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Abstract The modeling of jet substructure significantly
differs between Parton Shower Monte Carlo (PSMC) pro-
grams. Despite this, we observe that machine learning clas-
sifiers trained on different PSMCs learn nearly the same
function. This means that when these classifiers are applied
to the same PSMC for testing, they result in nearly the
same performance. This classifier universality indicates that a
machine learning model trained on one simulation and tested
on another simulation (or data) will likely be optimal. Our
observations are based on detailed studies of shallow and
deep neural networks applied to simulated Lorentz boosted
Higgs jet tagging at the LHC.
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1 Introduction

Deep learning is becoming widely used for various classifi-
cation tasks in collider physics (see e.g., Refs. [1–6]). One
of the core benefits of deep learning over traditional anal-
ysis techniques is that it is able to identify patterns in very
high-dimensional feature spaces. At the Large Hadron Col-
lider (LHC), such low-level inputs are dominated by hadronic
activity. Most machine learning approaches are trained using
Parton Shower Monte Carlo (PSMC) simulations that pro-
duce exclusive final states with the same complexity as real
data [7]. However, there are significant variations between
PSMCs due to the large number of perturbative and non-
perturbative modeling assumptions.

These variations lead to potential biases and suboptimal
sensitivity in data analyses [8]. A bias occurs when the simu-
lation model used for inference (given an analysis strategy) is
not the same as nature. There is a large and growing literature
on methods to reduce biases from PSMC model variations
through decorrelation [9–12] and other approaches [13–15].
A key challenge with modeling uncertainties in contrast to
experimental uncertainties is that they are often estimated by
comparing two simulations. This difference does not have a
statistical origin and may not be the full uncertainty, so cau-
tion is required to reduce the uncertainty through automated
approaches [16]. A general solution to estimating (and then
reducing) systematic uncertainties from PSMC variations is
still an active area of research and development.1

In principle, the same challenge exists when quantifying
suboptimal performance due to PSMC variations. Subopti-
mal performance occurs when the simulation model used for
training a machine learning model is different than nature.

1 See Refs. [17,18] for the possibility of using machine learning to
bound these uncertainties.
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While not directly a source of systematic uncertainty, this
suboptimality has important consequences for the physics
program of the LHC. To quantify the suboptimality, one could
compare different PSMC models, as is done for determine
the systematic uncertainty. This has the same unsatisfying
properties as described above.

However, there have been a number of hints in the litera-
ture that the suboptimality due to PSMC variations may actu-
ally be small. For example, Ref. [19] observed that training a
quark versus gluon jet classifier with theHerwig [20] PSMC
and then applying it to jets simulated with the Pythia [21]
PSMC has nearly the same performance as training with
Pythia and also testing on Pythia (with a statistically iden-
tical, but independent dataset). This small difference in per-
formance is contrasted to the large difference in performance
when testing on jets from Herwig. A similar result was
observed in the context of signal jets in Ref. [22]. From these
observations, we conjecture that the deep learning models
are learning universal properties of quantum chromodynam-
ics (QCD). We hypothesis that the performance gaps present
when the test sets differ simply reflects variations in the
amount of QCD radiation, but not the type of information
that is useful for discrimination.

To build intuition for this conjecture, consider the case of
quark versus gluon jet tagging. At leading logarithmic (LL)
order and considering only infrared and collinear safe observ-
ables, the optimal classifier is simply iterated-soft-drop mul-
tiplicity inside the jet [23]. This statement is true independent
of the strong coupling constant, αs . However, common met-
rics of performance such as the Area Under the Curve (AUC)
depend on αs ;2 when there are more emissions (higher αs),
the quark and gluon perturbative multiplicity distributions
are more separable. In particular, at LL, perturbative multi-
plicity is a Poisson random variable with a mean that is pro-
portional to a color factor multiplied by αs . As αs grows, the
gluon distribution grows significantly faster than the quark
one:

μg − μq√
σ 2

g + σ 2
q

∼ αs(CF − CA)√
αsCF + αsCA

∝ √
αs , (1.1)

where CF = 4/3 (CA = 3) is the quark (gluon) color factor.
Imagine that two PSMCs had the same physics approxima-
tions, but different values of αs . They would find the same
classifier and thus if the test set is the same, the performance
would be the same.

