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Abstract Inspired by nonlocal gravity theories, time-
delayed cosmology proposes a delayed Friedmann equation
that generically predicts an inflationary period with a natu-
ral end. The key parameter of this proposal is a time delay
that is presumed to be very small in order for the model to
evade potential astrophysical constraints. This work subjects
this small-delay assumption to a test. We address the ques-
tion of just how large a time delay can be accommodated
within our current cosmological data. In order to do so, we
do not restrict the model to the inflationary era and consider
its possible operation in the late Universe as well, with an
eye for any smoking-gun features that may indicate the pres-
ence of a time delay. We study the background evolution
predicted by the delayed Friedmann equation and determine
the growth of Newtonian perturbations in this delayed back-
ground. We show that a surprisingly large late-time cosmic
delay is statistically consistent with Hubble expansion rate
and growth data. Based on these observables, we also find
that the standard ΛCDM model has no advantage over time-
delayed cosmology in terms of the Bayes factor.

1 Introduction

The inflationary hypothesis [1,2], which posits that the
early Universe underwent exponential expansion, remains
the mainstream resolution to the Big Bang’s cosmic conun-
drums, namely the flatness [3], horizon [4,5], and monopole
[6] problems. This accelerated expansion drove down the ini-
tial curvature of spacetime, locked in the uniformity of the
Universe, and diluted the density of magnetic monopoles to
negligible levels all at once. Although primordial gravita-
tional waves are yet to be detected, cosmic microwave back-
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ground data strengthens evidence for a scenario that looks
a lot like inflation [7]. But despite the phenomenological
success of the theory, the usual implementation of inflation
via scalar fields called inflatons comes with its own prob-
lems [7,8]. Inflaton models usually violate energy conditions
[9,10], and the fundamental nature of inflatons also remains
an open question [11,12]. These reasons continue to motivate
the search for alternative mechanisms [13–17].

One such proposed mechanism is the time-delayed cos-
mology of Choudhury et al. [18]. In this proposal, the evo-
lution of the energy density of the Universe as expressed in
the Friedmann equation is delayed by a constant τ relative to
expansion (Eq. 4). While ad hoc and seemingly unnatural, the
scheme does appear to predict inflation generically without
some of the problems of inflaton models. An exploration of
its consequences is premised on the possibility of some non-
local theories effectively generating time-delayed responses
in gravitational dynamics [19–21], and on the richer dynam-
ics afforded by time-delayed systems [22,23]. More broadly,
it answers a general invitation to explore the potential role of
delay differential equations in fundamental physics [24].

However, time-delayed cosmology has received scant
attention from the community. This is likely due to its lack of
a firm fundamental basis. An important point is that its key
parameter, the time delay τ , is generally just presumed to be
of the order of Planck time. One notable attempt to constrain
this parameter was made in Ref. [25], where the time delay
was found to be only six orders of magnitude larger than the
Planck time. This estimate however rests on what appears to
be an arbitrarily defined error function of cosmic quantities
and an assumption on the number of e-foldings at the end of
inflation.

To our knowledge, there is as yet no conclusive estimate of
the time delay. But one can reasonably expect that, if it exists
at all, it ought to be minuscule – or essentially negligible –
in order to avoid resulting in radically different cosmologies
from the one we observe.
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One of the aims of this work is to empirically test whether
this strong – albeit reasonable – expectation comports to con-
straints given by observational data. Instead of postulating
the smallness of the time delay, we let observations settle the
value of the delay. In order to do this, we apply time-delayed
cosmology to the late Universe where an optically invisible
fluid, often dubbed dark energy, supersedes matter and radi-
ation to source the observed late-time cosmic acceleration
[26–30]. The substantial evidence for dark energy and the
theoretical parallels between primordial inflation and dark
energy make the application of time-delayed cosmology to
the dark Universe today worth undertaking.

In particular, we consider the effects of the delayed Fried-
mann equation (Eq. (4)) at late times and determine the back-
ground evolution as well as the growth of Newtonian pertur-
bations about this delayed background expansion. We calcu-
late the Hubble expansion rate H(z) as well as two growth
observables, the growth rate f (z) and f σ8(z). We show clear
dependence of the predictions on the time delay parameter
τ and estimate this parameter directly from observational
data. While we believe that Solar System and LIGO obser-
vations are likely to place significantly tighter constraints on
the time-delayed proposal, we emphasize that the proposal,
at its core [18], was designed as a phenomenological model
for cosmology, where only the Friedmann equation is mod-
ified. Lacking a fundamental action, it is not known how a
time delay would manifest itself on these local scales. There-
fore, we have chosen these two sets of cosmic observables
for an initial test of the proposal.

It is not the intent of this paper to defend time-delayed
cosmology beyond its original context nor to promote time-
delays as a generic feature present in all gravitational phe-
nomena. Our goal is more modest. We wish to empirically
check the viability of attributing late-time cosmic acceler-
ation partially to a time delay, and to calculate what our
observed cosmology requires the time delay to be. As we
shall show, time delays lead to a very distinct feature – i.e.
kinks – in our observables that may be used to rule out time
delays with future surveys. Our analysis also shows that,
in surprising contrast to the expectation that a time delay
(should it exist) has to be small in order to mimic standard
cosmology, the observational probes we employ require the
time delay to be fairly large. This result is of interest espe-
cially because it is likely to be strongly discordant with con-
straints that will come from Solar System and LIGO obser-
vations.

In the next section, we briefly introduce important details
of time-delayed cosmology. In Sect. 3, we discuss the back-
ground evolution. In Sect. 4, we set up the equations for
the growth of matter perturbations and discuss the predic-
tions of time-delayed cosmology. In Sect. 5, we perform a
Markov chain Monte Carlo sampling and estimate the time
delay parameter τ directly from the Hubble expansion rate

H(z), the growth rate f (z), and f σ8(z) data. In Sect. 6, we
discuss the implications of our time delay estimate. Finally,
we conclude our work in Sect. 7. The code for reproduc-
ing the figures and calculations in this paper can be freely
downloaded at [31].

