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Abstract Within Gauss–Bonnet gravity, we construct a
solution endowed with dyonic matter fields in a higher dimen-
sion. The quasi-topological electromagnetism generates two
kinds of contributions; one is the kinetic terms, and the sec-
ond refers to the interactif terms. This overcomes the invari-
ance topological problem. We investigate the thermodynami-
cal proprieties of the obtained solution, namely, ADM mass,
Hawking temperature, and entropy. To inspect the local sta-
bility, we examine the associated heat capacity. With regards
to optical proprieties, we analyze the null geodesic in terms of
the given parameter space. The shadow radius is a generating
form with all the physical parameters that govern the shadow
behavior. The study restricts only the taking of the effects of
the D and α parameters. Finally, we examine the impact of
the dimension D, GB coupling constant α, the cosmological
constant �, the electric qe, the magnetic charge qm and the
coupling constant β on the energy emission rate.

1 Introduction

Quasi-topological electromagnetism [1] is considered as an
alternative way restoring the dynamic contribution at the level
of the equation of motion. The fact that the Maxwell field
strength is a topological invariant, as well as the Riemann
curvature tensor, all of which are 2-forms.∫

tr(R ∧ R),

∫
F ∧ F. (1.1)

These quantities remain independent of the spacetime met-
ric. To obtain dependancy with the metric, it is necessary to
take into consideration another purely magnetic field yield-
ing dyonic objects. The starting point is the introduction

a e-mail: sekhmaniyassine@gmail.com (corresponding author)

of supplemented terms within the corresponding lagrangian,
which are related to topological invariants.Indeed, in dimen-
sion D = 2k, any 2k-forms Maxwell field strength is used to
build the topological structure, V[2k] = F[2]∧F[2]∧· · ·∧F[2].
In order to carry out this treatment, we consider the squared
norm combining both electric and magnetic field strengths
as follows

U (k)
[D] ∼ |V[2k]|2 ∼ V[2k] ∧ �V[2k]. (1.2)

The particular case k = 1 refers to the Maxwell term. Con-
sequently, these invariants remove the noncontribution to the
field equations.

In recent years, the thermodynamics of black holes has
attracted a lot of interest in the field of theoretical physics.
Since then, several studies have been conducted in favor of
constructing a thermodynamic framework using the tech-
niques of classical physics [2–5]. Kastor, Ray, and Traschen
[6] were the first to invent the extended version of phase space
thermodynamics, also known as black hole chemistry [7], to
focus on this goal. The fundamental idea of this approach
requires the consideration that pressure is a negative cosmo-
logical constant. Mass has the property of being the enthalpy
in this formulation. The equation of state P − v accurately
represents the small-large black hole phase transition in AdS
black holes from the point of view of the liquid-gas in the
Van der Waals (VdW) fluid [8]. To consider AdS black holes
as heat engines [9,10], the variables P and V are used. On
the other hand, many contributions have affected the devel-
opment of gravity models, leading to a new understanding of
thermodynamics. By the way, the AdS/CFT duality [11],
also known as the holographic principle [12,13], allows a
better understanding of the nature of microscopic degrees of
freedom, which contributes to the entropy of the black hole.
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According to this duality, the dual field theory thermal state
is identical to the location of the AdS black hole state in the
mass.

Lanczos D. Lovelock [14–16] discovered a natural exten-
sion framework for Einstein’s theory to higher dimensions.
In a special dimension, the Lovelock lagrangian gets differ-
ent theoretical aspects. More specifically, in three and four
dimensions (D = 3, 4), Lovelock’s theory reduces to Ein-
stein’s theory. The second order of the Lovelock theory cor-
responds to the quadratic tensor of the Gauss–Bonnet term,
which turns into a topological surface term and starts being
non-trivial in D = 5 dimensions. On the other hand, there
was the most linked investigation concerning the Lovelock
gravities in the context of cosmological models [17] and in
the cosmological background through string theories. Fur-
thermore, the quadratic Gauss–Bonnet term appropriate to
the 2nd order of Lovelock gravities in four dimensions can
be derived from the low energy effective action of heterotic
string theory [18–21] and also formed in the six-dimensional
Calabi–Yau compactification of M-theory [22,23], and the
theory is free of ghosts of other exactions [24,25]. After all,
a few insights into the quadratic term of Gauss–Bonnet were
elaborated in the frame of a spherical black hole by Boul-
ware and Deser in D > 5 spacetime [24–27]. Recent works
on Gauss–Bonnet theory have succeeded in interpreting the
4D topological invariant by rescaling the GB coupling con-
stant [28]. As a result, the EGB theory becomes a fruitful
sector to explore black hole properties [29–31].

The observation of a black hole shadow offers a technique
to deal with topological background, in a way that both shape
and size are given in terms of the black hole parameters.
Generally, the shadow of a Schwarzschild–Tangherlini black
hole is perfectly circular [32], but for a Kerr black hole, the
shadow is distorted [33]. Recent observations have managed
to show, with the help of informatics data, a simulated image
with regard to black objects. Roughly speaking, the M87*
picture [34,35], yielded an intensive study of the black hole
shadow in different gravity models [36–43].