Our goal is to test the universality hypothesis in detail
using the important benchmark problem of Lorentz boosted
Higgs boson jet versus QCD jet tagging. In this context, uni-

2 If Casimir scaling were holding the AUC would have been indepen-
dent of αs . However, multiplicity breaks the Casimir scaling such that
the AUC depends on αs .

versality means that the learned classifiers are the same up
to a monotonic re-scaling, which means that they result in
the same decision boundaries. We consider both shallow and
deep learning models as well as a variety of PSMC models.

This paper is organized as follows. A concrete example
are introduced in Sect. 2. Architectures of deep-learning clas-
sifiers are in Sect. 3. The results are provided in Sect. 4. The
paper ends with conclusions and outlook in Sect. 5.

2 Numerical examples

Lorenz-boosted Higgs tagging, focusing on the bb̄ final state,
is the example in this study. High-level features and low-level
inputs are used to train shallow and deep-learning classifiers.

2.1 Monte Carlo samples

This study considers Lorenz-boosted Higgs tagging, focus-
ing on the bb̄ final state. The signal is high pT Higgs
bosons and the background is generic quark and gluon jets.
The hard-scatter reactions are common to all parton shower
models and are generated with MadGraph5_aMC@NLO
2.7.3 [24] for modeling pp collisions at

√
s = 14 TeV. The

PDF4LHC15_nnlo_mc [25] parton distribution function
and the NNPDF30_nlo_as_0118 [26] parton distribution
function are used for signal and background, respectively.

The hard-scattering events are passed to Pythia 8.303
[21] to simulate the parton shower, using three different
complete parton-shower frameworks. The first one is default
setting, where evolution variable is virtuality of the off-
shell propagator. The second framework is Virtual Numerical
Collider with Interleaved Antennae (Vincia) shower [27–
29], where the evolution variable is transverse momentum
for QCD + EW/QED showers based on the antenna for-
malism. The last framework is Dipole resummation (Dire),
which is a transverse-momentum ordered dipole shower. The
PYTHIA family uses the string model [30,31] for hadroniza-
tion. The string model is based on string fragmentation func-
tion to break string to form hardons. Herwig 7.2.2 [20] with
angularly-ordered showers is also used to model the parton
shower. The cluster model [32,33] is implemented in Her-
wig 7.2.2. The cluster hadronization model is based on pre-
confinement. This model forcibly decays gluons into quark-
antiquark pairs and form neutral clusters. Pyjet [34,35] and
the anti-kt [36] algorithm with radius parameter R = 1.0 are
used to define the jets.

An event preselection similar to Ref. [37] is used to reject
most background events. The Higgs-like jet is required to
satisfy 300 GeV < pJ

T < 500 GeV, 110 GeV < invariant
mass of the jet (MJ ) < 160 GeV and to be double b-tagged.
Jets are declared double b-tagged if they have two or more
ghosted-associated [38,39] B hadrons. After the preselec-
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tion, the high-level jet features and low-level features are used
to probe the universality of discriminating boosted Higgs jets
from QCD jets.

Since the goal of this paper is to investigate the universality
of hadronic jet classification, there are a number of simplify-
ing assumptions. The background in the study is only generic
quark and gluon jets. The relatively smaller t t̄ background
is ignored. For each PSMC setup, the default parameters are
used.

2.2 High-level features

In order to distinguish Higgs jets via Gradient Tree Boost-
ing (BDT) and a fully connected / dense neural network, the
following six commonly-used high-level features are consid-
ered:

1. MJ : invariant mass of the leading jet;
2. τ21 = τ2/τ1: n-subjettiness ratio [40,41];
3. D(β)

2 = e(β)
3 /(e(β)

2 )3 with β = 1, 2: energy correlation
function ratios [42];

4. C (β)
2 = e(β)

3 /(e(β)
2 )2 with β = 1, 2: energy correlation

function ratios [43];

where ei is the normalized sum over doublets (i = 2) or
triplets (i = 3) of constituents inside jets, weighted by the
product of the constituent transverse momenta and pairwise
angular distances. For this analysis, β is considered to be 1
and 2.

The distributions of these six variables are shown in Fig. 1,
in which the capability of each observable to discriminate
between signal and background is demonstrated. The salient
features of these histograms are described below.