Conventions We work with the geometrized units c =
8πG = 1 and the mostly plus metric signature (−,+,+,+).
A dot over a variable denotes differentiation with respect to
the cosmic time t .

2 Time-delayed cosmology

We provide a short introduction to the foundations of time-
delayed cosmology (Sect. 2.1) and discuss the method of
steps for solving a delay differential equation (Sect. 2.2). We
then describe the set-up of time-delayed cosmology at late
times (Sect. 2.3).

2.1 Foundations

With the observational support for large-scale statistical
homogeneity [32–34] and isotropy [35–37], the standard
description of cosmic evolution is given by the following
Friedmann equation:

(
ȧ(t)

a(t)

)2

= 1

3
ρ(t), (1)

where a(t) is the scale factor which measures the expansion
of the cosmos and ρ(t) is the energy density of the perfect
fluid permeating the Universe. Assuming an equation of state
of the form p(t) = ωρ(t) (where p is the fluid pressure and
ω is a constant called the equation of state parameter) and
solving the continuity equation,

ρ̇(t) = −3(ρ(t) + p(t))
ȧ(t)

a(t)
, (2)

the Friedmann equation can be written as

(
ȧ(t)

a(t)

)2

= ρi,x

3
a(t)−3(1+ω), (3)

where ρi,x is the initial energy density of the fluid denoted by
x . A late Universe described by the Friedmann equation and
filled with a mixture of cold (i.e. pressureless) dark matter
(ω = 0) and a cosmological constant Λ (ω = −1) is referred
to as the standard ΛCDM model.
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On the other hand, time-delayed cosmology is based on a
delayed Friedmann equation

(
ȧ(t)

a(t)

)2

= ρi,x

3
a(t − τ)−3(1+ω), (4)

where τ is some constant that, in the original application in
the inflationary era, has units of Planck time tp ∼ O(10−44)

s. The interest for Eq. (4) derives from the fact that in this
delayed set-up, inflation appears to be a generic prediction
needless of inflatons (shown below). Delaying the energy
density term in this way is completely ad hoc and not unique.
The time delay parameter τ could be introduced in other
ways. For example, the left-hand side of the Friedmann equa-
tion could have been delayed instead. It is interesting to
note however that the original proponents report that Eq.
(4) share the same predictions with a couple of time-delayed
variants. We choose to study Eq. (4) in particular because
this is the proposal studied in Ref. [18]. Furthermore, this is
the simplest phenomenological model that admits an analyt-
ical accelerated expansion. We believe the simplest model
suffices because our goal is merely to study the possible con-
sequences of a (large) time delay.

A fundamental action is yet to be found to support this
time-delayed set-up. However, the proposal does draw moti-
vation from fundamental ideas. A nonlocal theory of (quan-
tum) gravity may induce a delayed response on the Universe
since nonlocality may imply time-smeared interactions [18].
For example, the Deser–Woodard models [38–40], which are
inspired by quantum loop corrections, involve cosmological
equations with retarded boundary conditions. A more explicit
example is Ref. [41] in which nonlocality has resulted to
equations of motion that are systems of delay differential
equations.

Despite these examples, the limitations of this proposal
are clear. Time-delayed cosmology, as originally proposed,
is merely phenomenological and primarily designed for cos-
mology. The fundamental physics behind its predictions is
therefore unknown. It is also impossible for us at the moment
to assess the ramifications of the proposal in other limits, e.g.
Solar system scale; in its current state, effects of a time delay
can only be determined on cosmic scales. The original pro-
ponents were aware of these issues (and other points such
as uniqueness and stability) and have discussed them in Ref.
[18]. Nonetheless, even if the proposal is merely phenomeno-
logical, it can and must be tested against data, particularly in
the context in which it was proposed. The effort undertaken
for this work stands on this simple premise.

2.2 The method of steps

The delayed Friedmann equation can be solved with the
method of steps [22,23]. The essential idea of the method of

Fig. 1 The method of steps

steps is to replace the delayed term with a known solution
a(t) so that the delay differential equation becomes ordinary
within an interval that is then solvable with standard methods.
Effectively, the solution to the delayed equation (as with any
constant-delay differential equation) is a piecewise function
with each composite solution defined on an interval of the
size of the delay τ . The first composite solution, which is to
be defined, is called an initial history. This is the equivalent
of the initial value in ordinary differential equations.

Figure 1 illustrates the method of steps. Starting with a
given delay differential equation, we define an initial history
φ(t) on an interval at least the size of one delay unit, e.g.
[t0, t0 + τ). On the succeeding interval [t0 + τ, t0 + 2τ),
we replace the delayed term with φ(t − τ) and solve the
ensuing ordinary differential equation, using φ(t0 + τ) as an
initial value. We label the solution of this ordinary differential
equation as a1(t). On the following interval [t0+2τ, t0+3τ),
again with a size of one delay unit, we replace the delayed
term with a1(t − τ) and again solve the ensuing ordinary
differential equation for a2(t), with a1(t0 + 2τ) as an initial
value. We repeat this process for as many intervals as we
like, using the previous solution an(t) to replace the delayed
term and solve the resulting ordinary differential equation for
an+1(t). The piecewise function defined by an(t)’s comprise
the solution to the delay differential equation.

For a power-law initial history φ(t) = tα defined on t ∈
[0, τ ), which may be due to a quantum gravity effect or a pre-
Big Bang scenario, the delayed Friedmann equation admits
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Fig. 2 Some solutions to the delayed Friedmann equation due to a
delay τ = 10tp , where tp is Planck time. The inflationary period lasts
for one delay unit (in this figure, from t = 10tp to t = 20tp) before the
scale factor transitions to a decelerated evolution

inflation in the following interval:

a(t) = φ(τ) exp

(√
ρi,x

3

(t − τ)γ

γ

)
, t ∈ [τ, 2τ), (5)

γ = 1 − 3

2
(1 + ω)α. (6)

For succeeding times, the delayed equation has to be solved
numerically. In this work, we use the ddeint Python pack-
age [42] for the numerical solutions. Clearly, in time-delayed
cosmology, inflation can be naturally generated for a period
of one delay unit. This period also seamlessly ends, thereby
avoiding the “graceful exit” problem (see Fig. 2).

