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Abstract We consider the impact of a kinetic pole of order
one or two on the non-supersymmetric model of hybrid infla-
tion. These poles arise due to logarithmic Kähler poten-
tials which control the kinetic mixing of the inflaton field
and parameterize hyperbolic manifolds with scalar curvature
related to the coefficient (−N ) < 0 of the logarithm. Infla-
tion is associated with the breaking of a local SU (2)×U (1)

symmetry, which does not produce any cosmological defects
after it, and remains largely immune from the minimal pos-
sible radiative corrections to the inflationary potential. For
N = 1 and equal values of the relevant coupling constants, λ
and κ , the achievement of the observationally central value
for the scalar spectral index, ns, requires the mass parameter,
m, and the symmetry breaking scale, M , to be of the order
of 1012 GeV and 1017 GeV respectively. Increasing N above
unity the tensor-to-scalar ratio r increases above 0.002 and
reaches its maximal allowed value for N � 10−20.

1 Introduction

It is widely believed that the introduction of supersymme-
try (SUSY) and its local extension – supergravity (SUGRA)
– can alleviate the shortcomings of Standard Model (SM)
and provide a safe framework for building a variety of infla-
tionary models – see e.g. Refs. [1,2]. However, we have to
accept that there is no direct experimental confirmation of
SUSY until now [3]. On the contrary, there is a strong obser-
vational evidence in favor of the inflationary paradigm [4,5].
Consequently, it is worthwhile to build inflationary models
compatible with the observations, even without the presence
of SUSY.

One of those models – for reviews see Refs. [6,7] – is
undoubtedlyHybrid Inflation (HI) [8,9] which elegantly com-
bines a period of inflation with a phase transition at its termi-
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nation. It is termed “hybrid” because the inflationary vacuum
energy density is provided by a waterfall field, different from
the slowly rolling inflaton field. The model allows for values
of the relevant coupling constants larger than those used in
chaotic inflation, and can be successfully handled with sub-
planckian values for the inflaton field. It can be, also, embed-
ded in severalGrandUnifiedTheory (GUT) schemes – mainly
in the SUSY framework [10–15] – and nicely connects infla-
tionary cosmology with particle physics. A very intriguing
possibility of these embeddings is the production of topo-
logical defects at its end via the Kibble mechanism [16].
Between them, the metastable cosmic strings are currently of
special interest since they may decay generating a stochastic
background of gravitational waves [17,18] and interpreting,
thereby, recent results [19,20] – for other sources of gravita-
tional waves’ production after the end of HI see Refs. [21,22].

On the other hand, HI suffers from the problem of the
enhanced (scalar) spectral index ns which turns out to be,
mostly, well above the present data [23–25] – for another
point of view see Ref. [26]. Indeed, ns within tree level HI
exceeds unity [8,9] and only in a minor and tuned region of
parameters [27] a reconciliation with data can be achieved.
Inclusion of radiative corrections (RCs) [28] due to a pos-
sible coupling of the inflaton to fermions [29] or a conve-
niently selected non-minimal coupling to gravity [27,30]
can reconcile the model’s predictions with observations –
for another mechanism possibly applicable in non-SUSY HI
see Ref. [31]. However, the situation remains problematic
since in both aforementioned cases, HI of hilltop type [32]
is obtained and so an unavoidable tuning of the initial condi-
tions emerges. Nonetheless, it is by now well-known [33–39]
that the presence of a pole in the kinetic term of the inflaton
facilitates the achievement of observation-friendly chaotic
inflation. It would be, therefore, interesting to investigate if
this technique can be also applied for HI improving, thereby,
its compatibility with the observations – for a similar recent
work see Ref. [40].
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We find out that two types of HI can be formulated depend-
ing on the order p of the inflaton kinetic pole [41,42]. For
p = 1 we obtain E-model HI (EHI) whereas for p = 2,
T-model HI (THI) arises. The terms are coined in analogy
to E-model (chaotic) inflation (EMI) [43] (or α-Starobinsky
model [44]) and T-model inflation (TMI) [45]. As in the latter
cases [38,39], EHI and THI can be relied on Kähler poten-
tials and so the relevant particle models can be established as
non-linear sigma models with specific geometry of the mod-
uli space. In both cases, the minimal possible RCs [28] to the
inflationary potential are considered and subplanckian val-
ues for the initial (non-canonically normalized) inflaton field
are required. Unfortunately, our scheme is inconsistent with
the formation of cosmic strings after HI, since the relevant
scale M of the phase transition turns out to be a little lower
than the reduced Planck scale, mP = 2.44 ·1018 GeV, and so
the tension of the cosmic strings [17,18] would be unaccept-
ably large. Therefore, the version of HI with the waterfall
field charged under the continuous group U (1) with the low-
est possible dimensionality is not a representative working
example for our setup. However, if there is aU (1) factor in the
initial and the remaining gauge group, with the waterfall field
arranged in a convenient representation, then the production
of cosmic strings (and monopoles) after HI can be eluded
[46]. In our analysis we adopt the simplest possible scenario
for reference. Other ways to overcome the obstacle of topo-
logical defects within HI are proposed in Refs. [14,15,40].