The jet invariant mass distribution peaks near the Higgs
boson mass of 125 GeV [44] for the signal and has a broad dis-
tribution for the background. In the setup of this study, Her-
wig 7.2.2 with angularly-ordered showers leads to slightly
higher and broader signal peak due to different underlying
event structure compared to Pythia 8.303. Similarly, the
distributions of τ21, Dβ

2 , and Cβ
2 show similar position and

shape of the peak among the Pythia PSMC’s, but somewhat
different for the Herwig Angular. The two-prong struc-
ture due to the decay of massive objects into two hard QCD
partons in the case of the signal jets results in low τ21, D2

and C2.

2.3 Low-level features

The low-level inputs to the CNN are images of Higgs-like jet
[45,46]. The resolution is 40×40 pixels and in 1R×1R range,
where R is the jet radius. The images consist of three chan-
nels, analogous to the Red-Green-Blue (RGB) channels of a

color image [19]. The pixel intensity for the three channels
correspond to the sum of the charged particle pT , the sum of
the neutral particle pT , and the number of charged particles
in a given region of the image. The Higgs-like jet images are
rotated to align along two-subject’s axis. The leading subjet
is at the origin and the subleading subjet is directly below the
leading subjet. If there is a third-leading subjet, the image will
be reflected. All images are normalized so that the intensities
all sum to unity.3 After normalization, the pixel intensities are
standardized so that their distribution has mean zero and unit
variance. Figure 2 shows the average Higgs-like jet images
in the charged pT channel. The patterns in the charged pT

channel are similar to the other two channels.
Figure 3 shows the difference between the four PSMC

algorithms with respect to Pythia 8.303 default shower-
ing, referred to as the nominal simulation. The substructure
in jets are different among the other three PSMC simula-
tions with respect to the nominal sample due to different
approximations made in the final state radiation and other
QCD effects. This diversity of the PSMC approaches may
effect the performance of jet classifiers trained on low-level
features. Therefore, we train a convolutional neural network-
based jet classifier to explore this generator-dependence of
classification performance.

3 Classifier architectures

The BDT has a fixed number of estimators (1400) with max-
imum depth 5. The minimum number of samples is fixed at
5% as required to split an internal node and 1% as required
to be at a leaf node. This BDT model is trained on the high-
level features of the jet using the scikit-learn library
[48]. KerasTuner [49] is used to get the best configuration of
hyperparameters.

The dense neural network has four full connected lay-
ers. There are 224, 928, 288 and 1024 neurons, respectively.
Rectified linear unit (ReLU) activation functions are used
for all layers of this neural network. Before the output layer,
Dropout [50] regularization is added to reduce overfitting
with a dropout rate = 0.01. For this two-class problem, the
activation function of the output layer is a sigmoid function.
The binary cross entropy loss function is optimized during
the training. The Adam optimizer [51] with a learning rate
of 6.5428×10−5 is used to select the network weights. The
KerasTuner [49] is used to get the best configuration of hyper-
parameters. The Keras-2.4.0 library is used to train the
dense neural network models with the TENSORFLOW-2.4.1
[52] backend, on a NVIDIA A100 SXM 80GB Graphical
Processing Unit (GPU).

3 This may remove useful discriminating information; however, it sig-
nificantly improves the stability of the machine learning training [47].
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Fig. 1 The six high-level features used to distinguish boosted Higgs boson jets from QCD jets events
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Fig. 2 Low-level features. The average of 40000 Higgs-like jet images
in the charged pT channel (left column and middle column). Q1 and Q2
denote the new axes after the jet’s axis is centralized and rotated. The

intensity in each pixel is the sum of the charged particle pT . The total
intensity in each image is normalized to unity. Images in right column
are the average difference between Higgs jet and QCD jet images

Fig. 3 The average difference between the other generators and the Pythia Default showering a Higgs-like jet images, and b QCD jet images.
Q1 and Q2 denote the new axes after the jet’s axis is centralized and rotated