2.3 Application to late times

At late times, the phenomenon of interest is cosmic acceler-
ation due to dark energy. Because of the parallels between
primordial inflation and late-time cosmic acceleration, the
application of the delayed Friedmann equation at late times
is worth considering. Furthermore, it will be easier to place
constraints on time-delayed cosmology if we can show its
impact on the expansion era.

In this application, we phenomenologically regard dark
energy as a mixture of a cosmological constant and a time
delay. The delayed Friedmann equation is therefore of the
form

H(t)2 = H2
i

(
Ωi,m

a3(t − τ)
+ Ωi,Λ

)
, (7)

where H(t) := ȧ(t)/a(t) is the Hubble parameter, Hi is the
initial Hubble parameter value, Ωi,m := ρi,m/(3H2

i ) is the
matter density parameter, and Ωi,Λ := ρi,Λ/(3H2

i ) is the
cosmological constant density parameter. Equation 7 can be

Fig. 3 Some solutions to the time-delayed Friedmann equation in the
presence of a cosmological constant and time delay on the order of tc,
where tc = H−1

i = 0.0175 ± 0.0001 Gyr. The integration starts off
with an initial history of φ(t) ∼ t2/3 in the matter-dominated era and
evolves into the future

nondimensionalized. Setting t → t̄ tc, where t̄ is the dimen-
sionless time and tc is the characteristic time scale, Eq. (7)
becomes

H(t̄)2 = H2
i t

2
c

(
Ωi,m

a3(t̄ − τ̄ )
+ Ωi,Λ

)
, (8)

where τ̄ is the dimensionless delay. Choosing the time scale
tc = 1/Hi ,

H(t̄)2 =
(

Ωi,m

a3(t̄ − τ̄ )
+ Ωi,Λ

)
. (9)

Figure 3 shows that the delayed Friedmann equation can also
accommodate a late-time cosmic acceleration.

Because the delay is assumed to be very small as in Ref.
[18], it would have no impact on late-time observables, which
is why the computed power spectrum in Ref. [25] expectedly
appears to be in excellent agreement with observations. In
this application, we allow the delay to be large since the rele-
vant time scale tc is also large; we will integrate in the matter-
dominated era up to the present dark energy-dominated era.
We will solve the dimensionless version of Eq. (7) and the
relevant time scale would be tc = H−1

i , with Hi being the
Hubble parameter in the matter-dominated era. We find the
value of Hi using the following relation for a constant dark
energy density

ρi,Λ = ρ0,Λ, (10)

�⇒ 3H2
i Ωi,Λ = 3H2

0 Ω0,Λ, (11)

where H0 and Ω0,Λ are the Hubble constant and the present
value of the cosmological constant density parameter, respec-
tively. The latest Planck 2018 estimates are H0 = 67.4±0.5
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Fig. 4 The evolution of the apparent magnitude m(z) of Type Ia super-
novae. Here, we have assumed that the absolute magnitude takes the
value M = −19.3 and H0 is given by the Planck 2018 estimate. Shown
on the bottom plot is the relative difference between time-delayed cos-
mology and ΛCDM, which is used as the reference. Time-delayed cos-
mology is virtually indistinguishable from ΛCDM

km s−1 Mpc−1 and Ω0,Λ = 0.6889 ± 0.0056 [30]. Solving
for Hi in Eq. (10), we get

Hi = H0

√
Ω0,Λ

Ωi,Λ
. (12)

Starting our integrations in the time when Ωi,Λ = 10−6

(and Ωi,m = 1 − Ωi,Λ), this results to a time scale of tc =
0.0175 ± 0.0001 Gyr, where here and throughout the paper
we have used the SOAD package [43] for (asymmetric) error
propagation. The units of the time delay will be in terms of
this time scale tc. Note that this assumes the normalization
a(ti ) = 1 �⇒ 1 = Ωi,m + Ωi,Λ for convenience, where ti
is the initial integration time. This is different from setting the
normalization toa(t0) = 1 today, where t0 is the present time.
However, once the numerical solution has been obtained,
it can be renormalized so that the result matches what we
would have obtained if we had taken a(t0) = 1. The code for
reproducing the figures and calculations in this paper can be
freely downloaded at [31].

3 Hubble expansion

To obtain the background evolution from Eq. (7), we must
specify an initial history. Throughout this paper, we assume
a power-law initial history of the form φ(t) ∼ tα for the
delayed Friedmann equation. We have checked numerically
that the observables we are interested in in this paper do
not strongly depend on the parameter α (see Fig. 12) in red-
shifts that are currently accessible to us and especially for
reasonable values of α (that is, for α ≈ 2/3 which refers

Fig. 5 The evolution of the Hubble expansion rate H(z) in units of km
s−1 Mpc−1. Shown on the bottom plot is the relative difference between
time-delayed cosmology and ΛCDM, which is used as the reference.
The predictions have been normalized to have the value of the Planck
2018 estimate of the Hubble constant H0 at z = 0. A striking feature
of time-delayed cosmology is a kink or a point at which its prediction
changes sharply. These kinks are encircled in blue above

to the canonical matter-era solution). Furthermore, although
α gains a stronger effect at very large redshifts in terms of
affecting the magnitude of the observables and for very large
time delays (Hiτ > 10), the general shape of the observ-
ables are determined by the time delay parameter and not
by α. For these reasons and combined with the fact that an
α = 2/3 constitutes a more natural initial history (taking
after the canonical t2/3 matter-era solution), we choose to fix
the value of α to 2/3 in the following calculations instead of
taking it as a free parameter.