Below, in Sect. 2, we describe how we can formulate these
versions of HI. The dynamics of the resulting inflationary
models is studied in Sect. 3 and these are tested against obser-
vations in Sect. 4. Finally, Sect. 5 summarizes our conclu-
sions. In Appendix A we explore the possibility for generat-
ing different moduli kinetic mixings allowed by generic Käh-
ler potentials. Throughout the text, the subscript , χ denotes
derivation with respect to (w.r.t) the field χ , charge conjuga-
tion is denoted by a star (∗) and we use units where mP = 1
unless otherwise stated.

2 Models’ setup

Since E and T models are introduced by means of a non-
minimal kinetic mixing [38,39], we find it convenient to
establish their combination with HI taking as reference the
non-linear sigma models. In these the kinetic mixing is con-
trolled by a metric Kαβ̄ defined on the moduli space. Here we
employ two (complex) scalar fields Zα with α = 1, 2 – the
inflaton Z1 = S and the waterfall field Z2 = �. Therefore,
the relevant lagrangian terms are written as

L = √−g
(
Kαβ̄

(
DμZ

α
)†

DμZ β̄ − V (Zα)
)

, (2.1)

where g is the determinant of the background Friedmann–
Robertson–Walker metric gμν with signature (+,−,−,−).
We further assume that Kαβ̄ originates from a Kähler poten-
tial K – as in the context of SUGRA – according to the
definition

Kαβ̄ = K
,Zα Z∗β̄ > 0 with K β̄αKαγ̄ = δ

β̄
γ̄ . (2.2)

We below, in Sects. 2.1 and 2.2, we respectively specify the
kinetic terms and the inflationary potential of our models.

2.1 Kinetic mixing

The adopted K ’s include two contributions, one for the infla-
ton, KI, and one for the waterfall field, KW. Namely, we
set

K = KI + KW with KW = |�|2 and KI

=
{

−2N ln(1 − (S + S∗)/2) for EHI,

−(N/2) ln(1 − |S|2) for THI.
(2.3)

We see that no mixing between the inflaton and waterfall
sectors exists and the non-zero elements of the relevant metric
are calculated to be

K��∗ = 1 and KSS∗ = N

2
·
{

(1 − (S + S∗)/2)−2 for EHI,

(1 − |S|2)−2 for THI.

(2.4)

For both models, KW parameterizes flat manifold – contrary
to the setting in Refs. [22,40] – whereas the geometry induced
by KI is hyperbolic, i.e., the curvature of the moduli space is
negative. In particular, the scalar curvatures associated with
KW and KI respectively are

RW = 0 and

RI =−K SS∗
∂S∂S∗ ln KSS∗ =−(1/N )

{
1 for EHI,

4 for THI.
(2.5)

More specifically, KI parameterizes the coset space
SU (1, 1)/U (1) in the case of THI, whereas for EHI the space
generated by KI is invariant under the set of transformations
related to the group U (1, 1) – see Ref. [37].

In Eq. (2.1) we include the covariant derivatives for the
scalar fields DμZα which are given by

DμZ
α = ∂μZ

α + igAa
μT

a
αβ Z

β, (2.6)

with Aa
μ being the vector gauge fields, g a gauge coupling

constant and T a with a = 1, . . . ,dimGGUT the generators
of the gauge group GGUT with dimensionality dimGGUT.
To avoid the production of cosmic defects after the end of
HI we have to select GGUT according to the guidelines of
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Ref. [46]. For definiteness, we here assume that � belongs
to the (2, 1) representation of the group G21 = SU (2) ×
U (1). Interestingly enough, this group may be identified with
the SU (2)R ×U (1)B−L part of a realistic (minimal) version
[47,48] of the GUT based on the group GLR = SU (3)C ×
SU (2)L × SU (2)R ×U (1)B−L .

If we use the following parameterizations for the two fields

S = σeiθ and � = 1√
2

⎧⎪⎪⎩φ1 + iϕ1

φ2 + iϕ2

⎫⎪⎪⎭ , (2.7)

we can introduce he canonically normalized (hatted) fields
during HI as follows

〈Kαβ̄〉HI Ż
α Ż∗β̄ � 1

2

(
˙̂σ 2 + ˙̂θ2 + φ̇α

2 + ϕ̇α
2
)

for α = 1, 2 (2.8)

where Kαβ̄ is given by Eq. (2.4) and assures the canonical
normalization of φα and ϕα . The symbol “〈Q〉HI” denotes the
value of a quantity Q during HI, where all the fields besides
σ are set equal to zero – see below – and dot stands for
derivation w.r.t the cosmic time. From Eq. (2.8) the remaining
fields σ̂ and θ̂ are identified as

dσ̂

dσ
= J =

√
N

fp
⇒ σ̂

=
{

−√
N ln(1 − σ) for p = 1,√

Narctanhσ for p = 2
and θ̂ � Jσθ,

(2.9)

where f p = 1−σ p with p = 1, 2. Note that σ̂ gets increased
above unity for σc ≤ σ < 1, facilitating, thereby, the attain-
ment of HI with sub-Planckian σ values.

