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Abstract The W (a, b) and W (a, b; ā, b̄) algebras are
deformations of bms3 and bms4 algebras, respectively. We
present a N = 2 supersymmetric extension of both algebras
in the presence of Rsymmetry generators that rotates the two
supercharges. Our construction provides the most generic
central extensions of the W (a, b) algebra. In particular, we
find thatN = 2 bms3 algebra admits a new central extension.
On the other hand, we explicitly demonstrate that an infinite
U (1)V ×U (1)A extension of the W (a, b; ā, b̄) algebra cor-
responding to the R−symmetry is not possible for linear
and quadratic structure constants with generic deformation
parameters. This also implies that the infinite R symmetry
considered in our analysis is broken for the N = 2 bms4

algebra.

1 Introduction and summary

For any theory, its asymptotic symmetries are of immense
physical significance. The symmetries at the asymptotic
boundary of a theory depend on the boundary fall-off of its
constituent fields. In most examples, the asymptotic symme-
try is generally increased compared to the bulk symmetry of
the theory. However, the bulk symmetry must be contained
in the asymptotic symmetry group algebra as a subalgebra.
For a theory in asymptotically flat spacetime, if one recedes
from sources towards null infinity, at any finite radial distance
from the source, one expects the symmetry algebra to be just
Poincaré. However, at null infinity, the asymptotic symme-
try algebra in the Bondi gauge is enhanced to the Bondi–
Metzner–Sachs or the bms algebra generated by an infinite
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number of generators known as supertranslations [1,2]. The
bms algebra can also be realized in other asymptotic regions,
such as at spatial or time-like infinity [3,4]. One can fur-
ther extend the bms algebra by including superrotations [5],
which manifest as a double copy of Virasoro algebra. The
finite-dimensional Poincaré algebra is a subalgebra of the
extended bms algebra. These infinite-dimensional bms alge-
bras have gained renewed importance due to recent develop-
ments on the relations between soft theorems and asymptotic
symmetries in analyzing the vacuum of gauge theories and
gravity [6–11]. It is well understood that at any null boundary
in two- or three-dimensional spacetime, one can obtain an
infinite-dimensional algebra by constructing the conserved
charges [12].1 Recently, this has also been realized in gen-
eral dimensions [14]. It is interesting to understand how these
bms algebras are modified in the presence of extended super-
symmetries in a theory of gravity. Furthermore, in the pres-
ence of internal gauge fields, namely the R− symmetry fields,
the supercharges rotate non-trivially among themselves. This
brings interesting dynamics to the system such as modifica-
tion of the Bogomol’nyi–Prasad–Sommerfield (BPS) con-
dition in the presence of R−charges [15,16]. The effects
of extended supersymmetries and R−symmetries have been
studied extensively in the context of asymptotic symme-
tries of three-dimensional supergravity theories. The super-
symmetric deformations of bms3 algebras and their conse-
quences were detailed in [16–25]. In particular, it has been
shown that the R−charges also obtain infinite extensions at
the null infinity, and the space of the asymptotically flat cos-
mological solutions is extended considerably [16,22]. There
has been no similar study in the context of four-dimensional

1 One can impose more general boundary conditions compared to
boundary fall-offs consistent with Bondi gauge to obtain an infinite
number of non-conserved asymptotic charges. They can, however, be
made integrable by appropriate field redefinitions [13].
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asymptotically flat extended supergravity theory. This leads
us to look for deformations of bms4 algebra.

There are two distinct possible ways of generating a new
algebra starting from one, namely deformations and contrac-
tions of an algebra. Deformation of a Lie algebra can be
viewed as an inverse procedure of Inönü–Wigner [26] con-
traction. While physicists have tackled more with contrac-
tion of Lie algebras, deformations of various well-known Lie
algebras in physics have been recently considered in the liter-
ature [27–32]. In contraction prescription, one tries to obtain
a new non-isomorphic algebra through specific limits of a
known algebra, whereas in the deformation prescription one
deforms a Lie algebra to obtain new (more stable) algebras by
turning on structure constants in some commutators [33,34].
For instance, one may take the limit of the Poincaré algebra
by sending the speed of light to infinity (or to zero) to obtain
Galilean (or Carroll) algebra, and conversely, the Galilean
(or the Carroll) algebra may be deformed into the Poincaré
algebra [27,35]. In recent works [36,37], it has been proven
that the three- and four-dimensional pure bms algebras can
be deformed, in their non-ideal part, into two families of
new non-isomorphic infinite-dimensional algebras called W
algebras. In the context of three spacetime dimensions, these
are known as W (a, b) algebras, where bms3 corresponds
to W (0,−1). In the context of four spacetime dimensions,
these are known as W (a, b; ā, b̄) algebras, where bms4