Due to Fig. 3, we can already expect that the background
evolution of time-delayed cosmology closely follows that of
ΛCDM. Indeed, if we look at the predictions for the appar-
ent magnitude m(z) of supernovae in Fig. 4, we can see that
time-delayed cosmological predictions are virtually indistin-
guishable from the ΛCDM prediction. This is the case even
when considering delays on the order of Hiτ ∼ 10 and when
considering larger redshifts. The difference between ΛCDM
and time-delayed cosmology is revealed when we look at
the Hubble expansion rate H(z). Figure 5 shows the evo-
lution of the Hubble expansion rate H(z) for a fixed H0.
The dashed red curve shows the prediction of the standard
ΛCDM model and the black curves are the predictions of
time-delayed cosmology. Predictions due to delays that are
larger than Hiτ = 1 already notably deviate from the ΛCDM
prediction at redshifts z > 5. Notice that the predictions
appear to start at different redshifts. This is the case for all
the redshift plots in this paper. This happens because differ-
ent delays affect the scale factor evolution differently, which
is then used to obtain the redshift. However, we have made
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sure that all quantities start out with the same initial condition
at the same starting integration time.

A striking observation in Fig. 5 are kinks (encircled in
blue) or points at which the predictions of time-delayed cos-
mology change sharply. In fact, the derivative of H(z) at any
of the kinks is undefined. This is an expected feature and an
artifact of delay differential equation models. It is well known
that discontinuities propagate in the derivatives of the solu-
tion to delay differential equations [22,23]. At the start of
integration, the first derivative is discontinuous. One delay
unit afterwards, the discontinuity propagates in the second
derivative. Since our definition of the Hubble expansion rate
involves ȧ(t), we expect to see the discontinuity in the second
derivative ä(t) at a certain point (the kinks).

Of course, we do not expect real, physical quantities of
the Universe to exhibit these discontinuities. But if our Uni-
verse is correctly modeled by a delayed Friedmann equation,
the abrupt transitions in H(z) serve as a generic smoking
gun that make them empirically interesting. There may be
fundamental reasons behind these discontinuities. For exam-
ple, the improved Deser–Woodard model [38] was shown to
have a discontinuous evolution of matter perturbation [44].
A possible cause of the discontinuity is a strong nonlocal
effect.

These kinks in the Hubble expansion rate already provide
an upper bound on the time delay without further statistical
analysis. In Fig. 6, we can see that a time delay with magni-
tude Hiτ ≈ 19 can already be ruled out due to the presence
of a kink that the data clearly does not accommodate. As the
value of the time delay is increased, the kinks in the Hubble
expansion rate are revealed at smaller and smaller redshifts.
This is also true if we consider other observables. Therefore,
all time delays Hiτ > 19 are also ruled out.

For time delays with magnitude Hiτ < 19, the smoking-
gun imprints of time-delayed cosmology on the background
evolution are only revealed at large redshifts for which data is
still unavailable. When we look at redshifts z < 2 (Fig. 6), we
can see that time-delayed cosmology closely follows ΛCDM
even for delays on the order of Hiτ ∼ 10. This shows that
the key time delay parameter does not have to be of the order
of Planck time as originally envisaged in order to fit observa-
tional data. Even large cosmic delays appear to be viable. An
unfortunate consequence of this is that the Hubble expansion
data is unable to distinguish time-delayed cosmology from
ΛCDM. To observe the difference, we look to Newtonian
perturbations.

4 Newtonian perturbations

In this work, we choose the growth of Newtonian matter per-
turbations as an additional probe of time-delayed cosmology.
In particular, we are interested in the growth rate f (z) and

Fig. 6 The evolution of the Hubble expansion rate H(z) in units of km
s−1 Mpc−1 at small and intermediate redshifts. Time-delayed cosmol-
ogy closely follows ΛCDM even for delays on the order of Hi τ ∼ 10.
The Hubble data are taken from the compilation in Ref. [45]

another observable f σ8(z), where z is the redshift, that are
both dependent on the amplitude of perturbations. The former
quantity is the speed of growth of perturbations in the Uni-
verse with respect to the cosmic expansion, and the latter is
essentially the growth rate scaled by the evolving root-mean-
square of matter perturbations. These observational probes of
large-scale structures have been used to distinguish between
modified gravity theories and the standard ΛCDM model
[46–54]. As we shall see, these will also be useful for obtain-
ing constraints on time-delayed cosmology.

4.1 Set-up

The growth of Newtonian matter perturbations is given by
[46,47]

δ̈(t) + 2H(t)δ̇(t) − ρm(t)δ(t) = 0, (13)

where δ(t) := δρm(t)/ρm(t) is the density contrast quan-
tifying the inhomogeneity of the universe and ρm(t) is the
background energy density of (dark) matter. This fluctu-
ation equation is valid for sub-horizon perturbations, i.e.,
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λ/a(t) � H(t)−1, where λ is the co-moving mode wave-
length of the density perturbation. It is convenient to rewrite
and solve this equation in terms of the scale factor a or the
redshift z (using the relation z = (1/a) − 1). Once δ(a) is
obtained, the two observables of interest can be easily calcu-
lated using the following definitions:

f (a) := d ln δ(a)

d ln a
, (14)

f σ8(a) := σ8

δ(a = 1)
δ(a) f (a), (15)

where σ8 is the present root-mean-square variance in the
number of galaxies in spheres of radius 8h−1 Megaparsec
(with h = H0/(100 km s−1 Mpc−1) being the dimension-
less value of the Hubble parameter today). Note that these
two observables are fundamentally independent quantities;
whereas f (a) carries information on dδ/da, f σ8(a) carries
information on δ(a).