The outline of this paper is as follows: in Sect. 2, we built
a D-dimensional black solution in the frame of EGB gravity
with a quasitopological electromagnetism source. Section 3
is devoted to computing the relevant thermodynamic quanti-
ties and analyzing the local stability. In Sect. 4, we investigate
the optical proprieties of our black hole solution.

2 Einstein Gauss–Bonnet with quasitopological
electromagnetism

2.1 The set up

The attempt to have a non-linear electrodynamic field as a
source of matter in the context of such a gravity model is

governed by the Born–Infeld term [44] as the main and first
model. The pursuit of this model opens the way for new
models such as Euler–Heisenberg [45], ModMax [46], etc.
As inspired by these models, quasitopological electromag-
netism is considered to be another non-linear electrodynamic
field. Certainly, this model borrows ideas from the topologi-
cal gravity model [47–50].

An overview of dyonic fields is dedicated to experiencing
the situation of a purely electric source [1] with a part of the
magnetic field together in a quasi-topological electromag-
netism [51,52]. However, a convenient choice for the gauges
fields should be in the following form

Fμν ∼ h′(r)δx0x1

μν , Hρ1···ρp ∼ δx
2···xD

ρ1···ρp
, (2.1)

with p = D − 2, in which Fμν and Hρ1···ρp are the electric
and magnetic field strength, respectively. From the gauge
field structure, it is worth noting that the only non-vanishing
terms are the gauges Kinetic |F[2]|2 ∼ FμνFμν and |H[p]|2,
and an interaction term |FH[D]|2 mentioned above. Indeed,
one can consider the following quantities:

F[2k] = F[2] ∧ F[2] ∧ · · · ∧ F[2], k ≤ �D/2�, (2.2)

H[pk] = H[p] ∧ H[p] ∧ · · · ∧ H[p] k ≤ �D/p�, (2.3)

FH[2k+pl] = F[2k] ∧ H[pl], {2k + p	 ≤ D}. (2.4)

The present step is devoted to constructing the correspond-
ing physical Lagrangian, where the squared norms |F[2k]|2,
|H[pk]|2 and |FH[2k+p	]|2 are given in a component notation
after using the Hodge product

|F[2k]|2 ∼ δρ1···ρ2k
σ1···σ2k

Fρ1ρ2 Fρ3ρ4 · · ·
Fρ2k−1ρ2k F

σ1σ2 Fσ3σ4 · · · Fσ2k−1σ2k , (2.5)

| H[pk] |2∼ δ
ρ1···ρpk
σ1···σpk Hρ1···ρp · · · H···ρpk H

σ1···σp · · · H ···σpk ,

(2.6)

| FH2k+p	 |2∼ δ
ρ1···ρ2k+p	
σ1···σ2k+p	 Fρ1ρ2 Hρ3···ρp+2 · · ·

F···H···ρ2k+p	F
σ1σ2 Hσ3···σp+2 · · · F · · · H ···σ2k+p	 , (2.7)

where δ
ρ1···ρ2k
σ1···σ2k denotes the rank-4k skew-symmetric Kro-

necker delta. While other quadratic terms can arise differ-
ently in a mixed manner between the above quantities, as
F[2k] ∧ ∗H[p	] with 2k = p	 and k ≤ �D/2�, F[2k] ∧
∗FH[2q+p	] with p	 = 2(k − q) and k ≤ �D/2� where
� � is the floor function, as well as H[pk] ∧ ∗FH[2q+p	] with
2q = p(k− 	) and k ≤ �D/p�. Basically, all these invariant
quantities contribute reasonably to the field equations and,
therefore, formulate the matter part of the considered action.

Consequently, we consider a D-dimensional action referred
to a gravity sector in the essence of the Einstein Gauss–
Bonnet theory, and in a part to a matter field labeled by a
Quasi-Topological Electromagnetism in the form
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SD
[
gμν, Aμ, Bλ1···λp−1

]

= 1

16π

∫
dDx

√−g
(
R − 2� + αG + LQT E

)
, (2.8)

where the matter field is represented by the following Quasi-
Topological Electromagnetism Lagrangian

LQT E = −
(

1

4
F2 + 1

2p!H
2 + βLint

)
(2.9)

with F2 = FμνFμν and H2 = Hρ1···ρp H
ρ1···ρp , and the

interaction term is given by

Lint = δλ1···λD
γ1···γD Fλ1λ2 Hλ3···λD F

γ1γ2 Hγ3···γD . (2.10)

Here the coupling constant β has mass dimension −2.
According to Lovelock’s theory of gravity, the computa-

tion must be restricted up to second order for the purpose to
obtain the Einstein Gauss–Bonnet gravity. The case in which
Einstein-Hilbert action arises naturally in a part of the action,
in addition to the quadratic Gauss–Bonnet term given as

G = R2 − 4RμνRμν + Rμνρσ Rμνρσ . (2.11)

The variation of the considered action given by leads to the
following equation of motions

Gμν + gμν� + αLμν = −1

2
FμρF

ρ
ν + 1

8
gμνF

2

−1

4
Bμν − β

2
gμνLint (2.12)