2.2 Inflationary potential

In Eq. (2.1) the inflationary potential for our models is also
incorporated. Its form is

V (S,�) = κ2
(
|�|2 − M2

)2

+1

2
m2|S|2 + λ2|�|2|S|2 + 1

8
m̃|S − S∗|2, (2.10)

where M , m and m̃ are mass parameters whereas κ and λ are
dimensionless coupling constants. The last unusual term is
adopted to provide the angular mode of S, θ , with mass, as
we see below. The global minima of V lie at the direction

〈φ1〉 = ±√
2M and 〈σ 〉 = 〈φ2〉 = 〈ϕα〉 = 〈θ〉 = 0

(2.11)

and ensure a spontaneous breaking of the local symmetry
G21 down to a U (1)′. The scalar spectrum of the theory is

composed by three real scalars σ , δφ1 = φ1 − 〈φ1〉 and θ

with masses correspondingly

m̂σ =
√

(m2 + 2λ2M2)/N , mδφ1 = 2κM

and m̂θ = m̃/
√
N . (2.12)

Thanks to the selected representation of � in Eq. (2.7) neither
cosmic strings nor monopoles are left behind the breakdown
of G21 [46]. The truncated form of V with all the fields, but
σ and φ1, set at the origin reduces to its well-known form
[8,9] within HI, i.e.,

V (φ1, σ ) = κ2

(
φ2

1

2
− M2

)2

+ m2

2
σ 2 + λ2

2
φ2

1σ 2. (2.13)

Besides the phase transition above, V in Eq. (2.10) gives
rise to HI. This is, because it possesses an almost σ -flat direc-
tion at

〈φα〉HI = 〈ϕα〉HI = 〈θ〉HI = 0 with σ ≥ σc = √
2κM/λ.

(2.14)

The last inequality here assures the stability of the inflation-
ary path w.r.t the fluctuations of φα and ϕα during HI. Indeed,
as shown in Table 1 – where the mass squared spectrum of the
model along the trough in Eq. (2.14) is arranged – the posi-
tivity of m2

� is protected by the last inequality in Eq. (2.14).
From Table 1 we can also verify that θ acquires mass thanks
to the last term of Eq. (2.10) and confirm that m̂2

θ � H2
HI and

m̂2
� � H2

HI for σc < σ ≤ σ�. Here we define

(a) HHI = √
VHI0/3 with (b) VHI0 = κ2M4 � V (S, 0)

(2.15)

the almost constant potential density during HI. Note that
no massive gauge bosons exist in the particle spectrum since
G21 is unbroken during HI. Using the derived spectrum we
can compute the one-loop RCs (to the tree-level potential)
�VHI which can be written as [28]

�VHI = 1

64π2

(
m̂4

θ ln
m̂2

θ

�2 + 2NGm̂
4
φ ln

m̂2
φ

�2

)
. (2.16)

Here, NG = 2 is the dimensionality of the representation
of � and � is a renormalization-mass scale which, is deter-
mined by requiring �VHI(σ�) = 0 or �VHI(σc) = 0. This
determination of � renders our results practically indepen-
dent of � in the major parameter space of the models – cf.
Ref. [49]. Indeed, these can be derived exclusively by using
the tree level VHI = V (S, 0) with the various quantities eval-
uated at � since the relevant renormalization-group running
is expected to be negligible – see Sect. 4. On the other hand, as
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Table 1 Mass spectrum for EHI (p = 1) and THI (p = 2) along the
inflationary path in Eq. (2.14)

Fields Eigenstates Masses squared

1 real scalar θ̂ m̂2
θ m̃2 f 2

p /N

2NG real scalars φα, ϕα m̂2
� λ2σ 2 − 2κ2M2

shown in the same section, �VHI is capable to ruin the suc-
cessful inflationary predictions for κ � 0.003. This effect
may be avoided if extra contributions with opposite sign are
included into �VHI due to possible coupling of S or � to
fermions (such as right-handed neutrinos) – see Ref. [29].

In conclusion, the inflationary potential for EHI and THI is

VHI = VHI0 + 1

2
m2σ 2 + �VHI (2.17)

with the canonical normalization of σ in Eq. (2.9) being taken
into account and differentiating the models between each
other.

3 Inflation analysis

A period of slow-roll EHI or THI is controlled by the strength
of the slow-roll parameters which can be derived by applying
the standard formulae – see e.g. Refs. [6,7]. Note that the
derivation can be performed employing VHI in Eq. (2.17)
and J in Eq. (2.9), without express explicitly VHI in terms of
σ̂ – see e.g. Ref. [27]. Namely, we find

ε = 1

2

(
VHI,̂σ

VHI

)2

� m4 f 2
pσ 2

2NV 2
HI0

and

η = VHI,̂σ σ̂

VHI
� m2 f p

f p − pσ p

NVHI0
· (3.1a)

In the expressions above we replace VHI from Eq. (2.15b)
whereas VHI,̂σ and VHI,̂σ σ̂ are obtained by performing deriva-
tions of Eq. (2.17). As m increases beyond 5 · 10−6 the
approximation above becomes less accurate. It can be veri-
fied numerically that

ε(σc) ≤ 1 and η(σc) ≤ 1 (3.1b)

and so HI is terminated prematurely – i.e., for σf = σc – in
the major parametric space of our model.