Details of the CNN are as follows. The convolution fil-
ter is 5×5, the maximum pooling layers are 2×2, and the
stride length is 1. ReLU activation functions are used for all
intermediate layers of the neural network. The first convolu-
tion layer has 96 filters and the second convolution layer in
each stream has 32 filters. A flatten layer is used after the sec-

ond maximum pooling layer. Two dense layers are connected
to the flatten layer with 350 and 400 neurons, respectively.
Before the output layer, Dropout regularization is added with
a dropout rate = 0.01. As for the dense network, the last
activation is a sigmoid function and binary cross entropy
is optimized during training. The AdaDelta optimizer [53]
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Fig. 4 The QCD rejection (inverse QCD efficiency) as a function of the Higgs jet efficiency for classifiers applied to Herwig angular jet from
four PSMC algorithms. The bottom panel shows the relative uncertainties

with learning rate 6.0216×10−3 is used to select the net-
work weights. The KerasTuner [49] is used to get the best
configuration of hyperparameters. The same setup as for the
dense network is used to run the CNN.

4 Results

In this study, the receiver operating characteristic curve
(ROC), the area under the ROC curve (AUC), the maximum
significance improvement characteristic (SIC) and rejection
(inverse background efficiency) at 50% signal efficiency are
used to be metrics to quantify the universality. The AUC is
between 0.5 (poor classification performance) and 1 (maxi-
mum classification performance). The SIC is the signal effi-
ciency divided by the square root of the background effi-
ciency and represents by how much (as a multiplicative fac-
tor) the significance would improve with a given threshold
on the classifier score. The maximum SIC is simply the max-
imum SIC attained across all thresholds. In order to quantify
the variation from classifier training itself, the performance is
evaluated by k-fold cross-validation technique with k = 50.
In this procedure, the datasets are randomly partitioned into
50 parts and for each one, the other 49 sets are used for con-
structing the classifier. The mean and spread over the folds
is used to quantify the model performance.

Figure 4 shows four classifiers trained on various simula-
tions and then tested on the same Herwig dataset. Overall,
the CNN has the best performance and the DNN is marginally
better than the BDT. The DNN and BDT are trained on the
same features and given the relatively low-dimensionality
of the problem, it is unsurprising that the two models have a
similar performance. Overall, the performance is nearly iden-
tical for all training sets. This is even true for the CNN, which
has access to low-level substructure information inside the

Fig. 5 The performance of classifiers as quantified by the AUC when
training on a given PSMC (color) and testing on the PSMC specified on
the vertical axis. The symbols represent the type of model (BDT, DNN,
CNN). The error bars represent the standard deviation over the k folds

jets. The insensitivity to the training set is in stark contrast to
the sensitivity of the test set, as summarized in detail below.
Additional results can be found in Appendix A.

The performance of Fig. 4 for all combinations of train and
test sets for the three machine learning models are summa-
rized in Figs. 5, 6 and 7. Starting with Fig. 5, we observe that
there is a significant spread in performance across test sets
(rows). The difference between Higgs jets and QCD jets is
smaller for Herwig compared with Pythia by almost 10%.
However, the spread in performance for a given test set is
about 1%. Similar trends are present for the rejection at a fixed
efficiency (Fig. 6) and maximum SIC (Fig. 7) plots, albeit
with larger sensitivities to the machine learning training.
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Fig. 6 The performance of classifiers as quantified by the rejection at
a fixed signal efficiency of 50% when training on a given PSMC (color)
and testing on the PSMC specified on the vertical axis. The symbols
represent the type of model (BDT, DNN, CNN). The error bars represent
the standard deviation over the k folds

Fig. 7 The performance of classifiers as quantified by the maximum
significance improvement when training on a given PSMC (color) and
testing on the PSMC specified on the vertical axis. The symbols repre-
sent the type of model (BDT, DNN, CNN). The error bars represent the
standard deviation over the k folds

5 Conclusions and outlook

We have explored the universality of classifiers trained on
hadronic jet tagging. In particular, we have studied the sen-
sitivity of the learned classifier to the Parton Shower Monte
Carlo program used during training. While the modeling of
the hadronic structure differs significantly among PSMCs,
we find that the actual function learned is nearly independent
of the training set. This gives us confidence that a classifier
trained on one PSMC and tested on another (or data) will
likely still be optimal. Although it is not directly a source of

uncertainty for physics analysis, this observation has impor-
tant implications for making the best use of our data. The clas-
sifier universality does not mean that the systematic uncer-
tainty from hadronic modeling is small as bias and optimality
are separate concepts (see e.g., Ref. [8]).