corresponds to W (−1/2. − 1/2;−1/2,−1/2). It has been
shown that by imposing appropriate boundary conditions,
bothW (0, b) andW (b, b; b, b) algebras are obtained as near-
horizon symmetry algebras of three- and four-dimensional
black holes [38]. Also, W (b, b; b, b) has been obtained as the
asymptotic symmetry algebra of flat Friedmann–Lemaître–
Robertson–Walker (FLRW) spacetimes [39]. On the other
hand, W (0, 1),W (0, 0) and W (0,−1) have appeared as
asymptotic symmetry algebras in various gravitational theo-
ries [40–42].

In this paper, our primary goal is to find the super-
symmetric extension of bms4 algebras in the presence of
R−symmetry charges. To achieve this, we need to extend
the W (a, b) and W (a, b; ā, b̄) algebras with two (fermionic)
supercharges. We further consider that the two supercharges
rotate among themselves due to an internal R-symmetry.
Our construction is purely group-theoretic with only two
inputs, namely, (a) we demand the consistency of the pos-
sible extended algebra with the Jacobi identities, and (b)
we demand that the extended algebra contains the super-
Poincaré algebra as its subalgebra, for particular values of
deformation parameters. The explicit construction is as fol-
lows:

• In three spacetime dimensions, we first introduce a set of
infinite fermionic generators to grade the known W (a, b)

algebras and ensure that the resulting superalgebra sat-
isfies graded Jacobi identities. Next, we perform a sim-
ilar construction with infinite bosonic R−charge gener-
ators. We further extend our analysis to include the cen-
tral charges in the algebras. As we have stated above,
W (0,−1) gives the usual bms3, and various supersym-
metric extensions of bms3 algebras are well investigated
[22,23]. Our construction of supersymmetric centrally
extended W (a, b) algebras in this paper reproduces the
known results for a = 0, b = −1, although we obtain a
new possible central extension.

• So far in four spacetime dimensions, we know generic
bosonic W (a, b; ā, b̄) algebra with central extensions
[37]. As stated above, bms4 is a special case of these
for a = b = ā = b̄ = −1/2. Furthermore, in [43], min-
imal supersymmetric generalization of bms4 with one
supercharge has been obtained. In this paper, we first
extend bosonic W (a, b; ā, b̄) with a set of infinite super-
charges. Next, we perform further extension with infi-
nite R−charges. In this case, the resulting algebra has
not been centrally extended. Interestingly, we find that
for bms4 with two supercharges, one cannot infinitely
extend the R−charge sectors. We have shown this rigidity
for both linear and quadratic dependence of the structure
constants. The Jacobi identities are only satisfied within
the global sector, i.e., for N = 2 super-Poincaré algebra
with global R−charges. This is one of the primary results
of this paper.

Here we must mention that both the three- and four-
dimensional algebras constructed in this paper are purely
mathematical. In both cases, the corresponding super-Poincaré
algebras are embedded in them as subalgebras for appropri-
ate values of the deformation parameters. Thus, in principle,
these algebras might show up as the asymptotic symmetry
algebras for three- and four-dimensional asymptotically flat
theories. In particular, the N = 2 extension of bms4 is a
probable candidate for four-dimensional N = 2 supergrav-
ity theories with R−charges.

Let us summarize the organization and results of the paper
below:

• In Sect. 2, we begin with a brief review of the basic
properties of the W (a, b) algebra. Next, we present a
new analysis on a N = 2 supersymmetric extension in
the presence of R-charges which rotate the supercharges
among themselves. We conclude this section with the
central extension of the supersymmetricW (a, b) algebra.
Equation (2.43) represents the N = 2, W (a, b) algebra,
whereas Eq. (2.45) along with the table below it repre-
sents its most generic central extensions.
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• Section 3 discusses the basic properties of W (a, b, ā, b̄)
algebra and may be skipped by the experts. We have
added it for establishing the notations used in the later
sections.

• In Sect. 4, we extend the W (a, b, ā, b̄) algebra to include
two supercharges, but any internal symmetry. This sec-
tion forms the base of the main results of the paper, which
are presented in Sect. 5. Equation (4.5) presents the key
results of this section, which is an infinite extension of
bms4 in the presence of two supercharges.