To protect our scenario from the production of extra e-
foldings [8,9,40,50,51] during the waterfall regime, we take
into account the behavior of σ and φ1 after the time H−1

HI
from the moment when σ = σc, following the approach in
Refs. [8,9,40]. The absolute value of the φ1 effective mass

after this time can be estimated as

�m2
φ1

� 2λ2�σσc where �σ = 3
√

2m2m2
P/λκM3 (3.2)

is the reduction of the σ value below σc as can be computed
by the inflationary equation of motion. No sizable amount of
inflation occurs during the waterfall regime, if

�m2
φ1

/H2
HI � 36m2m4

P/κ2M6 > 1 ⇒ κ � 6mm2
P/M3,

(3.3)

where H2
HI is given by Eq. (2.15a). This condition is roughly

identical with that obtained in more accurate computations
[50,51] and can be easily met in our scenario – see Sect. 4.

The number of e-foldings N� that the pivot scale k� =
0.05/Mpc experiences during EHI or THI can be calculated
through the relation

N� =
∫ σ̂∗

σ̂f

dσ̂
VHI

VHI,̂σ

= NVHI0

pm2

(
ln

f pc

f p�
+ p ln

σ�

σc
+ 1

f p�
− 1

f pc

)
, (3.4)

where f p� = f p(σ�) and f pc = f p(σc) with σ� [̂σ∗] being
the value of σ [̂σ ] when k� crosses the inflationary horizon.
Taking into account that 1 � σ� � σf = σc, we can find the
following approximate version of the exact formula above
which can be analytically solved w.r.t σ� as follows

N� � NVHI0

pm2

(
1

f p�
− 1 − p ln σc

)
⇒ σ�

�
(

1 − NVHI0

NVHI0(1 + p ln σc) + N� pm2

)1/p

. (3.5)

The elimination of the terms p ln σ� − ln f p� can be justi-
fied by the fact that their contribution to N� in Eq. (3.4) is
subdominant for the σ values in the range 0.5 ≤ σ� < 1
encountered in our numerics.

The amplitude As of the power spectrum of the curvature
perturbations generated by σ at the scale k� is estimated as
follows

√
As = 1

2
√

3 π

VHI (̂σ∗)3/2

|VHI,̂σ (̂σ∗)| �
√
NV 3/2

HI0

2
√

3πσ�m2 f p�
· (3.6)

Inserting Eq. (3.5) into the previous equation and expanding
the resulting relation in powers of N� we can obtain a rough
estimation of κ as follows

√
As �

√
NV 3/2

HI0

2
√

3πm2

(
1 + NVHI0

p2m2N�

)
⇒ κ

�
(

2π
√

3Asm2

M6N 1/2

)1/3

· (3.7)
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We, also, calculate the remaining inflationary observables
via the relations

ns = 1 − 6ε� + 2η� � 1 − 2

N�

− 3N

p2N 2
�

+ VHI0

m2N 2
�

(
2N

p2 + 4N

p
+ N ln σ 2

c

)
, (3.8a)

αs = 2

3

(
4η2

� − (ns − 1)2
)

− 2ξ� � − 2

N 2
�

− 6N

p2N 3
�

+NVHI0

m2N 3
�

(
4

p2 + 10

p
+ ln σ 4

c

)
, (3.8b)

r = 16ε� � 8N

p2N 2
�

−16N 2VHI0

p2m2N 3
�

(
1

p2 + 1

p
+ ln σc

)
, (3.8c)

where ξ = VHI,̂σVHI,̂σ σ̂ σ̂ /V 2
HI, the variables with subscript �

are evaluated at σ = σ� and the approximate expressions are
obtained by expanding the exact result in powers of 1/N�. A
clear dependence of the observables on the parameters of VHI

in Eq. (2.17) arises which is expected to modify considerably
the – dominating at leading order in the expansions above –
predictions of the pure E- and T-model inflation [41,42].

We should, finally, note that the results above can be delib-
erated from our ignorance about the Planck-scale physics, if
we impose two additional theoretical constraints on our mod-
els:

(a) VHI(σ�)
1/4 ≤ 1 and (b) σ� ≤ 1. (3.9)

As we show below, the first from the inequalities above is
easily satisfied in our set-up for κ and M values consistent
with Eq. (3.7) – see also Sect. 4. Equation (3.9b) is fulfilled
by construction since the K ’s in Eq. (2.3) with the parame-
terizations in Eq. (2.7) induce a kinetic pole for σ = 1 and
so HI takes place for σ < 1. The introduction of a possible
parameter multiplying S in Eq. (2.3) can be absorbed by a
reparametrization of the free parameters of the model – see
e.g. Refs. [35,36].