The universality not only has important experimental
implications, but also motivates further theoretical studies.
As in the quark versus gluon jet example referenced in Sect. 1,
the universality of the classifiers suggests that a theoret-
ical explanation of the classification performance may be
attainable as it should be insensitive to the detailed modeling
assumptions of a particular PSMC program. We look forward
to studies in this direction.

Uncertainty quantification is a critical component of any
analysis at the LHC and this task is particularly challenging
for analysis strategies like machine learning that are sensi-
tive to low-level hadronic modeling. While determining sys-
tematic uncertainties on the potential bias of a result from
hadronic modeling is still an active area of research and devel-
opment, we have shown that at least the optimality of machine
learning classifiers is relatively insensitive to hadronic mod-
eling. While we have observed this disconnect between bias
and optimality for Higgs jet tagging, we conjecture that this
is a generic feature of QCD and it may also be present in
other systems at the LHC and beyond.
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Appendix A: Remaining results

See Tables 1, 2, 3, 4, 5, 6, 7, Figs. 8, 9 and 10.
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Table 1 Area under the curve, rejection at 50% signal efficiency and maximum significance improvement when testing on Herwig for each trained
classifier. The last rows are the average and standard deviation over the mean values from the other rows

Varied trained classifiers, test on Herwig angular sample

Trained model Classifier type

BDT Dense neural network CNN

Metric: area under the curve

Herwig angular 0.8193 ± 0.0058 0.8219 ± 0.0048 0.8991 ± 0.0039

Pythia default 0.8031 ± 0.0056 0.8079 ± 0.0080 0.8878 ± 0.0043

Pythia vincia 0.8043 ± 0.0050 0.8090 ± 0.0058 0.8897 ± 0.0044

Pythia dipole 0.8096 ± 0.0049 0.8141 ± 0.0051 0.8878 ± 0.0044

Average ± Std. 0.8091 ± 0.0064 0.8132 ± 0.0055 0.8911 ± 0.0047

Metric: rejection at 50% signal efficiency

Herwig angular 10.91 ± 0.84 11.21 ± 0.83 19.91 ± 1.81

Pythia default 9.34 ± 0.57 9.81 ± 0.80 16.87 ± 1.43

Pythia vincia 9.48 ± 0.57 10.14 ± 0.85 17.70 ± 1.56

Pythia dipole 10.19 ± 0.64 10.60 ± 0.66 17.23 ± 1.55

Average ± Std. 9.98 ± 0.63 10.44 ± 0.52 17.93 ± 1.18

Metric: max significance improvement

Herwig angular 1.86 ± 0.31 1.92 ± 0.29 2.73 ± 0.72

Pythia default 1.86 ± 0.45 1.88 ± 0.46 2.37 ± 0.48

Pythia cincia 1.83 ± 0.30 1.89 ± 0.42 2.40 ± 0.41

Pythia dipole 1.90 ± 0.34 1.88 ± 0.40 2.43 ± 0.49

Average ± Std. 1.87 ± 0.03 1.89 ± 0.02 2.48 ± 0.14

Table 2 Area under the curve, rejection at 50% signal efficiency and maximum significance improvement when testing on Pythia default for each
trained classifier. The last rows are the average and standard deviation over the mean values from the other rows

