes the form

Fo = g4L

4πr2
o |k̂ · X̂ |

∣∣∣∣
∂(α, β)

∂(Ys, Zs)

∣∣∣∣ . (3.29)

Here we omit the detail of the computation of the Jacobian

determinant
∣∣∣ ∂(α,β)
∂(Ys ,Zs )

∣∣∣, and suggest the interested readers find

the details in [37].
Hereto, we have completed all the theoretical preparations

and are ready to apply our model to some specific situations.

4 Specific cases

In this section, based on the model we introduced, we would
like to show some specific cases, including the sources in
different orbits, the background with different magnetic field
strengths, etc. From Eqs. (2.15) and (2.22), we can see that
the strength of the magnetic field B does not influence the
direction of the polarization vector. Thus we fix B = 0.2 in
the following discussion.

In Fig. 3, we show the primary images of different sources
and their polarization directions for θo = 0, π/6, π/3 at B =
0.2. The upper panel is for the retrograde orbits, and the
lower one is for the prograde orbits. The light blue curves
are the images of the source, and the red lines stand for the
polarizations at different positions. As well, the radii of the
source orbits are rs = 6, 8 from the inside out. Note that the
magnitudes of the image fluxes for different observational
angles are very different, so we normalize the image fluxes
in specific and suitable ways for each observational angle to
show better the information of the fluxes in the plots. More
precisely, for θo = 0, we set the length of the red line Len to
be in direct proportion to the magnitudes of the image fluxes,
that is, Len ∝ Fo. For θo = π/6, we set Len = 1

2 log Fo
Fmin
o

,

where Fmin
o means the minimum of Fo of all the calculated

polarizations for a fixed observational angle θo while for θo =
π/3, we let Len = log Fo

Fmin
o

.

We also show the results of the secondary images of the
sources and polarization directions for θo = 0, π/6, π/3 at
B = 0.2 in Fig. 4. Likewise, the upper panel shows the images
of retrograde orbits, and the lower one shows the pictures
of the prograde orbits with light blue curves indicating the
photos of the trajectories at rs = 6, 8. Different from the
primary images, we use the red and blue line segments to
present the polarizations for rs = 6 and rs = 8, respectively,
since the pictures of these two orbits are very close and parts
of the line segments of the polarizations overlap so that they
are hard to distinguish with the same colors. In addition, the
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Fig. 3 Primary images of sources and their polarizations at B = 0.2

normalization of the fluxes in the secondary images is the
same as those in the primary ones.

From Figs. 3 and 4, we can see qualitatively that for the
prograde orbits, the angles between polarization directions
and the corresponding lines through the origin and the celes-
tial coordinates are tiny. In other words, the polarizations
from the prograde orbits are more likely pointing to the center
of the screen of observers. While for the retrograde orbits, the
angles between polarization directions and the correspond-
ing lines through the origin and the celestial coordinates
become larger as the inclination of the observer θo increases
in [0, π/2]. As for the magnitudes of the image fluxes, there
are many differences between the retrograde and prograde
orbits for both the primary and secondary images. For the
direct images, the magnitudes of the image fluxes change lit-
tle when rs goes from 6 to 8 for the retrograde orbits, while
they decrease significantly for the prograde orbits. For the
secondary images, the situation becomes more complicated.
In short, the magnitudes of the image fluxes have changed for
both the retrograde and prograde orbits, but the changes are
more significant for the prograde ones. Moreover, we can find
that the Doppler effect is more pronounced for the retrograde
orbits when θo = π/6, π/3.

In particular, we can see three patterns of the polarizations
in Figs. 3 and 4, that is the closed whorl, the open whorl, and
the radial pattern. And the patterns of polarizations are quite
different for the prograde and retrograde orbits, and are also
different for the primary and secondary images. In Fig. 3,
for the primary images of the sources in retrograde orbits,
the rings of polarization ticks look like closed whorls when
θo = 0◦, but then look like open whorls with the breaking
points at (α = αmax, β = 0) when θo = 30◦ and θo = 60◦.
In Fig. 4, for the secondary images of sources in retrograde
orbits, the rings of polarization ticks are all closed whorls
when θo = 0◦, 30◦, 60◦. As for the prograde sources, we can
see that all the rings of polarization ticks are radial patterns
for both the primary and secondary images, no matter what
the observation angle is.

To make the description of the polarization angle more
intuitive, from Eqs. (3.12) and (3.18) we introduce a new
angle defined as

ψ ≡ − arctan

(
κ2

κ1

)
+ sign(κ1) − 1

2
π. (4.1)

Here we specify that the angle ψ increases along the counter-
clockwise direction; for example, in Fig. 5, we have ψ > 0.
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Fig. 4 Secondary images of sources and their polarizations at B = 0.2

Note that the term sign(κ1)−1
2 π is added to ensure the ψ func-

tion is continuous in (−π, π), since arctan-function is usu-
ally defined in [−π/2, π/2]. Also, this term doesn’t affect
the polarization information since ψ , and ψ −π indicate the
same polarized light in physics. Thus, we can see that after
the vector at the angle of ϕ ∈ [0, 2π ] from the α-axis goes
through a ψ rotation, and it’s going to be parallel to the polar-
ization vector at the point (ρ, ϕ) on the α − β plane. Now,
we are allowed to use ψ to quantitatively reflect the extent to
which the polarization direction deviates from ϕ.

