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Abstract In this work we introduce the Alcubierre warp
metric using spherical symmetry. In this way we write the
Einstein equations for a perfect fluid and for an anisotropic
fluid with cosmological constant. Analysing the energy con-
ditions for both cases, we find that these cases are flexible
enough to allow them to be satisfied. We also find that in the
time-independent case of the warp bubble, the metric admits
a timelike Killing vector and all the energy conditions are
satisfied except for the strong energy condition. Moreover,
in the time-independent case a barotropic equation of state
known from cosmological models naturally arises.

1 Introduction

It is well known that, locally, particles cannot exceed the
speed of light. However in general relativity particles can
travel globally at superluminal velocities [1–4]. This idea
was explored by Alcubierre [5] to propose a way to pro-
pel material at velocities higher than the speed of light. The
mechanism proposed by Alcubierre creates a distortion of
space-time, called a warp bubble, resulting in spacetime con-
tracting in front of the bubble and expanding behind of the
bubble as the bubble moves through a geodesic. The line
element proposed by Alcubierre was

ds2 = −dt2 + (dx − f (rs)vsdt)
2 + dy2 + dz2, (1)

with rs = √
(x − xs)2 + y2 + z2 and vs = dxs

dt . This corre-
sponds to an ADM-like decomposition of the line element
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[6–8]. Studying this metric, Alcubierre concluded that the
proposed warp implied the violation of energy conditions,
since it seemed that a negative energy density would be nec-
essary for the creation of the bubble.

Since Alcubierre’s original work, there have been numer-
ous papers that contribute to a better understanding of the
physics behind the warp metric. One interesting aspect has
been to understand the properties of the metric that would
allow superluminal velocities to be achieved [3,4]. Another
relevant contribution to the warp drive theory has been to
study modifications of the original metric that allow for a sig-
nificant decrease in the energy involved in the creation of the
warp bubble [9]. In [10] Natario proposes a new warp drive
with zero expansion. Lobo and Visser [11] discuss the char-
acteristics of the matter inside the warp bubble and determine
that it must be massless at the centre. However, it is found
that in these studies the amount of energy needed is signifi-
cantly reduced. One aspect that has received much attention
from the very beginning has been the study of energy con-
ditions as a means of validating the physical feasibility of
the warp drive [12–24]. The occurrence of horizons [25–
27] and closed time curves has also been studied [28]. This
has been the subject of extensive debate in the community
and although much progress has been made, there is still no
definitive consensus.

In a series of papers [29–33], Santos et al. propose to
study the warp problem from the point of view of matter
distribution. The question they ask is how the elements of the
warp metric should be constrained by some kind of matter,
for example dust or a perfect fluid. In this way they were able
to obtain some relations for the deformation function given
by the Einstein equations. This form serves as an alternative
to the way the problem has been treated in early works.
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In this paper we approach the warp drive problem from
the point of view of Santos’ work. In Sect. 2, we propose
a new version of the warp metric in spherical coordinates.
The idea is to exploit the symmetries of these coordinates
and to obtain a set of Einstein equations that are simpler
to interpret. We then propose an energy–momentum tensor
corresponding to a perfect fluid, and calculate the Einstein
equations. With this configuration we proceed to the study of
the energy conditions. We then investigate in Sect. 3 a more
general parametrization of the energy–momentum tensor that
takes into account the incorporation of anisotropy and heat.
With this setup we calculate the Einstein equations and verify
the energy conditions. Finally we make some concluding
remarks and further considerations.

2 The spherical warp drive

The original Natario’s warp drive metric is a globally hyper-
bolic spacetime, which is given in Cartesian coordinates by
the line element [10],

ds2 = −dt2 +
3∑

i=1

(
dxi − Xidt

)2
, (2)

where functions Xi corresponds to the X , Y , and Z compo-
nents of a vector field defined in Euclidean 3-space. This can
be expanded to obtain,

ds2 = −dt2(1 − (Xi )2) + (dxi )2 − 2Xidxi dt. (3)

We can identify the mixed component dxidt and the spacial
flat part of the metric dxi .