Varied trained classifiers, test on Pythia default sample

Trained model Classifier ttype

BDT Dense neural network CNN

Metric: area under the curve

Herwig angular 0.8439 ± 0.0055 0.8476 ± 0.0056 0.9064 ± 0.0032

Pythia default 0.8582 ± 0.0043 0.8590 ± 0.0043 0.9174 ± 0.0032

Pythia vincia 0.8545 ± 0.0051 0.8564 ± 0.0042 0.9103 ± 0.0035

Pythia dipole 0.8541 ± 0.0042 0.8561 ± 0.0043 0.9090 ± 0.0034

Average ± Std. 0.8527 ± 0.0053 0.8548 ± 0.0043 0.9107 ± 0.0041

Metric: rejection at 50% signal efficiency

Herwig angular 15.94 ± 1.25 16.80 ± 1.78 21.73 ± 1.55

Pythia default 19.11 ± 1.67 19.11 ± 1.51 28.23 ± 2.81

Pythia vincia 18.04 ± 1.57 18.48 ± 1.89 24.15 ± 1.75

Pythia dipole 18.03 ± 1.51 18.35 ± 1.52 24.07 ± 1.89

Average ± Std. 17.78 ± 1.15 18.18 ± 0.85 24.55 ± 2.34

Metric: max significance improvement

Herwig angular 2.46 ± 0.44 3.10 ± 0.73 2.87 ± 0.59

Pythia default 3.64 ± 0.94 3.56 ± 0.93 3.68 ± 0.88

Pythia vincia 3.12 ± 0.86 3.24 ± 0.77 3.12 ± 0.92

Pythia dipole 3.06 ± 0.78 3.36 ± 0.81 3.19 ± 0.91

Average ± Std. 3.07 ± 0.42 3.31 ± 0.17 3.21 ± 0.29
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Table 3 Area under the curve, rejection at 50% signal efficiency and maximum significance improvement when testing on Pythia VINCIA for
each trained classifier. The last rows are the average and standard deviation over the mean values from the other rows

Varied trained classifiers, test on Pythia VINCIA sample

Trained model Classifier type

BDT Dense neural network CNN

Metric: area under the curve

Herwig angular 0.8625 ± 0.0040 0.8654 ± 0.0053 0.9259 ± 0.0033

Pythia default 0.8719 ± 0.0043 0.8736 ± 0.0046 0.9279 ± 0.0035

Pythia vincia 0.8748 ± 0.0051 0.8758 ± 0.0055 0.9351 ± 0.0031

Pythia dipole 0.8722 ± 0.0043 0.8739 ± 0.0048 0.9284 ± 0.0034

Average ± Std. 0.8704 ± 0.0047 0.8722 ± 0.0040 0.9293 ± 0.0035

Metric: rejection at 50% signal efficiency

Herwig angular 24.47 ± 2.55 25.94 ± 3.54 36.52 ± 3.84

Pythia default 27.80 ± 2.93 28.45 ± 3.35 39.58 ± 5.73

Pythia vincia 29.19 ± 3.05 30.16 ± 3.26 47.66 ± 6.29

Pythia dipole 28.01 ± 3.16 29.28 ± 3.72 41.25 ± 4.51

Average ± Std. 27.37 ± 1.76 28.46 ± 1.57 41.25 ± 4.07

Metric: max significance improvement

Herwig angular 4.45 ± 1.24 5.34 ± 1.27 5.11 ± 1.26

Pythia default 5.64 ± 1.48 5.62 ± 1.37 5.24 ± 1.57

Pythia vincia 6.00 ± 1.79 5.77 ± 1.45 5.81 ± 1.56

Pythia dipole 5.29 ± 1.30 5.82 ± 1.56 5.48 ± 1.46

Average ± Std. 5.34 ± 0.58 5.64 ± 0.19 5.41 ± 0.27

Table 4 Area under the curve, rejection at 50% signal efficiency and maximum significance improvement when testing on Pythia dipole for each
trained classifier. The last rows are the average and standard deviation over the mean values from the other rows