On the other side, note that the electric vector position
angle (EVPA) is usually defined as

EVPA ≡ 1

2
arctan

Eβ

Eα

= 1

2
arctan

βκ1 − ακ2

βκ2 + ακ1
(4.2)

which is related to our new angle ψ by

2EVPA = ϕ + ψ + 1 − sign(κ1)

2
π, (4.3)

with ϕ = arctan β
α

. In this work, we would like to pay more
attention to the deviation of the polarization direction from
ϕ, so we use the angle ψ instead of the EVPA. In addition,
there exists an axial symmetry for the image when θo = 0

Fig. 5 A diagram of an angle between the polarization vector and the
radial vector at (ρ, ϕ) in the α − β plane

and ψ can reflect this property more obviously; see the first
column in Fig. 6.

Considering the intensities of the secondary images are
much lower than those of the primary pictures, we show the
results of ψ for the primary images in Fig. 6. From Fig. 6, we
find that for both the prograde and retrograde orbits, |ψ |max
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Fig. 6 The variation of ψ with respect to ϕ for primary images

becomes larger as θo ∈ [0, π/2] increases and the orbit radius
rs ≥ 6 decreases. In particular, when θo = 0, that is, the
observer is at the north or south pole, ψ = 0 is always
true. However, compared with the prograde orbits, |ψ |max

of the retrograde orbits at the same radius is much larger.
The polarization structures are significantly different for the
prograde and retrograde orbits. In addition, as a warm-up, in
this work, we only consider the Schwarzschild black hole,
which has no spin. We cannot directly compare the above
images with the polarization images taken by EHT. Never-
theless, we may learn some qualitative lesson by comparing
two images. From the real polarized image of the supermas-
sive black hole in M87, one can see that the most apparent
feature is the shape of the polarization ring, which takes in a
closed whorl pattern. As far as the results are concerned, we
can see that our models’ polarization structures of retrograde
orbits are quite similar to those of the polarization image
taken by EHT. This could suggest that the flow of charged
particles should be retrograde, and the observational angle
should be tiny.

5 Conclusion

In this paper, we have derived two formulas in the geometric
optics approximation to describe the direction and the lumi-
nosity of polarized synchrotron radiations when a magnetic
field accelerates charged particles in curved spacetime. We
applied our formulas to study the polarizations of synchrotron
radiations in a Schwarzschild black hole with a vertical uni-
form magnetic field. We focused on the case that the sources
travel in retrograde or prograde circular orbits on the equato-
rial plane. We showed the primary and secondary images and
polarizations for various inclinations of the observers, as seen
in Figs. 3and 4. In particular, we introduced a new angle ψ to

quantitatively describe the deviations of the polarization vec-
tor from the radial vector at (ρ, ϕ) on the celestial coordinate
plane, as shown in Fig. 6. Some interesting behaviors of the
polarizations were also discussed. Even though our model is
based on the synchrotron radiations from the electrons being
accelerated by a magnetic field, our results could provide a
basis for considering more physical effects theoretically. For
example, the charged fluids can be seen as a large number of
electrons involving interactions; thus, comparing our results
with the results of the fluid, one can distinguish the effects
of other physical interactions on the polarization.

In addition, our model can have important applications
in astrophysics. Firstly, our formulas are covariant, mak-
ing it convenient to be applied to a curved spacetime con-
taining a black hole. Secondly, our model can be seen as
a good approximation to describe the polarized images of
charged particles in low-density accretion disks. Moreover,
our method is suitable for studying the synchrotron radia-
tions of electrons in the magnetosphere, such as the jets. At
last, our formulas can be further used to investigate different
polarization modes, such as linear and circular polarization.
On the other hand, our present results for retrograde charged
sources for small observational angles show the shape of the
polarization ring takes in a closed whorl, which is consistent
with the observed polarized image of the M87 black hole.
According to our theoretical results, analyzing the shape of
the polarization ring can tell us whether the flow of charged
particles is retrograde or prograde, as the first step for further
studies.

We conclude this paper with some outlooks. First of all,
the environment outside a black hole is always messy. In a
realistic rotational spacetime containing a black hole, many
complicated ingredients, such as dark matter, jets, halo, etc.,
should be considered. To have a good insight into the polar-
ized images from EHT, one may have to appeal for an effec-
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tive metric to describe real spacetime. In this case, the effec-
tive metric could become very complicated, and the so-called
Penrose–Walker constant does not exist. Nevertheless, our
discussion still works well in this situation. Secondly, the
equations (2.20) and (2.22) may play a fundamental role in
studying the radiations of accelerating charged particles in
an arbitrary orbit. Based on our work, one could see differ-
ent features for reflected, bound, and plunging orbits from
the polarization information in the images. For example, the
radiations from the particles in the plunging orbits may come
to us without interacting with the plasma. As a result, they
bring “clean” information on the spacetime geometry and the
magnetic field configuration to us.
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