In what follows, we solve the fluctuation equation

δ̈(t) + 2H(t)δ̇(t) − 3

2
H2(t)δ(t) = 0, (16)

where we have replaced the background matter energy den-
sity with its Hubble function equivalent using the (delayed)
Friedmann equation. The observables of interest in time are
then given by

f (t) := d ln δ(t)

d ln a(t)
= 1

H(t)

δ̇(t)

δ(t)
, (17)

f σ8(t) := σ8

δ(t = t0)

1

H(t)
δ̇(t), (18)

where t0 denotes the present day. In addition to assuming an
initial history of the form φ(t) ∼ t2/3 for reasons we men-
tioned before, we also set the canonical a(t) ∼ δ(t) ∼ t2/3

solution as an initial condition for the perturbation equation.
This means that we integrate deep in the matter-dominated
era up to the present dark energy-dominated era. In compar-
ing the results with the ΛCDM model, we use the latest value
of σ8 given by Planck: σ8 = 0.811 ± 0.006 [30].

We note that we are using the standard (i.e. non-delayed)
perturbation equation here instead of a new delayed pertur-
bation equation. We acknowledge that a higher time-delayed
theory may not even reduce to a Newtonian limit and there-
fore the above perturbation equation may need higher order
corrections coming from a consistent effective field theory.
We argue, however, that on subhorizon scales, λ � 1/H , and
the quasistatic regime, the perturbations should follow New-
tonian gravity at the leading order in any viable time-delayed
theory, and we shall not be interested in any other time-
delayed theory without this Newtonian limit. This view is
supported by theory-agnostic constraints coming from large

Fig. 7 The evolution of the growth rate f (z). Time-delayed cosmol-
ogy with intermediate (i.e. Hi τ ∼ 10) delay parameter values predict
markedly different growth rate evolutions. In particular, the predictions
for time-delayed cosmology decreases initially before increasing and
eventually peaking. There are also kinks (encircled in blue) in the pre-
dictions. Note that the non-circled sharp turns on the bottom plot are
inflection points produced when taking the absolute value of the relative
difference and do not correspond to predicted physical kinks

scale structure which show that only small departures from
Eq. (13) could even be compatible with cosmic growth data
[55,56]. Absent a fundamental action for time-delayed cos-
mology, assuming Newtonian perturbations is therefore the
most reasonable thing that one can do, short of proposing fur-
ther ad hoc prescriptions about how the delay directly affects
perturbations.

We clarify however that we are not claiming that this
limit is generically satisfied by all time-delayed theories.
Rather, we anticipate that leading-order effects of viable
time-delayed theories may be largely captured by Eq. (13).
(Otherwise, they would not be viable if we consider Refs.
[55,56].) We find that this conservative assumption is enough
to see interesting consequences of time-delayed cosmology
without having to develop an action-based delayed perturba-
tion theory.

4.2 Growth rate f (z)

Figure 7 shows the plot of the growth rate f (z). The dashed
red curve shows the prediction of the standard ΛCDM model,
whereas the black curves are the predictions of time-delayed
cosmology at different values of the time delay parameter τ .
Immediately, we can see that time-delayed cosmology makes
very different predictions for f (z) for values of the time
delay parameter on the order Hiτ ∼ 10. The growth rate
of a delayed Universe dips in the matter-dominated era (i.e.
z > 1) and then peaks later on before dark energy finally
suppresses it for good (see Fig. 9). On the other hand, if the
delays are on the order Hiτ � 1, then these dips and peaks
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Fig. 8 Comparison of the evolution of the density contrast and the
scale factor as well as their time rates of change

are weak or not visible at all and the growth rate is virtually
indistinguishable from the prediction of ΛCDM.

The characteristic decreasing of the growth rate predic-
tions earlier on implies that, for a certain period, the delayed
Universe was expanding faster than the perturbations were
growing. We can see this clearly in Fig. 8a. In Fig. 8b, we can
also see that the rate of expansion is initially greater than the
rate of growth of the fluctuation. Combined together, these
two scenarios suppress the growth rate at early times. But
after some time, the growth rate predictions start to increase
after decreasing. Notice that the transition to this increasing
phase is very abrupt. Since our definition of the growth rate
also involves ȧ(t), we expect to see kinks just as we saw
in the background evolution. Interestingly, the growth rate
becomes greater than unity at a certain point, implying that
in the delayed Universe, perturbations will eventually grow
faster than the Universe is expanding. This is also clear in
Fig. 8a and b. Later on, however, dark energy starts to dom-
inate and the growth rate is eventually driven down.

Fig. 9 The evolution of the growth rate f (z) at small and intermediate
redshifts. The growth rate data are taken from the compilation in Ref.
[57]

Figure 9 shows a closer look at the growth rate up to red-
shift z ∼ 3. Here, we can see that the kinks in the growth
rate evolution can also provide an upper bound. While the
uncertainties of growth rate data at z > 2.5 are very large,
it is safe to say that Hiτ ≈ 18 is already very unlikely to
be viable. On the other hand, time delays with magnitude
Hiτ � 10 do appear viable.

4.3 f σ8(z)

Figure 10 shows the plot of f σ8(z). Again, the standard
ΛCDM prediction is shown in dashed red, and the black
curves are the predictions of time-delayed cosmology at dif-
ferent values of the time delay parameter. Similar to the sce-
nario with the growth rate, time-delayed cosmology models
with time delay parameter values on the order Hiτ ∼ 10 pre-
dict f σ8(z) evolutions that are different from ΛCDM. The
f σ8(z) of the delayed Universe starts off smaller than but
eventually surpasses the standard prediction. When the cos-
mological constant becomes more important than matter dur-
ing the dark energy-dominated era, time-delayed cosmology
and ΛCDM follow each other in similar evolutions. Natu-
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Fig. 10 The evolution of f σ8(z). Time-delayed cosmology with inter-
mediate (i.e. Hi τ ∼ 10) time delay parameter values predict markedly
distinct f σ8(z) evolutions. It is not as pronounced here, but there are
also kinks (encircled in blue) in this plot for the time-delayed cosmol-
ogy predictions. Note that the non-circled sharp turns on the bottom
plot are inflection points produced when taking the absolute value of
the relative difference and do not correspond to predicted physical kinks

rally, we also find that delays on the order Hiτ � 1 lead to
f σ8(z) predictions that are indistinguishable from ΛCDM.
As with the growth rate, we also get a kink because the def-
inition of f σ8(t) also includes ȧ(t). Notice that in Fig. 10
the predictions start out at different magnitudes. Note that all
calculations started out with the same initial condition. The
differences in the initial value in these plots are due to the
normalizing constant δ(t = t0), which is of course different
for different models.