�νF
νμ − 4β δ

μν γ1···γp
λ···λD

Hγ1···γp

�ν

(
Fλ1λ2 Hγ3···γD ) = 0 (2.13)

�Hμλ1···λp−1 + 2α p! δμνρ λ1···λp−1
γ ···γD

Fμν�ρ

(
Fγ1γ2 Hγ ···γD ) = 0,

(2.14)

where Gμν and Lμν , respectively, are the Einstein tensor and
the Lanczos tensor. They are given by

Gμν = Rμν − 1

2
gμνR, (2.15)

Lμν = 2
(
RRμν − 2RμρR

ρ
ν − 2RρλRμνρλ + Rρλσ

μ Rνρλσ

)

−1

2
gμνG. (2.16)

Moreover, Bμν is the energy–momentum tensor for the
B[p−1] field. it reads

Bμν = 1

(p − 1)!Hμρ1···ρp−1 H
ρ1···ρp−1

− 1

(p!)2 δ
ρ1···ρp
σ1···σp

λ(μgν)λHρ1···ρp H
σ ···σp . (2.17)

An examination is carried out to determine what exactly
can result from the variation of the interaction part of the

Lagrangian with respect to the metric space-time. Let us now
assume the following

1√−g

δ
(√−gLint

)
δgμν

= Xμν − 1

2
gμνLint . (2.18)

Nevertheless these Lagrangians fulfill the identity

δρ1···ρD
σ1···σD

F[ρ1ρ2 Hρ3···ρD F
σ1σ2 Hσ3···σD gμ]ν

= −Xμν + gμνLint = 0, (2.19)

where, this allows us to put the result

1√−g

δ
(√−gLint

)
δgμν

= 1

2
gμνLint , (2.20)

of course, this result confirms the validity of the energy–
momentum tensor with regards to the interaction Lagrangian.
After that, we look for the appropriate solution pertinent to
this background.

2.2 Exact solutions

In this part, we are interested in finding a physical solution
to model the structure of dyonic charges within the Einstein
Gauss–Bonnet theory. For that reason, we consider a static
spherically symmetric metric

ds2 = − f (r)dt2 + dr2

f (r)
+ r2d�2

D−2, (2.21)

where one has

.d�2
D−2 = dθ2

1 +
D−2∑
i=2

i−1∏
j=1

sin2 θ j dθ2
i , (2.22)

which is the line element of (D−2)-dimensional unit sphere.
Linking to differential geometry helps to think of a local chart
{xi } with i = 1, . . . , p, which provides an intrinsic metric εi j
on the manifold �D−2, with determinant ε. This (D−2)-unit
sphere involves certain magnetic objects to wrap spherical
(D−2)-cycles covered the volume form, H[D−2] ∼ Vol(�),
namely

Hρ1···ρp = qm
√

εδx
1···x p

ρ1···ρp
. (2.23)

The Maxwell field will be purely electric,

Fμν = h′(r)δtrμν (2.24)

where the prime denotes the derivative with respect to r .
These quantities give rise to such electric and magnetic
charges as

qe ∼
∫

�∞
�F[2], qm ∼

∫
�∞

H[D−2]. (2.25)
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At this stage, making use of the Ansatz in Maxwell equa-
tions leads to find

r2p [ph′(r) + rh′′(r)
]− 8β(p!)2q2

m

[
ph′(r) − rh′′(r)

] = 0,

p = D − 2 (2.26)

which admit a solution in the form

h′(r) = qer p

r2p + 8β(p!)2q2
m

. (2.27)

A fascinating note from this solution showed that the param-
eter interaction and magnetic charge have similar behavior
in preserving the dyonic structure of the black hole.

The next step focuses on the definition of the metric func-
tion f (r). We begin to evaluate the EGB field equations
(2.12), reads

T t
t = D − 2

2

{[
f ′

r
+ (D − 3) f

r2 − D − 3

r2

]

−α̃

[
2 f f ′

r3 − 2 f ′

r3 + (D − 5) f 2

r4 − 2(D − 5) f

r4 + D − 5

r4

]}
,

T t
t = T r

r , (2.28)

while the energy momentum tensor is given by

T t
t =−1

4

(
q2
m

r2(D−2)
+ q2

e

r2(D−2) + 8βq2
m�(D − 1)2

)
. (2.29)

The fact that β is positive, results in a way that Ttt is a posi-
tive quantity. To simplify the computations, we consider the
rescaled coupling constant

α̃ = α(D − 3)(D − 4). (2.30)

With these at hand, we can perform such processing to show
the explicit form of f (r) which is defined under a differen-
tial representation of the (t, t) part of the field equations as
follows

(D − 3) f (r)

r2 − D − 3

r2 + f ′(r)
r

+1

4

(
q2
e

8βq2
m�(D − 1)2 + r2(D−2)

+ q2
m

r2(D−2)

)

+� − α

2

(
(D − 5) f (r)2

r4 − 2(D − 5) f (r)

r4

+D − 5

r4 + 2 f (r) f ′(r)
r3 − 2 f ′(r)

r3

)
= 0. (2.31)

This equation provides a pair of distinct solutions referred to
by the signs ±. Indeed, these solutions are found to be

f (r) = 1 + r2

2α̃

(
1 ±√g(r)) , (2.32)

where

g(r) = 1 + 4α̃m

rD−1 + 8α̃�

(D − 2)(D − 1)
− 2α̃

D − 3

×
(
q2
m + q2

e 2F1

[
1,

D − 3

2(D − 2)
; 7 − 3D

4 − 2D
; −8βq2

m�(D − 1)2

r2D−4

])
.