4 Numerical results

The outputs of the analysis above can be refined numerically
and employed in order to delineate the available parameter
space of the models. In particular, we confront the quantities
in Eqs. (3.4) and (3.6) with the observational requirements
[4]

(a) N� � 61.3 + 1

12
ln

π2grh∗T 4
rh

30VHI(σf)
and

(b)
√
As � 4.588 · 10−5. (4.1)

In deriving Eq. (4.1a) we assume that HI is followed in turn by
a oscillatory phase, with mean equation-of-state parameter
wrh � 0, radiation and matter domination. We expect that
wrh = 0, corresponding to quadratic potential, approximates
rather well VHI for σ � σc. Motivated by implementations of
non-thermal leptogenesis [52,53], which may follow HI, we
set Trh � 4.1 · 10−10 for the reheat temperature. Also grh∗ =
106.75 is the energy-density effective number of degrees of
freedom which corresponds to SM spectrum respectively.

As regards the remaining observables, we take into
account the latest data from Planck (release 4) [23], baryon
acoustic oscillations, Cosmic Microwave Background (CMB)

lensing and BICEP/Keck [24]. Adopting the most updated
fitting in Ref. [25] we obtain approximately the following
allowed margins

(a) ns = 0.965 ± 0.0074 and (b) r ≤ 0.032, (4.2)

at 95% confidence level (c.l.) with |αs| � 0.01. The con-
straint on |αs| is readily satisfied within the whole parameter
space of our models. Enforcing Eq. (4.1a) and (b) we can
restrict κ and σ� and compute the models’ predictions via
Eqs. (3.8a), (3.8b) and (3.8c), for any selected N , λ/κ , m
and M – see Eq. (2.10). Note that m̃ is totally irrelevant for
the computation and can be fixed at a value (e.g., m̃ = 10m)
throughout so that m̂θ � HHI. With this arrangement, �VHI

in Eq. (2.16) is totally dominated by its second term in the
equation above. Given that � in Eq. (2.16) can be deter-
mined self-consistently as mentioned in Sect. 2.2, �VHI is
calculated using as inputs the free parameters of the tree-level
potential in Eq. (2.10). Compared to the original model of HI
[8,9], we here employ one more free parameter, N , related
to the non-minimal kinetic terms adopted in Eq. (2.4).

We embark on the presentation of our results by com-
paratively plotting the variation of VHI as a function of σ in
Fig. 1a and σ̂ in Fig. 1b for EHI (solid lines) and THI (dashed
lines). In both cases we set λ = κ and M = 0.1 and achieve
the central ns in Eq. (4.2a) by selecting m = 4.12 · 10−6

[m = 2.04 · 10−6] for EHI [THI]. The corresponding val-
ues of κ , N�, σ� and r are listed in the third, fourth, fifth
and sixth leftmost column of the Table below the graphs.
These results are obtained by our numerical code taking into
account exact expressions for J, VHI and the other observ-
ables – i.e., Eqs. (2.9), (2.17), (3.4), and the leftmost equal-
ities in Eqs. (3.8a), (3.8b) and (3.8c). These values can be
approximated by those obtained by employing the formulas
of Sect. 3 – i.e., Eqs. (3.5), (3.7), and the rightmost equal-
ities in Eqs. (3.8a), (3.8b) and (3.8c). The outputs of this
computation are displayed in the five rightmost columns of
the Table in Fig. 1. Note that in the case of analytic expres-
sions we prefer to compare σ� derived by Eq. (3.5) with its
numerical value and let m as input parameter. We remark
that N� is analytically underestimated in both cases. This
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fact leads to an overestimation of σ� and κ . On the other
hand, ns and r are closer to their numerical values for EHI
than for THI. The non-consideration of the second term in
Eq. (2.17) in the denominators of Eq. (3.1a) seems to aggra-
vates the error in analytic expressions of THI. Despite their
low accuracy, though, the analytical expressions of Sect. 3
assist us in understanding the general behavior of the infla-
tionary dynamics.

In the plots of Fig. 1 we verify the pretty stable mechanism
[35–37,45] which establishes EMI and TMI: VHI expressed
in terms of σ̂ develops a plateau for σ̂ � 1 but σ < 1 – since
σ̂ increases w.r.t σ as inferred from Eq. (2.9). Indeed, the σ�

values depicted in Fig. 1a – and arranged in the Table of Fig. 1
– get enhanced according to Eq. (2.9), i.e., σ̂∗ = 0.99 [1.66]
for EHI [THI] – see Fig. 2b. Contrary to the standard EMI
and TMI, though, we here observe that (i) the inflationary
path terminates at σ = σc due to the instability in Eq. (2.14)
– this is the same for both EHI and THI since M and λ/κ

are kept fixed in both cases – and (ii) the required σ� does
not lie extremely close to the location of the pole at σ = 1
and so the relevant tuning of the initial conditions, somehow
quantified – cf. Refs. [35–37] – by the quantity

�1∗ = (1 − σ�) , (4.3)

is less severe here. Namely, we obtain �1∗ = 19% [�1∗ =
24%] for EHI [THI], whereas �1∗ ≤ 10% in all the models of
chaotic inflation studied in Refs. [35–39]. Also no proximity
is needed between σ� and σc as in the last paper of Refs. [11–
13].