Figure 11 is a closer look at f σ8(z) up to redshift z = 2.
In this case, we do not see any kink even for a time delay
Hiτ ≈ 18. However, it is clear that a time delay Hiτ ≈ 18 is
already unlikely since its predicted evolution already misses
plenty of data points. Time delays Hiτ � 10 do however lead
to predictions that are already distinct from ΛCDM while
also appearing viable.

5 Delay estimate

We have already obtained a strict upper bound for the time
delay but to achieve a best estimate, we confront our numer-
ical solutions for H(z), f (z), and f σ8(z) with observational
data using a Markov-chain Monte-Carlo (MCMC) analysis.
Given data d and parameters p of a modelm, Bayes’ theorem
states that

P(p | d,m) = P(d | p,m)P(p | m)

P(d | m)
, (19)

Fig. 11 The evolution of f σ8(z) at small and intermediate redshifts.
The f σ8(z) data are taken from the compilation in Ref. [57]

where P(p | d,m) (the posterior) is the probability distri-
bution of the parameters p given d and m, P(d | p,m) (the
likelihood) is the probability of getting the data d given p and
m, P(p | m) (the prior) is the probability of the parameters
p according to our prior beliefs, and finally P(d | m) (the
weight of evidence or marginal likelihood of m) is a normal-
izing constant that, as we shall see, is important for model
comparison.

We consider a likelihood L given by

ln L ∼ −
N∑
i

(μobs
i − μth

i )2

2σ 2
i

, (20)

where N is the number of data points, μobs
i is an observational

data point, μth
i is a predicted value, and σi is the observational

error. We also take the Hubble constant H0 and σ8 as nuisance
parameters to be estimated. Again, we fix α to 2/3 because
α has a weak effect on the observables at small redshifts
(see Fig. 12) and because this value of α gives the canonical
matter-era solution.

Our priors are shown in Table 1. We intentionally choose
priors defined over wide ranges so as to avoid inadvertently
cutting the posterior short. We note that since our priors are
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Fig. 12 The evolution of different observables for a fixed time delay
and at varying initial histories. Here, Hi τ = 5.55. The effect of α on
observables is not strong at small redshifts and for time delays Hi τ < 10

Table 1 We choose uniform priors defined over wide ranges for all the
parameters

Parameter Prior

Hi τ [0, 20]
H0 [20, 100]
σ8 [0.5, 0.9]

Fig. 13 Marginalized posterior distributions of the time delay param-
eter τ and the Hubble constant H0 using Hubble data. The median esti-
mate is Hi τ = 5.63+4.97

−3.95 or τ = 0.0998+0.0890
−0.0703 Gyr, while the median

estimate for the Hubble constant is H0 = 72.67 ± 1.72 km s−1 Mpc−1

uniform, our arbitrary cutoffs for the priors do not affect the
value of the best estimates of the parameters so long as the
priors include these best estimates in their ranges. Since each
of our prior is defined over a wide range, the best estimate
for a parameter is guaranteed to be within the prior for that
parameter.

Note that we do not consider negative delays (i.e. Hiτ <

0). A negative delay means that the delayed Friedmann equa-
tion is advanced in time rather than retarded. In which case,
we must provide future information instead of an initial his-
tory. The solution then would be the past evolution. Since we
are interested in the predictions of time-delayed cosmology
in the late Universe, the time delay must be strictly positive.

We use the PyMultiNest [58] and GetDist [59]
Python packages to sample the posteriors via MCMC and
post-process the resulting MCMC chains. We consider the
Hubble expansion rate data compiled in Table 1 of Ref. [45]
as well as the growth rate and f σ8(z) data compiled in Tables
1 and 2 of Ref. [57], respectively. In what follows, we choose
to report the median estimate which is more robust to outliers
as compared with the mean. We have checked however that
the median estimates below are not too different from the
mean estimates with their credible intervals overlapping.

Figure 13 shows the posterior distributions for the time
delay parameter τ and the Hubble constant H0 using Hub-
ble expansion rate data alone. The median estimate for the
time delay is Hiτ = 5.63+4.97

−3.95 or τ = 0.0998+0.0890
−0.0703 Gyr.

Meanwhile, the median estimate for the Hubble constant is
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Fig. 14 Posterior distribution of the time delay parameter τ using the
growth rate data set alone. The median estimate is Hi τ = 7.11+4.95

−4.62 or

τ = 0.1232+0.0874
−0.0806 Gyr

H0 = 72.67 ± 1.72 km s−1 Mpc−1. Notably, the credible
interval of the time delay estimate is rather large and this is
the case for all the data we consider in this work. This may be
attributed to two things. Firstly, the uncertainties of the obser-
vational data points are themselves large. And secondly, from
Fig. 6, we can’t expect a sharply peaked posterior with a nar-
row credible interval because the predictions of time-delayed
cosmology for varying time-delays are very similar.