Based on the above expression, we write the following
line element

ds2 = −dt2 + (dr − Rdt)2 + r2d�2

= −dt2
(

1 − R2
)

+ dr2 + r2d�2 − 2Rdrdt, (4)

where we can easily identify the flat part of the metric
dr2 + r2d�2 with d�2 = dθ2 + sin2 θdφ2 and the mixed
component 2Rdtdr . The main idea is that the flat part of the
warp is described in spherical coordinates.

There is no direct mapping between metrics (3) and (4),
albeit the physical mechanism in both follows the same rea-
soning. Alcubierre assumed the motion of the warp bubble
occurred in a defined direction, for instance x . In this case
the line element is just,

ds2 = −dt2(1 − X2) + dx2 − 2Xdxdt (5)

He proposed X = v f (rs), where v = dx
dt and f (rs) is a

bounded function that defines the shape of the bubble in this
Cartesian type of spacetime. Note that r2

s = (x − xs(t))2 +
y2 + z2 corresponds to the radius of the bubble and its origin

is in general different from the origin of the spatial part or
the metric. On the other hand, the metric (2) propagates in
an arbitrary direction described by the coordinates x , y and
z. The metric (4) propagates in an arbitrary radial direction.

In [34] Bobrick et al., a scheme to construct warp drive
metrics based on their very definite properties is proposed.
They consider formally warp drive spacetimes that admit a
global Killing vector field, ξ , which is aligned with the four-
velocity of the boundary of the region of the warp. This field
establishes a global frame of rest with respect to the warped
region. Any physical motion of an observer relative to the
warp drive, in local terms, is the motion relative to the global
reference frame defined by this Killing field.

A stationary warp drive spacetime may be associated with
a coordinate comoving system, such that the Killing vector
field ξ defines the rest frame of the bubble. Also, a global
coordinate system can be assumed asymptotically at infin-
ity, which approaches the coordinate system of the resting
observer outside of the bubble. Since the two charts cover
the whole spacetime and overlap, it is, in principle, possible
to introduce a mapping from one to another. Following this
principle, they report a procedure for constructing an axisym-
metric warp drive spacetime from this subclass which relies
basically on three very general steps,

• Choosing a map between the resting outside observer and
the bubble comoving observer xco.

• Propose a spacetime with the following structure,

ds2 = − [dt (1 − ft ) + ft dtco]2

+
3∑

i=1

[
dxi (1 − fxi ) + fxi dx

i
co

]2

. (6)

• Choose a set of shape functions of the bubble that
approaches to 1 inside the bubble and 0 outside.

These conditions are not dependent on any coordinate sys-
tem, hence we can generalize the third item above, such that
xi denotes any general suitable coordinate system. We can
rewrite this metric,

ds2 = − [dt + ft (dtco − dt)]2

+
3∑

i=1

[
dxi + fxi (dx

i
co − dxi )

]2
, (7)

with coordinates dx1 = dr , dx2 = rdθ and dx3 =
r sin θdφ. We choose a one-to-one mapping,

dtco = dt , (8)

drco = dr − vsdt , (9)

dθco = dθ , (10)

dφco = dφ . (11)
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The metric (7) can be written as,

ds2 = −dt2 + [dr + fr (drco − dr)]2 + r2d�2

= −dt2 + (dr − frvsdt)
2 + r2d�2, (12)

following that, fr = f (rs), with rs = ‖r − Rs‖ and vs =
vs(t) ≡ dRs

dt .
With these considerations we propose the following line

element

ds2 = −(1 − β2)dt2 − 2βdtdr + dr2 + r2d�2, (13)

with d�2 = dθ2 + sin2 θdφ2 and β = fsvs . This is anal-
ogous to Alcubierre’s metric with a warp bubble on radial
direction and flat space components described by spherical
coordinates. Following the previous results, we found that
the metric (13) has the same form of the line element given
by equation (4), where the function R corresponds with β. At
this point, it is worth mentioning that in order for this metric to
admit a timelike Killing vector in the form ξi = (−1, 0, 0, 0),
spacetime needs to be stationary, meaning the warp bubble
function β is time-independent.