Employing data from the two representative cases depicted
in Fig. 1, we can analyze further the inflationary mechanism
of our models. Namely, (i) the semiclassical approximation,
used in our analysis, is perfectly valid avoiding possible cor-
rections from quantum gravity, since V 1/4

HI (σ�) = 3.3 · 10−3

[V 1/4
HI (σ�) = 2.9 · 10−3] for EHI [THI] is less than the ultra-

violet cut-off scale, mP = 1, of theory – cf. Eq. (3.9); (ii) any
possible running of the quantities measured at � is negligible,
since the scale � in Eq. (2.16) is found to be � = 1.6 · 10−3

[� = 9.5 · 10−4] for EHI [THI], i.e., quite close to the
aforementioned V 1/4

HI (σ�)’s; (iii) the contribution of �VHI to
VHI is quite suppressed, since (�VHI/VHI)(σ�) = 3.6 · 10−5

[(�VHI/VHI)(σ�) = 10−5] for EHI [THI]; (iv) the criterion of
Eq. (3.3) is comfortably fulfilled, since �m2

φ1
/H2

HI � 536.5

[�m2
φ1

/H2
HI � 199.6] for EHI [THI] and so no modification

of Eq. (4.1a) is necessitated.
A prominent aim of the marriage between E- and T-models

and HI is the diminishment of ns at the acceptable level of
Eq. (4.2a). The achievement of this goal is readily demon-
strated in Fig. 2 where we display the resulting values of ns

versus m for EHI – see Fig. 2a – and THI– see Fig. 2b –
with the constraints of Eq. (4.1) and (4.2b) being fulfilled.

We set M = 0.1, N = 1 and λ = κ (solid line), λ = 2κ

(dashed line) and λ = κ/2 (dot-dashed line). The observa-
tional allowed region of Eq. (4.2a) is also limited by thin
lines. In both cases m turns out to be of the same order of
magnitude (around 10−6) but the allowed region for EHI is
wider than that in THI. With fixed M and N , which keep κ

roughly unchanged – cf. Eq. (3.7) –, we observe that as m
increases (without change order of magnitude) the positive
contribution in the approximate part of Eq. (3.8a) decreases
together with ns, which enters the observationally favored
region of Eq. (4.2a). For even large m values, σ� in Eq. (3.5)
approaches unity – since the second term of the denominator
overshadows the first one –, and so Eq. (4.1) ceases to be
satisfied and the various lines terminate.

Encouraged by the acceptable ns results above, we pro-
ceed to the delineation of the allowed parameter space of
our models setting N = 1 and ns equal to its central value in
Eq. (4.2a) – possible variation of ns within its allowed margin
yields relatively narrow strips which would be indistinguish-
able especially in the κ − M plane. We present our findings
in Fig. 3 devoting Fig. 3(a) and (a′) to EHI and Fig. 3(b) and
(b′) to THI. In particular, we display in Fig. 3(a) and (b) the
allowed contours in the m − M plane and in Fig. 3(a′) and
(b′) the allowed curves in the κ − M plane. The conventions
adopted for the various lines are also shown in the right-hand
side of each graph. In particular, the solid, dashed and dot-
dashed lines correspond to λ = κ , λ = 2κ and λ = κ/2. The
various lines terminate at low M (or large κ) values due to
the augmentation of the contribution of �VHI in Eq. (2.16)
to VHI in Eq. (2.17). Indeed, when |�VHI/VHI| approaches
8 · 10−4, �VHI starts influence the predictions of HI. Such
a situation is encountered for κ � 6 · 10−3 [κ � 3 · 10−3]
in EHI [THI]. On the other side, the almost horizontal part
of the various lines stop for large m (low κ) values since σ�

reaches the pole region – see Eq. (3.5) – and the computa-
tion related to Eq. (4.1) becomes unstable. At these points
we encounter the lowest possible �1∗’s which tend to the
ugly amount of 0.2%. For λ = 2κ the upper bounds of the
corresponding lines are obtained for M = 1. We adopt this
conservative bound which assures meaningful 〈φ1〉 values
and comfortable fulfillment of Eq. (3.3).

In the Table of Fig. 3, we accumulate indicatively explicit
values of the various parameters (restoring units hereafter)
for λ = κ . From the listed values we notice that the allowed
M’s approach mainly the string scale contrary to the SUSY
versions of HI where M turns out to be [10–13] close to
the SUSY GUT scale, MGUT � 2.86 · 1016 GeV. This fact,
though, neither violates Eq. (3.9a) nor amplifies dangerously
�VHI in Eq. (2.17) since the low enough κ values, which are
compatible with Eq. (3.7), keep VHI(σ�) and �VHI under
control. Comparing the data for EHI and THI, we remark
that larger m’s and �1∗’s and wider ranges of κ are allowed
in EHI whereas both models share similar M’s. For the same
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Fig. 1 Variation of VHI, VHI/VHI0 − 1, as a function of (a) σ for
σc ≤ σ < 1 and (b) σ̂ for σ̂ (σc) ≤ σ̂ < σ̂ (1) fixing M = 0.1,
N = 1, λ = κ and ns = 0.965. We consider EHI (solid lines) or THI