Varied trained classifiers, test on Pythia dipole sample

Trained model Classifier type

BDT Dense neural network CNN

Metric: area under the curve

Herwig angular 0.8601 ± 0.0040 0.8628 ± 0.0049 0.9227 ± 0.0027

Pythia default 0.8647 ± 0.0045 0.8671 ± 0.0047 0.9246 ± 0.0029

Pythia vincia 0.8654 ± 0.0043 0.8678 ± 0.0050 0.9265 ± 0.0029

Pythia dipole 0.8681 ± 0.0046 0.8694 ± 0.0054 0.9308 ± 0.0027

Average ± Std. 0.8646 ± 0.0029 0.8668 ± 0.0024 0.9261 ± 0.0030

Metric: rejection at 50% signal efficiency

Herwig angular 22.01 ± 2.52 22.96 ± 2.91 33.10 ± 3.97

Pythia default 22.73 ± 2.40 23.75 ± 2.48 35.18 ± 4.26

Pythia vincia 23.63 ± 2.58 24.19 ± 2.12 36.84 ± 4.86

Pythia dipole 24.56 ± 2.72 24.65 ± 2.31 41.11 ± 6.17

Average ± Std. 23.23 ± 0.96 23.89 ± 0.62 36.56 ± 2.94

Metric: max significance improvement

Herwig angular 3.83 ± 1.05 4.25 ± 1.10 4.60 ± 1.48

Pythia default 4.47 ± 1.14 4.69 ± 1.33 4.67 ± 1.28

Pythia vincia 4.29 ± 1.09 4.42 ± 1.20 4.85 ± 1.43

Pythia dipole 4.57 ± 1.10 4.61 ± 1.18 5.28 ± 1.62

Average ± Std. 4.29 ± 0.28 4.49 ± 0.17 4.85 ± 0.26
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Table 5 Area under the curve, rejection at 50% signal efficiency and maximum significance improvement for the BDT model. The last rows are
the average and standard deviation over the mean values from the other rows

Varied trained BDT models test on fixed sample

Trained model Fixed sample

Herwig angular Pythia default Pythia vincia Pythia dipole

Metric: area under the curve

Herwig angular 0.8193 ± 0.0058 0.8439 ± 0.0055 0.8625 ± 0.0040 0.8601 ± 0.0040

Pythia default 0.8031 ± 0.0056 0.8582 ± 0.0043 0.8719 ± 0.0043 0.8647 ± 0.0045

Pythia vincia 0.8043 ± 0.0050 0.8545 ± 0.0051 0.8748 ± 0.0051 0.8654 ± 0.0043

Pythia dipole 0.8096 ± 0.0049 0.8541 ± 0.0042 0.8722 ± 0.0043 0.8681 ± 0.0046

Average ± Std. 0.8091 ± 0.0064 0.8527 ± 0.0053 0.8704 ± 0.0047 0.8646 ± 0.0029

Metric: rejection at 50% signal efficiency

Herwig angular 10.91 ± 0.84 15.94 ± 1.25 24.47 ± 2.55 22.01 ± 2.52

Pythia default 9.34 ± 0.57 19.11 ± 1.67 27.80 ± 2.93 22.73 ± 2.40

Pythia vincia 9.48 ± 0.57 18.04 ± 1.57 29.19 ± 3.05 23.63 ± 2.58

Pythia dipole 10.19 ± 0.64 18.03 ± 1.51 28.01 ± 3.16 24.56 ± 2.72

Average ± Std. 9.98 ± 0.63 17.78 ± 1.15 27.37 ± 1.76 23.23 ± 0.96

Metric: max significance improvement

Herwig angular 1.86 ± 0.31 2.46 ± 0.44 4.45 ± 1.24 3.83 ± 1.05

Pythia default 1.86 ± 0.45 3.64 ± 0.94 5.64 ± 1.48 4.47 ± 1.14

Pythia vincia 1.83 ± 0.30 3.12 ± 0.86 6.00 ± 1.79 4.29 ± 1.09

Pythia dipole 1.90 ± 0.34 3.06 ± 0.78 5.29 ± 1.30 4.57 ± 1.10

Average ± Std. 1.87 ± 0.03 3.07 ± 0.42 5.34 ± 0.58 4.29 ± 0.28

Table 6 Area under the curve, rejection at 50% signal efficiency and maximum significance improvement for the DNN model. The last rows are
the average and standard deviation over the mean values from the other rows