(2.33)

Here 2F1 denotes Euler’s hypergeometric function. In fact,
the boundary conditions offer the integration constant m,
which acts as a mass of the solution in a particular parameter
space. Thus, the relevant ADM mass is defined according to
[53] by

MADM = (D − 2)ω

16π
m, with ω = 2π

D−1
2

�
[ D−1

2

] (2.34)

where ω is the volume of the (D−2)-dimensional unit sphere.
Henceforth, the physical solution is that of the negative

branch, which recovers solutions in EGB theory as well as in
general relativity. It is interesting to note that every black hole
solution is a given in such a parameter space, uniquely col-
lecting all the physical parameters. Thus, our parameter space
takes care of managing the set M(M, α, qe, qm, β,�, D).
Certain limits across the dynamics of the parameter space,
however, are taken into account, from which the cancellation
of the GB coupling constant α leads to the exploration of a
solution within the framework of general relativity [51]:

f (r) = 1 − 2m

rD−3 − 2�r2

(D − 1)(D − 2)

+
q2
m + q2

e 2F1

[
1, D−3

2(D−2)
; 7−3D

4−2D ; −8βq2
m�(D−1)2

r2D−4

]

2(D − 2)(D − 3)r2(D−3)
.

(2.35)

Moreover, the disappearance of the electric charge, as well
as the magnetic charge, gives rise to the Tangherlini AdS-
Schwarzschild solution [54]:

f (r) = 1 − 2m

rD−3 − 2�r2

(D − 1)(D − 2)
. (2.36)

It is shown that Fig. 1 represents the variation of metric
function against the radial coordinate. Different cases can be
distinguished for the equation f (r = r − +) = 0, among
these cases, on has

• Double roots corresponding to the Cauchy horizon r−
and the event horizon r+.

• A degenerated root r− = r+ = rE related to an extremal
black hole.

• An empty set of solutions.

Thanks to a numerical treatment, we assert unequivocally
that the metric function carries at most two horizon radii
for such valued parameter space. Moreover, these horizon
radii can be degenerated to present one horizon radius, or
no black hole system can be found. In particular, for a fixed
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(a) (b)

(c) (d)

(e)

Fig. 1 The metric function vs radial coordinate r for several values of the parameters space with D = 5 and β = 0.1

value of parameters (qm = 2qe = 0.6,� = −0.02, β =
0.1 and m = 1), we find the following:

• For D = 5, 6, 7 if α ≤ 0.3 ⇒ two horizon radius, else
no horizon radius.
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• For D = 8 if α ≤ 0.4 ⇒ two horizon radius, else no
horizon radius.

• For D = 9, 10 if α ≤ 0.5 ⇒ two horizon radius, else no
horizon radius.

With all this background at hand, one can explore more sides,
such as thermodynamic aspects and shadow behavior.

3 Local black hole stability

In this section, we will calculate various thermodynamic
quantities for our black hole. More precisely, we compute
the mass of the black hole, and then we give the expression
for the Hawking temperature, which allows us to calculate
the related black hole entropy.

Starting with the mass of the black hole which is obtained
in terms of the horizon radius r+ by solving the equation
f (r+) = 0, taking into account Eq. (2.34) which gives

MADM = 1

32
(
3 − 4D + D2

)
π
r−5−D+ ω

×
[
(D − 1) q2

mr
8+ + 2 (D − 3) r2D+

×
((

2 − 3D + D2
)
r2+

+
(

24 − 50D + 35D2 − 10D3 + D4
)

α − 2r4+�
)

+ (D − 1) q2
e r

8+ 2F1

×
(

1,
D − 3

2 (D − 2)
,

7 − 3D

4 − 24
,−8βq2

mr
4−2d+ � [D − 1]2

)]
.

(3.1)

By taking qm = qe = β = � = α = 0, Eq. (3.1) goes to the
D-dimensional Schwarzschild black hole given by

MADM = (D − 2)ωD−2r D−3

16π
. (3.2)

The Hawking temperature is defined as follows

T+(r+) = f ′(r)
4π

∣∣∣∣
r=r+

, (3.3)

the prime denotes the derivative with respect to r . The com-
putations give

T+ = t1
t2

(3.4)

where one has

t1 = r−2D−1+
(
8βq2

mr
4+�(D − 1)2(− 2r2D+

(
2�r4+

− (D − 3)(D − 2)
(
α(D − 5)(D − 4) + r2+

))− q2
mr

8+
)

− r2D+8+
(
q2
e + q2

m

)− 2r4D+
(
2�r4+

− (D − 3)(D − 2)
(
α(D − 5)(D − 4) + r2+

)))
(3.5)

t2 = 8π(D − 2)
(

2α(D − 4)(D − 3) + r2+
)