(dashed lines). Values corresponding to σ� and σc (a) or σ̂∗ and σ̂c (b)
are also depicted. Some of the parameters of our models – derived by
employing our numerical and analytic formulae – are displayed in the
table

Fig. 2 The allowed by Eqs. (4.1) and (4.2b) values of ns versus m for M = 0.1, N = 1, several λ/κ’s (indicated in the graphs) and (a) EHI or (b)
THI. The region of Eq. (4.2a) is also limited by thin lines

inputs of the Table Fig. 3, we can estimate the inflaton mass
m̂σ from Eq. (2.12), with results

0.08 � m̂σ /1013 GeV � 66 for EHI;
0.27 � m̂σ /1013 GeV � 44 for THI. (4.4)

These ranges let, in principle, open the possibility of non-
thermal leptogenesis [52,53], if we introduce a suitable cou-
pling between � and the right-handed neutrinos [29].

Varying N beyond unity, we are able to explore another
portion of the parameter space of our models as in Fig. 4.

We depict there the allowed curves in the m − N plane for
M = 0.1, central ns in Eq. (4.2a) and EHI – see Fig. 4a
– or THI – see Fig. 4b. We use the same shape code for
the lines as in Fig. 4 with the change that in Fig. 4b the
dashed line corresponds to λ = 3κ/2 and not to λ = 2κ

as in all the previous cases. The reason of this replacement
is that RCs invalidate almost the whole parameter space of
THI for λ = 2κ and N > 1. From our data we see that r
increases with N as in the standard EMI and TMI [38,39,45]
and in agreement with the analytical findings in Eq. (3.8c).
The progressive enhancement of r along each line is shown
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Fig. 3 Allowed curves in the m − M [κ − M] plane (a and b) [(a′ and b′)] for N = 1, ns = 0.965 and various λ/κ’s indicated in the graphs. We
consider EHI (a and a′) or THI (b and b′). The allowed ranges of the various parameters for λ = κ are listed in the table with units reinstalled

Fig. 4 Allowed by Eq. (4.1) values of N versus m for M = 0.1, ns = 0.965 several λ/κ’s, indicated in the graphs, and (a) EHI, or (b) THI. Shown
is also the variation of r in grey along the lines
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by gray numbers. Note that a segment of the solid and dot-
dashed lines in the left graph of Fig. 4 coincide between each
other. We display the r ’s corresponding to λ = κ/2 along
the common part of these lines. The upper bound on r in
Eq. (4.2b) provides an upper bound on N which is related to
the geometry of the moduli space via Eq. (2.5). Namely, we
find the following maximal N values

Nmax =
{

9.6, 13, 18

13.1, 17.5, 33.8
for λ/κ =

{
2, 1, 0.5 (EHI)

1.5, 1, 0.5 (THI)
.

(4.5)

We observe that the largest Nmax values are obtained for λ <

κ . This can be understood by the observation that ln σc < 0
and dominates the parenthesis in Eq. (3.8c). For λ < κ ,
| ln σc| is lower than its value for λ ≥ κ and so, larger N
values are needed so as r to reach its bound of Eq. (4.2b).
In all, from the data of Fig. 4 we find the following allowed
ranges of parameters

1 � m/1013 GeV � 10.2, 1 � κ/10−3 � 2.8 and 1.4 � �1∗/0.1 � 3.6 for EHI;
3.8 � m/1012 GeV � 84, 6.8 � κ/10−4 � 29 and 1.8 � �1∗/0.1 � 3.0 for THI.

(4.6)

In the ranges above, we obtain −6 � αs/10−4 � −1.5
or −2.8 � αs/10−4 � 6 for EHI or THI respectively. We
remark that �1∗ increases with N (and r ) in both cases.

5 Conclusions

Inspired by the successive data releases on CMB perturba-
tions – which favor the inflationary paradigm – and the neg-
ative LHC results regarding SUSY, we focused on the well-
known model of non-SUSY HI (i.e. hybrid inflation) [8,9]
attempting to reconcile it with data. Our proposal is based on
the non-SUSY potential in Eq. (2.10) and the non-minimal
kinetic terms of the inflaton sector with a pole of order p = 1
or 2 – see Eqs. (2.1) and (2.4). These terms emerge thanks to
the adoption of the logarithmic Kähler potentials in Eq. (2.3)
which parameterize hyperbolic moduli manifolds. Therefore,
our models although non-SUSY inherit the Kählerian type
of moduli geometry from the SUSY context. This assump-
tion restricts considerably the allowed p values as shown in
Appendix A. The resulting models are called EHI (for p = 1)
and THI (for p = 2) due to the function which relates the
initial and the canonically normalized inflaton – see Eq. (2.9).