In the following we will discuss the consequences of this
metric associated with different matter configurations.

2.1 Einstein tensor components

We are interested in exploring the main features of the spher-
ical symmetric warp proposed in the last section. To achieve
this, we study the properties of Einstein’s equations,

Gμν = 8πTμν, (14)

with Gμν the Einstein tensor and Tμν the energy–momentum
tensor. Note that we are working in units where c = G = 1.
In this way, using the line element (13), the components of
the Einstein tensor are

G00 = β

r2

[ (
1 − β2

) (
β + 2r

∂β

∂r

)
− 2rβ

∂β

∂t

]
, (15)

G01 = β

r2

(
β2 + 2rβ

∂β

∂r
+ 2r

∂β

∂t

)
, (16)

G11 = − 1

r2

(
β2 + 2rβ

∂β

∂r
+ 2r

∂β

∂t

)
, (17)

G22 = −r

{

β

(
2
∂β

∂r
+ r

∂2β

∂r2

)
+ ∂β

∂t

+ r

[(
∂β

∂r

)2

+ ∂2β

∂t∂r

]}

, (18)

G33 = −r sin2 θ

{

β

(
2
∂β

∂r
+ r

∂2β

∂r2

)
+ ∂β

∂t

+r

[(
∂β

∂r

)2

+ ∂2β

∂t∂r

]}

. (19)

Here, note that we have considered the most general case for
β = β(t, r) as a function of both coordinates t and r , which
can be seem from the definition β = f (rs)v(t) and noticing
that rs = ‖r − Rs‖, v(t) = dRs

dt .
Now we want to include matter content. To this end we

consider the timelike and future-directed unit vectors normal
to the slicing hypersurfaces taken as the 4-velocity of the
so-called Eulerian observers characterized by,

uμ = {−1, 0, 0, 0}, (20)

which corresponds with the temporal Killing vector men-
tioned above. With this parametrization, we proceed to study
the energy–momentum tensor.

2.2 Perfect fluid energy–momentum tensor

In order to write Einstein’s equations we first consider a per-
fect fluid system. It is defined

Tμν = (ρ + p)uμuν + pgμν. (21)

Using the parametrization (20), this could be written in matrix
form as

Tμν =

⎡

⎢⎢
⎣

ρ + β2 p −βp 0 0
−βp p 0 0

0 0 r2 p 0
0 0 0 r2 sin2 θ p

⎤

⎥⎥
⎦ , (22)

with ρ and p the matter–energy density and pressure respec-
tively. It is worth mentioning that from Einstein’s equations
and knowing that uμ = {1, β, 0, 0} we obtain the relation

Tμνu
μuν = 1

8π
Gμνu

μuν

= 1

8π

(
G00 + 2βG01 + β2G11

)

= β2

8πr2

(
β + 2r

∂β

∂t

)
. (23)

But we also have the relation Tμνuμuν = ρ, thus we could
write the relation

β2

8πr2

(
β + 2r

∂β

∂t

)
= ρ. (24)

This expression relates matter–energy density with the metric
coefficients.
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Let’s write Einstein’s equations. Using the Einstein tensor
components (15)–(19) and (24) we obtain

β

(
β + 2r

∂β

∂r

)
= 8πr2ρ,

β

(
β + 2r

∂β

∂r

)
+ 2r

∂β

∂t
= −8πr2 p, (25)

β2 + r
∂β

∂t
− r2

[
∂

∂r

(
β

∂β

∂r

)]
= 0.