×
(

8βq2
mr

4+�(D − 1)2 + r2D+
)

. (3.6)

In the particular case where qm = qe = β = � = 0,
one obtains the following well knowing form of the D-
dimensional EGB Hawking temperature

T+ = (D − 3)
[
r2+ + α(D − 5)(D − 4)

]
4πr+

[
r2+ + 2α(D − 4)(D − 3)

] (3.7)

taking D = 5, one obtains

T+ = 1

4π

( 2r+
r2+ + 4α

)
, (3.8)

which is the 5D Einstein–Gauss–Bonnet black hole temper-
ature [55]. Furthermore, making α = 0, one recovers the
Hawking temperature of the 5D Schwarzschild–Tangherlini
black hole given by T+ = (1/2πr) [56].

To investigate the behavior of the Hawking temperature,
one depicts it on the Fig. 2 below:

We can see that the Hawking temperature rises to a max-
imum value and then drops to a minimum. It turns out that
when the dimension D increases, the maximum value of the
Hawking temperature also increases. Whereas this maximum
is inversely proportional to the GB coupling constant.

This black hole can be regarded as a thermodynamic sys-
tem only if its associated quantities obey the first-law of ther-
modynamics given by

dM = T+dS + φedqe + φmdqm, (3.9)

where the associated electric and magnetic potentials are
given respectively in the following terms:
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(a) (b)

Fig. 2 The Hawking temperature vs the event horizon for different values of D and α

φe =
π

D−3
2 qer

3−D+ 2F1

(
1, D−3

2(D−2)
; 7−3D

4−2D ;−8βq2
mr

4−2D+ �(D − 1)2
)

8(D − 3)�
( D−1

2

) , (3.10)

φm =

(D − 1)π
D−3

2 r3−D+

⎛
⎜⎜⎝

(D−3)q2
e

(
1

8βq2
mr4−2D+ �(D−1)2+1

− 2F1

(
1, D−3

2(D−2)
; 7−3D

4−2D ;−8βq2
mr

4−2D+ �(D−1)2
))

D−2 + 2q2
m

⎞
⎟⎟⎠

32(D − 3)qm�
( D+1

2

) . (3.11)

To construct the black hole entropy, one use the Eq. (3.9)
at constant parameters, which yields to

S =
∫

1

T+
dM =

∫
1

T+
dM

dr+
dr+. (3.12)

Inserting Eqs. (3.1)–(3.3) into (3.12), the entropy takes the
following form

S = ω

4
r D−2+

(
1 + 2α̃

r2+
D − 2

D − 4

)
. (3.13)

It is commonly known that the black hole stability is ana-
lyzed via the heat capacity sign; the black hole is stable when
Ch is positive, or unstable if Ch is negative. The expression
of this physical quantity is given by

Ch = ∂M

∂T+
=
( ∂M

∂r+

)( ∂r+
∂T+

)
. (3.14)

By using Eqs. (3.1) and (3.3) we get

Ch = c1

c2
, (3.15)

with

c1 = −(D − 2) ω r D+
(

2α̃ + r2+
)2 (

8βr4+�(D − 1)2q2
m + r2D+

)

×
((

−2r2D+
(

2�r4+ − (D − 3)(D − 2)

(
α̃
D − 5

D − 3
+ r2+

))

−r8+q2
m

) (
8βr4+�(D − 1)2q2

m + r2D+
)

− r2D+8+ q2
e

)
,

(3.16)

c2 = 4r4+
(
r2D+8+ q2

e

(
8βr4+�(D − 1)2q2

m
(
6α̃ + r2+

)

+ r2D+
(

(5 − 2D)r2 − 2α̃(2D − 7)

))

+
(
r8+q2

m

(
(5 − 2D)r2+ − 2α̃(2D − 7)

)

+ 2r2D+
(

(D − 3)(D − 2)

(
2α̃2 D − 5

D − 3
+ α̃

D − 9

D − 3
r2+ + r4+

)

+ 2�r4+
(
6α̃ + r2+

)))(
8βr4+�(D − 1)2q2

m + r2D+
)2)

.

(3.17)
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It is clear that in the case of α = qm = qe = � = β = 0
the heat capacity (3.15) reduces to

Ch = −1

4
(D − 2)r D−2+ ω, (3.18)

which is the same result as [57].
The heat capacity behavior against r+ is depicted in Fig. 3