Selecting the gauge group broken after the end of HI and
the representation of the waterfall field we succeeded to evade
the formation of any topological defects. We also included
the minimal possible one-loop RCs (i.e., radiative correc-
tions) to the inflationary potential and restricted ourselves

to the portion of the parameter space where the waterfall
regime occurs suddenly. We found ample and natural space
of parameters compatible with all the imposed restrictions.
E.g., for N = 1, λ = κ and the observationally central value
of ns, we find the allowed ranges shown in the Table of Fig. 3.
Increasing N beyond unity, for the same ns and λ/κ values,
we verify an enhancement on the r values which reaches its
maximal allowed value for N = 13 or N = 17.5 within
EHI or THI, respectively. It is gratifying that no extensive
proximity between the values of the inflaton field at the hori-
zon crossing of the pivot scale and the location of the pole
is needed – see the �1∗ values in the aforementioned Table
which increase with N . Therefore, EHI and THI can be char-
acterized as more natural than the original E- and T-model
inflation as regards this tuning. On the other hand, EHI and
THI are less predictive due to the more parameters which let
corridors for larger variation of the inflationary observables.
It is also remarkable that the one-loop RCs in Eq. (2.16) do
not affect the inflationary solutions for low enough values of
the relevant coupling constants κ and λ – see Fig. 3.

Comparing our work with that of Ref. [40], we may remark
the following differences-novelties here: (i) We motivated
EHI and THI as non-linear sigma models; (ii) we overcome
the problem of the topological defect through the considera-
tion of a specific representation of the waterfall field; (iii) we
explored not only THI but also EHI; (iv) we considered flat
geometry for the waterfall field; (v) we included the mini-
mal one-loop RCs to the inflationary potential; (vi) we delin-
eated the parameter space of the models avoiding any sub-
critical production of e-foldings. On the other hand, we did
not embed our models in SUGRA as done in Ref. [40]. The
standard mechanism [54] of embedding is not so effective
for HI since the stabilization of the waterfall fields at the ori-
gin does not reproduce the non-SUSY potential and a rather
different situation may emerge. Moreover, the R symmetry
preserved by the superpotential [10] restricts further the pos-
sible forms of K , if it is imposed also to it. Modification of
the present model in order to generate gravitational waves
compatible with the NANOGrav reported signal [19,20], via
a late production of cosmic strings [17,18] or via a subcritical
stage of fast-roll inflation [22] could be another interesting
target for future analysis.
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Appendix A: Kinetic poles and Kähler potentials

It is clear that the consideration of a kinetic pole is crucial for
the successful implementation of our proposal. For this rea-
son it would be interesting to check if the pole order could
be different than the values, p = 1 and 2, considered in
our work. In general grounds, the metric of moduli space
KSS∗ may be a totally arbitrary real function and so it may
include pole of any p. This freedom, though, can be drasti-
cally reduced if we confine ourselves to metrics originated
from some Kähler potential, K .

To highlight this key issue, we generalize the K ’s consid-
ered in Eq. (2.3) adopting the following

K = −NK ln

(
1 − 1

3

(
|S|2n + Sq S∗l + Sl S∗q)

)
. (A.1)

The argument of ln includes a real function |S|2n and a com-
plex one, Sq S∗l – together with its complex conjugate which
result to a real contribution. We set unity inside ln to assure a
well-behaved expansion for low S values, as required by the
consideration of non-renormalizable operators. We insist on
logarithmic K ’s since these are usually employed in string
theory and assure fractional metrics with possible poles. The
metric KSS∗ , generated by the K above, along the inflationary
path in Eq. (2.14) is found to be

〈KSS∗ 〉HI

= NK
3n2σ 2n+(l−q)2σ 2(l+q)+2σ l+q

(
3lq+(l−n)(n−q)σ 2n

)

σ 2
(
3 − σ 2n − 2σ l+q

)2 .

(A.2)

Varying the exponents n, q and l in the domain (−3, 3) with
unit step we obtain the metrics

〈KSS∗〉HI

= NK ·

⎧⎪⎨
⎪⎩

1/ f 2
1 for (q, l, n) = (1, 0, 0) and (0, 1, 0),

1/ f 2
2 for (q, l, n) = (0, 0,±1),

±(1, 1, 0) and ± (1, 1, 1),

(A.3)

which reproduce the – already used in Eq. (2.8) – kinetic
terms

N σ̇ 2/2 f 2
p with f p = 1 − σ p (A.4)

for p = 1 and 2. The former is obtained for N = NK /2
whereas the latter for N = 2NK . Note that 〈KSS∗〉HI

employed in THI can be derived not only for n = 1 as
expected – see e.g. Eq. (2.3) – but also for n = −1. On the
other hand, our scanning does not reveal any other kinetic
terms of the type in Eq. (A.4) for p > 2. The simplest met-
rics including f p with p = 3, 4, 5 and 6 in the denominator
are

〈KSS∗〉HI = 9NKσ 4

4 f 2
3

,
4NKσ 2

f 2
4

,
NK (24 + σ 5)σ 3

4 f 2
5

and

9NKσ 4

f 2
6

· (A.5)

It is rather uncertain if the 〈KSS∗〉HI’s above yield kinetic
terms which support inflationary solutions. As a conse-
quence, it is highly nontrivial, if not impossible, to achieve
kinetic terms of the form in Eq. (A.4) with p > 2 starting
from a Kähler potential.
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