These expressions correspond to time-dependent isotropic
warp. If we constraint to β = β(r) we have a time-
independent isotropic warp given by

β

(
β + 2r

dβ

dr

)
= 8πr2ρ,

β

(
β + 2r

dβ

dr

)
= −8πr2 p, (26)

β2 − r2
[
d

dr

(
β
dβ

dr

)]
= 0.

It is important to notice that for time-independent warp, we
necessarily have the equation of state p = −ρ, as is easily
seen from the first two equations. This equation characterizes
the matter content in the context of a Friedmann–Robertson–
Walker (FRW) universe with cosmological constant, which
is consistent with observations [35].

Another important aspect is that, although there are five
non-zero components of the Einstein tensor, there are only
three independent equations and three unknowns ρ, p and β.

2.3 Energy conditions

Energy conditions are constraints imposed on the energy–
momentum tensor so that one can control non-physical
aspects of the system [7,35–39].

2.3.1 Weak energy condition

The weak energy condition (WEC) requires that for every
future-pointing like vector uμ, Tμνuμuν ≥ 0, so we find that

If ρ ≥ 0, Tμνu
μuν = ρ ≥ 0. (27)

So weak energy condition is satisfied if ρ ≥ 0.

2.3.2 Dominant energy condition

The dominant energy condition (DEC) is equivalent to the
WEC, with the additional requirement that Tμ

ν uν is a future-
pointing causal vector. Thus, the weak energy condition and
FμFμ ≤ 0, with Fμ = Tμνuν , must be satisfied. So, we
already prove that given ρ ≥ 0, WEC is satisfied and just

remains to assess FμFμ. After some straightforward calcu-
lations, we find that

Fμ = {−ρ,−pρ, 0, 0}, Fμ = {ρ, 0, 0, 0}, (28)

then, FμFμ = −ρ2 ≤ 0. Satisfying both conditions essen-
tially show that with respect to an observer, the local energy
density is non-negative and the local energy flow must be
non-spacelike. If the conservation of the Tμν is also consid-
ered, these conditions guarantee the causal structure in local
matter configurations.

2.3.3 Strong energy condition

The strong energy condition (SEC) imposes a bound on a
more complicated expression in 4 dimensions
(
Tμν − 1

2
Tgμν

)
uμuν ≥ 0 . (29)

The left side is
(
Tμν − 1

2
Tgμν

)
uμuν = 1

2
(ρ + 3p) , (30)

so SEC implies that

ρ + 3p ≥ 0 ⇒ p ≥ −1

3
ρ. (31)

Now, for the particular case of time-independent warps we
found that, p = −ρ, then we can check that this condition is
always fulfilled

p ≥ −1

3
ρ = 1

3
p ⇒ 1 ≥ 1

3
. (32)

We find that at least for the time-independent warps, SEC
holds for pressure. However, if we write this condition for
density in the time-independent regime we obtain

1

2
(ρ + 3p) = 1

2
(ρ − 3ρ) = −ρ ≥ 0 ⇒ ρ ≤ 0. (33)

It requires, then, positive pressure and negative energy den-
sity. This energy density problem has been studied since the
original Alcubierre paper, and much work has been done in
order to understand its causes and how to circumvent it. This
is consistent with results in Santos’s paper [33].

2.3.4 Null energy condition

The null energy condition (NEC) is analogous to WEC, with
the timelike vector replaced by a null vector kμ. That is

Tμνk
μkν ≥ 0 . (34)

Assuming the following vector, kμ = {a, b, 0, 0}, which is
a light vector kμkμ = 0. This imposes a constraint over the
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components with two possible solutions for a

a± = b

β ± 1
, (35)

With this result, the left hand side of Eq. (34) is

Tμνk
μkν =

(
b

β ± 1

)2

(ρ + p) (36)

So we find that, Tμνkμkν ≥ 0 imposes the following con-
straint ⇒ p + ρ ≥ 0. Moreover, we find that given a time-
independent warp, which implies p = −ρ, we find that
p + ρ = 0 and NEC always holds.