Figure 14 shows the posterior distribution for the time
delay parameter τ using the growth rate dataset alone. Upon
sampling, we find that the median estimate for the time delay
is Hiτ = 7.11+4.95

−4.62 or τ = 0.1232+0.0874
−0.0806 Gyr. The estimate

for τ has notably increased and we also find that the mass
of the posterior distribution has moved to a nonzero time
delay. On the other hand, Fig. 15 shows the posterior dis-
tributions for the time delay parameter τ and σ8 using the
f σ8(z) dataset. The median estimate for the time delay is
Hiτ = 7.42+4.87

−5.09 or τ = 0.1277+0.0864
−0.0885 Gyr. The median esti-

mate for σ8 = 0.80+0.02
−0.03. Notice in this case that the estimate

for the time delay has gotten much larger. Figure 16 shows
the posterior distributions when we combine the growth rate
and f σ8(z) datasets. We find that the median estimates for the
parameters are Hiτ = 7.12+4.60

−4.70 or τ = 0.1273+0.0799
−0.0840 Gyr

and σ8 = 0.80±0.02. What these results show is that growth
observables or perturbations consistently prefer nonzero val-
ues of the time delay parameter, especially f σ8 data. We can
see this not only in the median estimate but also in the mode.

To arrive at a best estimate, we combine the background
and growth datasets. Figure 17 shows the posterior distri-
butions of the time delay parameter, the Hubble constant
H0, and σ8. The median estimates are Hiτ = 5.55+4.57

−3.76 or

τ = 0.0993+0.0799
−0.0664 Gyr, H0 = 72.58+1.75

−1.67 km s−1 Mpc−1,
and σ8 = 0.80 ± 0.02. The best estimate for the time delay
is expectedly between the background median estimate and
growth median estimate. It is clear from the results that

Fig. 15 Marginalized posterior distributions of the time delay param-
eter τ and σ8 using the f σ8(z) data alone. The median estimates are
Hi τ = 7.42+4.87

−5.09 or τ = 0.1277+0.0864
−0.0885 Gyr and σ8 = 0.80+0.02

−0.03

Fig. 16 Marginalized posterior distributions of the time delay param-
eter τ and σ8 using the combined growth rate and f σ8(z) datasets. The
median estimates are Hi τ = 7.12+4.60

−4.70 or τ = 0.1273+0.0799
−0.0840 Gyr and

σ8 = 0.80 ± 0.02

growth observables especially prefer higher values of the
time delay.

To further strengthen our statistical analysis of time-
delayed cosmology, we compute the Bayes factor which is
roughly the Bayesian equivalent of the p-value used for clas-
sical (frequentist) hypothesis testing. Given data d and two
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Fig. 17 Marginalized posterior distributions of the time delay param-
eter τ , the Hubble constant H0, and σ8 using the combined back-
ground and growth datasets. The median estimates are Hi τ = 5.55+4.57

−3.76

or τ = 0.0993+0.0799
−0.0664 Gyr, H0 = 72.58+1.75

−1.67 km s−1 Mpc−1, and
σ8 = 0.80 ± 0.02

models m1 and m2, the preference for m1 over m2 in light of
d is quantified by the Bayes factor B12 defined as

B12 := P(d | m1)

P(d | m2)
, (21)

which is simply the ratio of the marginal likelihood of m1 to
the marginal likelihood of m2. This definition assumes that
both models are equally probable before accounting for the
data. This is a fair assumption in our case since this is the first
time that a time delay is even being considered in late-time
cosmology and we do not have prior information whether
time-delayed cosmology is preferred over ΛCDM.

Letting m1 denote ΛCDM and m2 denote time-delayed
cosmology, we compute the Bayes factor based on marginal
likelihoods calculated using the Hubble expansion rate data
alone (ln B12 = 0.629 ± 0.101), the combined growth data
(ln B12 = 0.286 ± 0.078), and finally the combined back-
ground and growth data (ln B12 = 0.548±0.125). Following
the criteria in Ref. [60], we find that regardless of the data
considered, the Bayes factor indicates a statistical preference
against time-delayed cosmology in favor of ΛCDM that is
not worth more than a bare mention (an odds in favor of
ΛCDM less than 3:1). In other words, no conclusion can be
drawn as to which model is favored.

6 Discussion

Strictly speaking, we have estimated the dimensionless quan-
tity τ̄ := Hiτ , not the dimensional τ alone. Therefore, pro-
vided that Hi is many orders larger than H0, the time delay τ

could still prove to be Planckian in scale. But assuming a con-
stant vacuum energy, we estimated that Hi ∼ 102H0 during
the matter era at which we started our integration (Eq. 12).
This is not even enough to bring the delay down to seconds.
In order for the time delay to be Planckian, we must integrate
near the inflationary era where we expect the Hubble param-
eter, which grows backwards in time, to be sufficiently large
(i.e. Hi 	 102H0). Still however, in that case, we will have
to use different observables from which we may get a dif-
ferent value for τ̄ . This means that we may (not necessarily
will) find a large estimate for τ nevertheless.

To our knowledge, the only previous work done to con-
strain the delay in the early-universe context is Ref. [25]. In
that work the authors estimated the dimensional delay τ to be
τ ∼ 106tp. Unlike ours, their estimate was not based on data.
Rather, it hinges on other estimated quantities (such as the
spectral index ns), which in turn were the result of minimiz-
ing an ad hoc error function. Crucially, these other estimated
quantities already assume ΛCDM. Hence, what Ref. [25]
actually did is to find the value of τ so that the time-delay
predictions are as close to ΛCDM as possible as opposed to
the value of the time delay that best fits the data. It is no sur-
prise then that their estimate was forced to be astronomically
small (since τ → 0 implies ΛCDM).

6.1 Compatibility of a large delay with local observations

The large value of our estimated time delay raises an impor-
tant concern. Taking off from our intuitive understanding of
the usual Friedmann equation, the time-delayed cosmology
proposal might be taken to mean that changes in the local
energy density result in delayed changes in the local geom-
etry. A large time delay then would be completely incom-
patible with everything we observe in the Solar System. For
instance, if the Sun suddenly disappeared, then the planetary
orbits will only change after τ = 0.0993+0.0799

−0.0664 Gyr.
This is clearly troubling, though not without a potential

resolution. First off, the time-delayed cosmology proposal is
strictly just the delayed Friedmann equation. The naive argu-
ment above assumes that a delayed Friedman equation should
imply delayed Newtonian gravity. But this is far from obvi-
ous. For this reasoning to work, one must first embed time-
delayed cosmology within a proper theory and then work out
the appropriate Solar System (or Newtonian) limit. It is not
clear at all that this should mean delayed effects in the Solar
System.