showing the effect of the parameters D, α, � and qm . One
observes that the heat capacity C+ is positive for r+ < rc
which means that the black hole is locally stable, whereas the
heat capacity is negative for rc < r+, hence the black hole
is locally unstable. Moreover, the heat capacity sign changes
at r+ = rc indicating that the second-order phase transition
occurs there. With regards to Fig. 3a, it is remarkable that the
rc is sensitive to the variation of the dimension D. One can
see that the rc increases as the dimension D increases. Like-
wise, a similar effect is observed from the variation of theGB
coupling constant on the changes of rc, Fig. 4a. Whereas the
critical radius rc varies in full agreement with the variation of
the cosmological constant � in such a way that rc is shifted
towards the right when the � value is increasing (cf. Fig. 3c).
In addition to the prior cases, two divergent points rc1 and
rc2 arise regarding the magnetic charge variation, generat-
ing three zones (cf. Fig. 3d). Indeed, at small horizon radii,
the heat capacity is positive, yielding a stable small black
hole. In what follows, the heat capacity becomes negative
after crossing the first zone, involving an unstable interme-
diate black hole. The heat capacity rapidly changes its sign
to be positive again, which means that the large black hole is
locally stable. It is worth noting that for a certain fixed value
of the magnetic charge, the divergent behavior of the heat
capacity is completely eliminated. Furthermore, the critical
radii rc1 and rc2 have the opposite behavior when we vary
the magnetic charge. Specifically, at a small horizon radius
r+, rc1 is fully proportional to the qm variation. In contrast,
once qm increases, the rc2 decreases at a large horizon radius.
Similarly, the same behavior as in Fig. 3d is shown in Fig. 4
for the electric charge effect.

4 Black hole shadow

In this section,we will study the null geodesics, where the
space-time geometry is described by (2.32). We use the
Lagrangian and Hamilton–Jacobi equation to obtain the
motion equations of the test particle.

We start with Lagrangian, given by

L = 1

2
gμν ẋ

μ ẋν, (4.1)

where gμν is the metric tensor, the dot denotes the derivative
with respect to an affine parameter λ.

The canonically conjugate momentums solution provides,

Pt = E

f (r)
, (4.2)

Pr = 1

f (r)
ṙ , (4.3)

Pθi = r2
D−3∑
i=1

i−1∏
j=1

sin2 θ j θ̇i , (4.4)

Pφ = r2
D−3∏
i=1

sin2 θi = L , (4.5)

where E and L are the test particle’s energy and angu-
lar momentum, respectively. In order to study the photon
orbits around the black hole, the geodesics of such a par-
ticle must be derived. To achieve such a goal, we employ
the Hamilton–Jacobi approach based on the Carter constant
separable method in higher dimensions, which is given by

∂S

∂λ
+ 1

2
gμν ∂S

∂xμ

∂S

∂xν
= 0, (4.6)

where S is the Jacobi action. To solve the above equation, we
assume the following anzats [32]

S = 1

2
mλ2 − Et + Lφ + Sr (r) +

D−3∑
i=1

Sθi (θi ), (4.7)

where Sr (r), Sθi (θi ) are functions of r and θi respectively,
and m is the mass of the test particle, which equals zero as
the photon. The substitution of Eq. (4.7) in Eq. (4.6) gives

−2
∂S

∂λ
= − 1

f (r)

(
∂St
∂t

)2

+ f (r)

(
∂Sr
∂r

)2

+ 1

r2
∏D−3

i=1 sin2 θi

(
∂Sφ

∂φ

)2

+
D−3∑
i=1

1

r2
∏i−1

j=1 sin2 θ j

(
∂Sθi

∂θi .

)2

. (4.8)

By employing the separability method and introducing the
Carter constant K, we get

0 = − 1

f (r)

(
∂St
∂t

)2

+ f (r)

(
∂Sr
∂r

)2

+ 1

r2

(
1∏D−3

i=1 sin2 θi

(
∂Sφ

∂φ

)2

+ K −
(

∂Sφ

∂φ

)2 D−3∏
i=1

cot2 θi

)

+ 1

r2

( D−3∑
i=1

1∏i−1
j=1 sin2 θ j

(
∂Sθi

∂θi

)2

− K +
(

∂Sφ

∂φ

)2 D−3∏
i=1

cot2 θi

)
, (4.9)
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(a) (b)

(c) (d)

Fig. 3 The heat capacity behavior vs r+ for various dimension (a), different GB coupling constant value (b), different values of � (c) and different
values of qm (d)

which can be written as follows:

0 = − E2

f (r)
+ f (r)

(
∂Sr
∂r

)2

+ 1

r2

(
L2

∏D−3
i=1 sin2 θi

+ K −
D−3∏
i=1

L2 cot2 θi

)

+ 1

r2

( D−3∑
i=1

1∏i−1
j=1 sin2 θ j

(
∂Sθi

∂θi

)2

− K +
D−3∏
i=1

L2 cot2 θi

)
,

(4.10)

where we have used ∂St
∂t = E , ∂Sφ

∂φ
= L ,

By incorporating Eqs. (4.2)–(4.5) into Eq. (4.10), we can
obtain the entire system of equations that govern the photon
motion around the black hole, as follows:

ṫ = E

f (r)
, (4.11)

φ̇ = L

r2
∏D−3

i=1 sin2 θi
, (4.12)

r2ṙ = ±√R(r), (4.13)

r2
D−3∑
i=1

i−1∏
j=1

sin2 θi θ̇i = ±√�i (θi ) (4.14)

where

R(r) = E2r4 − r2 f (r)
(K + L2), (4.15)

�i (θi ) = K −
D−3∏
i=1

L2 cot2 θi . (4.16)

To obtain the boundary of the black hole shadow, one
should study the radial equation. Thus, Eq. (4.13) can be
reformulated as

ṙ2 + Vef f = 0 (4.17)
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Fig. 4 The heat capacity behavior vs r+ for different values of the
electric charge, qe, with α = 0.01, qm = 1, � = −0.02, β = 0.1 and
D = 5

Fig. 5 The effective potential vs the radius coordinate behavior in var-
ious dimension for m = 1, K = 1, E = 1 and L = 5

where Vef f (r) is the effective potential for radial motion
given by

Vef f (r) = f (r)

r2

(K + L2)− E2. (4.18)

In Fig. 5, we depict the effective potential as a function of
the coordinate r to analyze its behavior as well as to look the
effect of the dimension. From such figure, we can see that the
potential has a maximum, which corresponds to an unstable
orbit, and its value grows with increasing dimension. Fur-
thermore, as we go r → ∞, effective potential asymptotes
to a constant value.