3 Anisotropic warp with cosmological constant

In this section we explore a system with a more general
energy–momentum tensor that includes cosmological con-
stant. In this case, the Einstein equation is

Gμν − �gμν = 8πTμν . (37)

The Einstein tensor followed the metric (4) is given by

G00 = (1 − β2)�

+ β

r2

[ (
1 − β2

) (
β + 2r

∂β

∂r

)
− 2rβ

∂β

∂t

]
, (38)

G01 = β� + β

r2

(
β2 + 2rβ

∂β

∂r
+ 2r

∂β

∂t

)
, (39)

G11 = −� − 1

r2

(
β2 + 2rβ

∂β

∂r
+ 2r

∂β

∂t

)
, (40)

G22 = −r2� − r

{

β

(
2
∂β

∂r
+ r

∂2β

∂r2

)
+ ∂β

∂t

+ r

[(
∂β

∂r

)2

+ ∂2β

∂t∂r

]}

, (41)

G33 = −r2 sin2 θ� − r sin2 θ

{

β

(
2
∂β

∂r
+ r

∂2β

∂r2

)
+ ∂β

∂t

+r

[(
∂β

∂r

)2

+ ∂2β

∂t∂r

]}

. (42)

In order to study the matter content, we consider an Eulerian
observer as it was done in the previous section.

3.1 Generalized fluid energy–momentum tensor

The perfect fluid energy–momentum tensor motivates a gen-
eralized expression which could include contributions from

pressure anisotropy and heat transfer. We propose the ansatz.

Tμν =

⎡

⎢⎢
⎣

ρ + β2 pr −βD 0 0
−βD A 0 0

0 0 r2B 0
0 0 0 r2 sin(θ)2C

⎤

⎥⎥
⎦ . (43)

Here, pr is the radial pressure and A, B, C , D are func-
tions to be determined. From these expressions and Einstein’s
equations, it is straightforward to verify that A = D and
B = C . Moreover, consistency with Einstein’s equations
and also the perfect fluid case requires that the more general
energy–momentum tensor consistent with the metric is given
by

A = D = pr , B = C = p⊥. (44)

This corresponds to an anisotropic fluid, which reduces to
isotropic case when p⊥ = pr . Note that heat fluxes are not
allowed for the metric proposed.

Now we write Einstein’s equations in a convenient form.
For this, we use the relation Tμνuμuν = ρ. This implies

8πTμν = Gμν ⇒ ρ = Tμνu
μuν = 1

8π
Gμνu

μuν . (45)

Using this relation it is possible to write Einstein’s equations
as

� + β

r2

(
β + 2r

∂β

∂r

)
= 8πρ, (46)

� + β

r2

(
β + 2r

∂β

∂r

)
+ 2

r

∂β

∂t
= −8πpr , (47)

β2 + r
∂β

∂t
− r2

[
∂

∂r

(
β

∂β

∂r

)
+ ∂2β

∂t∂r

]
= 8πr2�, (48)

where � = p⊥ − pr is the anisotropy factor. These equa-
tions correspond with a time-dependent anisotropic warp.
For time-independent anisotropic warp, we have the follow-
ing expressions

� + β

r2

(
β + 2r

dβ

dr

)
= 8πρ, (49)

� + β

r2

(
β + 2r

dβ

dr

)
= −8πpr , (50)

β2 − r2
[
d

dr

(
β
dβ

dr

)]
= 8πr2�. (51)

As in the isotropic case, time-independent warp implies the
equation of state pr = −ρ. This more general model allows
us to adjust several parameters and obtain other interesting
models, e.g. {� = 0,� �= 0} or {� �= 0,� = 0}.