Indeed, it can happen that a large time delay is hidden
on Solar System scales. This is precisely how some modern

123



Eur. Phys. J. C (2022) 82 :1148 Page 13 of 15 1148

modified gravity theories operate today, evading our very
stringent Solar System constraints. With the help of screening
mechanisms (e.g. the Vainshtein mechanism [61]), the effects
of a potential “fifth force” due to the presence of extra fields
are revealed on cosmic scales but hidden in the Solar System.
Without an embedding fundamental theory for time-delayed
cosmology, this scenario will remain a tantalizing possibility.

Our broader point is that the time-delayed cosmology pro-
posal is entirely phenomenological, and as such must be eval-
uated in the context in which it was proposed, which is cos-
mology. Its status is similar to that of modified Newtonian
dynamics (or MOND), which in its early days was proposed
for galactic scales and no more. Requiring that time-delayed
cosmology must touch on Solar System dynamics is analo-
gous to asking MOND to do cosmology. Both represent an
overreach for the phenomenological models. They can be
done, but not without an embedding theory, which at this
point does not exist for time-delayed cosmology.

These matters are open problems and fall outside the scope
of our paper, which is largely meant to provide a first empir-
ical grounding of time-delayed cosmology. Further theoret-
ical developments of the model may provide insights into
these problems and we expect our work to be informative in
these aims.

6.2 Compatibility of a small delay with large scale
observations

In all the considerations above, we held the premise, for the
sake of discussion, that current cosmic data (at least those that
we considered) actually does indicate that the time delay is
large. From the marginalized posterior of the dimensionless
time delay in Fig. 13 using Hubble data, the mode is actually
at the lower bound, τ̄ = 0. We can argue, just from that, that
the time delay is indeed small if we take the mode as our
“best fit” parameter. But when we start to consider growth
data in conjunction with the Hubble data, the mode, median,
and mean all clearly shift away from τ̄ = 0. In that case,
our “best estimate,” however we define it – mode, median, or
mean – will be large. And so we have reported that our best
estimate for the time delay is large.

But as we have noted, the Bayes factor actually tells us that
there is in fact no conclusive preference for either our best
estimate or ΛCDM (which would be indistinguishable from a
small delay estimate). This can be expected from our plots in
Sects. 3 and 4. Large time delays (at least those around our
best estimate) produce predictions close to that of ΛCDM
(and therefore, close to those of small time delays). In addi-
tion, the uncertainties are much greater than any difference
between those predictions.

Therefore, although our marginalized posteriors force us
to report a large time delay estimate, it is of course still pos-
sible that the time delay is actually small. We can report that

the time delay is large with only 1σ confidence. Small time
delays are already included in the 2σ -contour of the delay
posteriors in Fig. 17.

That said, the point of our paper is not to rule out small time
delays. These delays trivially satisfy observations. Rather,
our point is to show that large time delays, contrary to well-
founded expectations, can also satisfy observations. In order
to rule out large time delays definitively, we must look to data
at larger redshifts where the generic bumps and kinks we have
shown are predicted to be present. As we have argued above,
we will not be able to impose constraints coming from other
scales without a fundamental action prescribing how the time
delay appears in those contexts.

7 Conclusion

This paper was motivated by the question of what our cosmo-
logical data say about the key parameter of the time-delayed
cosmology proposal. One strongly expects that large time
delays be disallowed as these lead to a radically different
dynamical equation, a delayed Friedmann equation, that we
expect would provide discordant predictions. This is fair, but
it is an assumption. In this work, we have instead subjected
this expectation to a test. Our work is thus meant to be an
initial data-driven assessment of time-delayed cosmology.

We applied the delayed Friedmann equation in the late-
time Universe and chose the Hubble expansion rate H(z) and
Newtonian matter perturbations as our observational probes.
We obtained the predictions for the late-time background
evolution and the growth data. In calculating the growth
observables, we have used the standard perturbation equa-
tion and assumed that the effects of time-delayed cosmology
enter through the background expansion only. We find that
the conservative assumptions we have made are sufficient to
reveal smoking-gun imprints of the phenomenological time
delay. These imprints can be credited to the propagation of
discontinuities inherent in the solutions of delay differential
equations. This is the first time that the effects of these dis-
continuities have been demonstrated in this model.

We unexpectedly find that a significantly large time delay
is not ruled out by the probes we considered, in stark contrast
to prevailing expectations. This surprising result is one of the
main takeaways from our paper. Our best estimate of the key
time delay parameter is τ = 0.0993+0.0799

−0.0664 Gyr using the
combined Hubble expansion rate and growth datasets. This
is clearly many orders of magnitude larger than Planck time.
We also calculated the Bayes factor and find no conclusive
evidence in favor ofΛCDM against time-delayed cosmology.

Admittedly, the large time delays forced upon us by our
data analysis is theoretically quite unpalatable. But we argue
that this is precisely what lends the result its significance. It
is difficult to imagine that a large time delay in gravitational
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dynamics can be compatible with Solar System and gravita-
tional wave observations, even though we are unable to check
this ourselves because time-delayed cosmology is merely a
phenomenological proposal that does not really extend to
those scales and still awaits a fundamental action. The conse-
quences of a time delay for smaller scales certainly needs fur-
ther exploration, but this goes beyond the scope of our work.
Here, we have taken time-delayed cosmology at face value
– as a phenomenological model meant solely for cosmology
– that therefore demands empirical testing. Our work may
however be informative in tackling these theoretical prob-
lems.

Future large-scale structure surveys [62,63] and high red-
shift distance indicators such as proposed standardizable can-
dles (quasars [64] and gamma ray bursts [65]) and standard
sirens [66,67] can be expected to further constrain the time
delay. We leave to future work the search for a fundamental
action that supports a time-delayed cosmology.
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