To find the unstable circular orbits that limit the appar-
ent shape of the shadow of a black hole, we maximize the
effective potential by setting the following conditions:

Vef f (r)
∣∣∣
r=rp

= ∂Vef f (r)
∂r

∣∣∣
r=rp

= 0, or

R(r)
∣∣∣
r=rp

= ∂R(r)
∂r

∣∣∣
r=rp

= 0, (4.19)

where rp is the photon sphere radius. The radius of the photon
sphere is given by the solution of the equation V (rp) = 0.
The acquired rp is then entered into the equation V ′(rp) = 0
to see if the constraint V ′′(rp) < 0 is satisfied in order to
obtain the unstable photon orbits [58].

Now, using the condition Vef f (r) = 0
∣∣∣
r=rp

yields to

r2
p

f (rp)
= L2

E2 + K
E

= ξ2 + η, (4.20)

where we have adopted the definition of the impact parame-
ters introduced in [59]

L

E
= ξ,

K
E2 = η. (4.21)

In fact, we use the boundary constraint
∂Vef f (r)

∂r

∣∣∣
r=rp

= 0, to

make the radius rp of the photon sphere accurate. To reach
that, we should resolve the following equation

r f ′(r)
∣∣
r=rp

− 2 f (r)
∣∣
r=rp

= 0. (4.22)

However, in our case the above equation can not be solved
analytically. So we solve it using a numerical method. The
Table 1 outlines the findings

We now aim to determine the visible shape of the black
hole shadow. For a better visualization, we use celestial coor-
dinates X and Yi to determine the location of the shadow. The
coordinate X corresponds to the shape’s apparent perpendic-
ular distance as seen from the axis of symmetry, and the
coordinate Yi corresponds to the shape’s apparent perpen-
dicular distance as seen from its projection on the equatorial
plane.

The celestial coordinates X and Y can be used to illustrate
the apparent shape of the black hole shadow for an observer
who is far away from the black hole. In accordance with [59]
we can write

X = lim
r0→∞

(r0P(φ)

P(t)

)
,

Yi = lim
r0→∞

(r0P(θi )

P(t)

)
, i = 1, . . . , D − 3 (4.23)

where r0 is the distance from the black hole to the far observer.
Furthermore, we calculate the above limits by using the
canonically conjugate momentum Eqs. (4.2)–(4.5), and the
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Table 1 The event horizon
radius and photon sphere radius
for variations in dimension D
and the GB parameter α with
qm = 2qe,� = −0.02, β = 0.1

D(α = 0.1) 5 6 7 8 9 10

rp 1.31476 1.2141 1.3332 1.07786 1.04324 1.02226

re 0.86855 0.790518 0.743893 0.726719 0.724342 0.728466

α(D = 5) 0.1 0.15 0.185 0.2 0.25 0.3

rp 1.31476 1.26797 1.23157 1.21484 1.15282 1.07707

re 0.86855 0.805181 0.756611 0.734407 0.65166 0.541573

(a) (b)

Fig. 6 Black hole shadow in celestial plane (X − Y ) in different dimension D (left panel), and Gauss–Bonnet parameter α (right panel)

geodesic equation of motion (4.11)–(4.14), we obtains

X = −ξ
∏D−3

i=1 csc θi√
1 − (η+ξ2)(1−

√
1− 8α̃�

(D−1)(D−2)
)

2α̃

, (4.24)

Yi = ±
√√√√√√

η − ξ2
∏D−3

i=1 cot2 θi√
1 − (η+ξ2)(1−

√
1− 8α̃�

(D−1)(D−2)
)

2α̃

. (4.25)

We will consider an observer on the equatorial hyperplane
(θi = π

2 ) for the sake of simplicity. The celestial coordinates
can be written as

X = −ξ√
1 − (η+ξ2)(1−

√
1− 8α̃�

(D−1)(D−2)
)

2α̃

, (4.26)

Y = ±
√√√√√

η√
1 − (η+ξ2)(1−

√
1− 8α̃�

(D−1)(D−2)
)

2α̃

. (4.27)

Fig. 7 The radius shadow behavior with respect to the dimension D
for m = 1

Combining the coordinates X and Y yields an equation
describing a circle with a radius of Rs in the celestial plane
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(a) (b)

Fig. 8 The energy emission rate variation vs frequency � for different dimension D for m = 1