Varied trained DNN models test on fixed sample

Trained model Fixed sample

Herwig angular Pythia default Pythia vincia Pythia dipole

Metric: area under the curve

Herwig angular 0.8219 ± 0.0048 0.8476 ± 0.0056 0.8654 ± 0.0053 0.8628 ± 0.0049

Pythia default 0.8079 ± 0.0080 0.8590 ± 0.0043 0.8736 ± 0.0046 0.8671 ± 0.0047

Pythia vincia 0.8090 ± 0.0058 0.8564 ± 0.0042 0.8758 ± 0.0055 0.8678 ± 0.0050

Pythia dipole 0.8141 ± 0.0051 0.8561 ± 0.0043 0.8739 ± 0.0048 0.8694 ± 0.0054

Average ± Std. 0.8132 ± 0.0055 0.8548 ± 0.0043 0.8722 ± 0.0040 0.8668 ± 0.0024

Metric: rejection at 50% signal efficiency

Herwig angular 11.21 ± 0.83 16.80 ± 1.78 25.94 ± 3.54 22.96 ± 2.91

Pythia default 9.81 ± 0.80 19.11 ± 1.51 28.45 ± 3.35 23.75 ± 2.48

Pythia vincia 10.14 ± 0.85 18.48 ± 1.89 30.16 ± 3.26 24.19 ± 2.12

Pythia dipole 10.60 ± 0.66 18.35 ± 1.52 29.28 ± 3.72 24.65 ± 2.31

Average ± Std. 10.44 ± 0.52 18.18 ± 0.85 28.46 ± 1.57 23.89 ± 0.62

Metric: max significance improvement

Herwig angular 1.92 ± 0.29 3.10 ± 0.73 5.34 ± 1.27 4.25 ± 1.10

Pythia default 1.88 ± 0.46 3.56 ± 0.93 5.62 ± 1.37 4.69 ± 1.33

Pythia vincia 1.89 ± 0.42 3.24 ± 0.77 5.77 ± 1.45 4.42 ± 1.20

Pythia dipole 1.88 ± 0.40 3.36 ± 0.81 5.82 ± 1.56 4.61 ± 1.18

Average ± Std. 1.89 ± 0.02 3.31 ± 0.17 5.64 ± 0.19 4.49 ± 0.17
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Table 7 Area under the curve, rejection at 50% signal efficiency and maximum significance improvement for the CNN model. The last rows are
the average and standard deviation over the mean values from the other rows

Varied trained CNN models test on fixed sample

Trained model Fixed sample

Herwig angular Pythia default Pythia vincia Pythia dipole

Metric: area under the curve

Herwig angular 0.8991 ± 0.0039 0.9064 ± 0.0032 0.9259 ± 0.0033 0.9227 ± 0.0027

Pythia default 0.8878 ± 0.0043 0.9174 ± 0.0032 0.9279 ± 0.0035 0.9246 ± 0.0029

Pythia vincia 0.8897 ± 0.0044 0.9103 ± 0.0035 0.9351 ± 0.0031 0.9265 ± 0.0029

Pythia dipole 0.8878 ± 0.0044 0.9090 ± 0.0034 0.9284 ± 0.0034 0.9308 ± 0.0027

Average ± Std. 0.8911 ± 0.0047 0.9107 ± 0.0041 0.9293 ± 0.0035 0.9261 ± 0.0030

Metric: rejection at 50% signal efficiency

Herwig angular 19.91 ± 1.81 21.73 ± 1.55 36.52 ± 3.84 33.10 ± 3.97

Pythia default 16.87 ± 1.43 28.23 ± 2.81 39.58 ± 5.73 35.18 ± 4.26

Pythia vincia 17.70 ± 1.56 24.15 ± 1.75 47.66 ± 6.29 36.84 ± 4.86

Pythia dipole 17.23 ± 1.55 24.07 ± 1.89 41.25 ± 4.51 41.11 ± 6.17

Average ± Std. 17.93 ± 1.18 24.55 ± 2.34 41.25 ± 4.07 36.56 ± 2.94

Metric: max significance improvement

Herwig angular 2.73 ± 0.72 2.87 ± 0.59 5.11 ± 1.26 4.60 ± 1.48

Pythia default 2.37 ± 0.48 3.68 ± 0.88 5.24 ± 1.57 4.67 ± 1.28

Pythia vincia 2.40 ± 0.41 3.12 ± 0.92 5.81 ± 1.56 4.85 ± 1.43

Pythia dipole 2.43 ± 0.49 3.19 ± 0.91 5.48 ± 1.46 5.28 ± 1.62

Average ± Std. 2.48 ± 0.14 3.21 ± 0.29 5.41 ± 0.27 4.85 ± 0.26

Fig. 8 The QCD rejection (inverse QCD efficiency) as a function of the Higgs jet efficiency for classifiers applied to Pythia default sample from
four PSMC algorithms. The bottom panel shows the relative uncertainties

123



1162 Page 12 of 13 Eur. Phys. J. C (2022) 82 :1162

Fig. 9 The QCD rejection (inverse QCD efficiency) as a function of the Higgs jet efficiency for classifiers applied to Pythia VNICIA jet from
four PSMC algorithms. The bottom panel shows the relative uncertainties

Fig. 10 The QCD rejection (inverse QCD efficiency) as a function of the Higgs jet efficiency for classifiers applied to Pythia dipole jet from four
PSMC algorithms. The bottom panel shows the relative uncertainties
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