In the next sections we examine energy conditions for
Eulerian observer using the anisotropic energy–momentum
tensor.
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3.2 Energy conditions

Now we explore the energy conditions for the generalized
fluid energy–momentum tensor.

3.2.1 Weak and dominant energy conditions

For Weak and Dominant energy conditions we do not have
any modifications, and the analysis is exactly the same as in
the perfect fluid system, so given ρ ≥ 0, both conditions are
fulfilled.

3.2.2 Strong energy condition

The strong energy condition is given by
(
Tμν − 1

2
Tgμν

)
uμuν = ρ + pr + 2p⊥ ≥ 0. (52)

Because for time-independent warp we have pr = −ρ, we
obtain the following condition for tangential pressure

p⊥ ≥ 0. (53)

Tangential pressure has to be positive for the condition to be
satisfied with time-independent warp.

3.2.3 Null energy condition

The null energy condition implies

Tμνk
μkν ≥ 0 → ρ + pr ≥ 0. (54)

Again, if time independent warp is considered, we have pr =
−ρ and the NEC holds.

So, at least for time-independent warp, we have found that
energy conditions are fulfilled for the proposed metric.

4 Final remarks

In this work we have analyzed a spherically symmetric line
element that allows warp motion, in the sense that it intro-
duces an inertial moving shell material, which encloses a
region or bubble characterized by a function β. We started
with a general time and space dependent warp, with a map-
ping between the outer and inner observers similar to Alcu-
bierre’s, and obtained a set of field equations for the bubble
shape functions and the matter content. Further restrictions
on the metric were imposed, for instance, a stationary metric
is considered, but allowing a space dependence on the func-
tion β. As matter sources we have used the isotropic perfect
fluid and the anisotropic fluid [33]. The latter reduces to the
case of isotropic perfect fluid as we have already seen.

By writing the metric using spherical symmetry, it allows
us to find a cleaner system of equations from which it is pos-
sible to draw conclusions with greater clarity, thereby elimi-
nating the spurious relations from dependent equations. This
is particularly useful when dealing with problems involving
material distributions, where one can clearly read the links
with matter and the energy conditions involved.

An interesting aspect is that by imposing a time-independent
warp, there naturally appears an equation of state of the form
pr = −ρ which is consistent with the system having a tem-
poral Killing vector. This equation of state is well known
from cosmological �-Cold Dark Matter (�CDM) models.
We believe that this aspect deserves further study.

We also calculated the weak, dominant, strong and null
energy conditions, from which we have been able to extract
constraints for the components of the energy–momentum
tensor and thus relations for the matter that sustains the warp
condition. We found that, at least for time independent warps,
all energy conditions are satisfied with the exception of the
SEC. It is worth mentioning that there are signs that WEC and
NEC may be violated at the quantum-microscopic scale [40–
49], although they seem to be satisfied at the macroscopic
scales. However, SEC seems to be violated at the largest cos-
mological scales [50–54]. We believe that this fact is very
interesting and promising. Also, it is worth noting that the
spherically symmetric warp metric (13) does not support heat
dissipation, as we have shown.

Summarizing, it can be said that the study of non-trivial
matter configurations is fundamental for the understanding
of warp drives as well as their possible physical feasibility
and limitations. These matter configurations will necessarily
influence the shape of the warp bubble and its possibilities
as a form of propulsion. The configurations studied in this
work open new possibilities for obtaining a physical viable
warp drive.

Based on the results obtained, we believe that it is essential
to continue the research on different and more complex mat-
ter configurations. Different metric realizations that could
include dissipation, heat flux and electromagnetic fields can
be studied on the basis of our proposed metric. Understand-
ing these aspects may be the key to achieving the stabilisation
of the warp drive geometry and thus to develop a viable warp
drive system.

Data Availability Statement This manuscript has no associated data
or the data will not be deposited. [Authors’ comment: All the required
theoretical data and the figures were already provided by the authors.]
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