X − Y , which is given by

R2
s = X2 + Y 2 = ξ2 + η

1 − (η+ξ2)(1−
√

1− 8α̃�
(D−1)(D−2)

)

2α̃

. (4.28)

By using Eq. (4.20), the radius shadow Rs becomes

R2
s =

r2
p

f (rp)

1 − r2
p

f (rp)

( 1−
√

1− 8α̃�
(D−1)(D−2)

2α̃

) , (4.29)

which results in

Rs =

√√√√√√
r2
p

f (rp)

1 − r2
p

f (rp)

( 1−
√

1− 8α̃�
(D−1)(D−2)

2α̃

) . (4.30)

As shown in Fig. 6, we plot black hole shadows for var-
ious cases. The size of the black hole’s shadow can be seen
to be controlled by the dimension of space-time D and the
Gauss–Bonnet parameter α. According to Fig. 6a the black
hole shadow has a circular shape, and the size of this circle
increases as D increases. Furthermore, the same behavior has
been noticed with the increase of α in Fig. 6b (Fig. 7).

5 Energy emission rates

In this section, we study the energy emission rate (EER) in the
D-dimension. Several studies have demonstrated the analy-
sis of the energy emission rate with respect to the param-
eter dimension D as well as the coupling constant of the
Gauss–Bonnet gravity α [60,61]. For a faraway observer, it
is well known that the shadow is responsible for a high energy
absorption cross section due to the black hole. The energy

Fig. 9 The energy emission rate variation vs frequency � for different
GB constant α for m = 1

emission rate of a black hole in a higher dimension can be
expressed as [62],

d2E(�)

d�dt
= 2π2σlim

exp ( �
TH

) − 1
�(D−1) (5.1)

where � is the frequency, TH is the Hawking temperature
given by (3.4), and σlim is the limiting constant value for
an absorption cross section oscillating around a spherically
symmetric black hole.
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(a) (b)

(c) (d)

Fig. 10 The energy emission rate variation vs frequency � for � (a), qe (b) and qm (c) with m = 1, D = 5 and β = 0.1

A D-dimensional black hole’s limiting constant value σlim
can be approximated by [63]

σlim = π( D−2
2 )R(D−2)

s

�( D2 )
(5.2)

where Rs is the radius shadow.
Figure 8 shows the energy emission rate against the fre-

quency � in various dimensions D. We can see that there is
a peak in the energy emission rate for the black hole. Con-
cretely, this peak becomes greater with an increase in dimen-
sion D. Therefore, the evaporation process will be faster in
higher-dimensional space-time, Fig. 8a, b. Furthermore, a
similar explanation may be given for the effect of the Gauss–
Bonnet constant α, Fig. 9.

Figure 10 indicates the variation of the energy emission
rate as a function of the frequency � for different values of

�, qe, and qm . Generally, it is shown that the EER increases
until such a peak, then it drops down to vanish. The peak of
the EER appears to increase with decreasing �, as shown
in Fig. 10a. While both the electric and magnetic charges
have a similar effect on peak variation, Fig. 10b, c shows that
as the latter parameters increase, the EER peak decreases.
Furthermore, It is known that the coupling constant β gives
rise to dual fields and hence to dyonic objects. The Fig. 10d
shows the variation of the EER with respect to different fixed
values of the coupling constant β. It is shown that, contrary
to the previous Fig. 10a–c, increasing the coupling constant
β causes the same variation in the EER peak. In other words,
when the electric and magnetic interaction is strong, the evap-
oration process becomes faster for the dyonic AdS black hole
system.
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6 Conclusion

In this paper, we have derived a solution for a dyonic qua-
sitopological electromagnetic source in the EGB gravity
framework. The obtained solution brings us back to our usual
solutions across the cancellation of some parameter space.

We have examined the thermodynamic aspects of the
obtained solution, including the relevant ADM mass, Hawk-
ing temperature, and entropy. These last quantities have been
employed to compute the heat capacity, which gives us the
possibility to analyze the local stability. It was discovered
that there are two distinct phases, each of which is located
near the critical radius rc. In the left region of rc, we have a
stable phase, whereas in the right region, we have an unstable
phase state. The second phase transition has occurred at the
critical radius of rc. The critical radius, rc, is proportionally
affected by the parameters D and α. Moreover, it has been
shown that the variation of rc is compatible with the negative
cosmological constant. In addition, the variations of the elec-
tric and magnetic charges have a similar effect on the heat
capacity behavior.

Concerning the optical properties of this black hole,
the behavior of its shadow has been studied. In brief, the
Hamilton–Jacobi method was employed to integrate the
geodesic equation of the test particle using Carter’s sepa-
ration of variables trick. We found that the shadow of this
black hole has a circular shape whose radius depends on the
value of the different parameters. We limited our study just to
the effect of the parameter D and the GB coupling constant.
We discovered that the increase in the parameter D and the
GB coupling constant reduced the size of the shadow. The
energy emission rate was discovered to vary in contrast to
the parameters D, GB coupling constant α, the cosmologi-
cal constant �, the electric qe and the magnetic charge qm .

This work comes up with open questions mainly related
to the recent 4D EGB gravity as well as the phase transition
study, which will be the next interesting topic.
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