• Section 5 contains the most important results of this
paper. In this section, we introduce two sets of R-charges
along with other N = 2 W (a, b, ā, b̄) generators and
studied the possibility to find an infinite extension of the
algebra. Here we consider the cases for structure con-
stants being both linear and nonlinear in their arguments
and perform a detailed analysis. We find a non-affirmative
result (unlike the case of Sect. 4), as discussed at the end
of the section.

• In Sect. 6, we conclude with a discussion on the main
results and possible future directions.

2 Three-dimensional supersymmetric W(a, b) and
R-extended W(a, b)

Earlier works such as [36,37] discussed aspects of deforma-
tion and stability of bms3 and bms4 algebras. In this section,
we briefly describe their results and observations for bms3.
The centerless bms3 algebra can be written as

[Jm, Jn] = (m − n)Jm+n

[Jm, Pn] = (m − n)Pm+n,

[Pm, Pn] = 0. (2.1)

Physically, the Jms are identified with superrotations, while
the Pns are supertranslations. This algebra can be deformed
into the two-parameter family algebra called W (a, b), where
a, b are arbitrary real parameters [37]. Explicitly, theW (a, b)
algebra is given by

[Jm, Jn] = (m − n)Jm+n,

[Jm, Pn] = −(n + bm + a)Pm+n,

[Pm, Pn] = 0.

(2.2)

It is straightforward to see that W (0,−1) corresponds to
bms3.

2.1 Supersymmetric W (a, b) algebra

In this section, we write down a supersymmetric version of
the W (a, b) algebra. Subsequently, we will introduce R- and

S-charges and also determine the central extension to the
algebra. We start by introducing fermionic generators Gs in
the W (a, b) algebra where s runs over half-integers. Our goal
would be to write down an extended algebra starting with the
centerless W (a, b) algebra as given above by demanding the
consistency of Jacobi identities. For the time being, unlike
bms3, we do not search for the realization of the algebra as
the asymptotic symmetry algebra of a supersymmetric theory
at null infinity in three spacetime dimensions.

Along with the usual W (a, b) algebra as given in (2.2),
we introduce the following three commutators

{Gr ,Gs} = Pr+s, (2.3)

[Jm,Gs] = α(m, s)Gm+s, (2.4)

[Pm,Gs] = β(m, s)Gl(m,s). (2.5)

The above extension is motivated by various super-bms3

algebras written in [21–23]. We choose to normalize the
super-current generators Gs in such a way that the structure
constant appearing in (2.3) is unity. It is expected that any
deformation of the bms3 algebra by the parameters a and b
will not change the index structure appearing on the RHS of
(2.4). For bms3, it is known that [Pm,Gr ] = 0. However, it
is possible that a deformation gives a nontrivial commutator
between the supercurrents and supertranslation which van-
ishes when a = 0, b = −1.2 This motivates us to propose
(2.5), where l(m, s) is a linear function inm and s. The struc-
ture constants α and β appearing above are also assumed to
be linear functions of its arguments. Our strategy will be to
fix these structure constants and l(m, s) by demanding the
consistency of certain relevant Jacobi identities.

The Jacobi identity involving the generators Gr ,Gs and
Pm is given by

[{Gs,Gr }, Pm] = {Gs, [Gr , Pm]} + {Gr , [Gs, Pm]}. (2.6)

Using (2.2) and (2.3)–(2.5), we obtain

β(m, r)Ps+l(m,r) + β(m, s)Pr+l(m,s) = 0 (2.7)

Assuming linearity of l(m, s) and the structure constant
β(m, s) in both of their arguments, the above equation is
satisfied if l(m, s) = l0 + l1m + s, where l0 and l1 are con-
stants and β(m, r) = −β(m, s) for any r, s. This hence yields
β(m, s) = 0.

Next, we use Jacobi identities on the operators Jm,Gs and
Gr to determine α(m, s). The corresponding Jacobi identity

2 One can think of the expression a + b + 1. Clearly, for bms3, this
combination identically vanishes and can be a possible candidate struc-
ture constant in (2.5). However, if l(m, s) is indeed a linear function of
its argument, we will see that such a commutator does not satisfy the
Jacobi identity.
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is

[{Gs,Gr }, Jm] = {Gs, [Gr , Jm]} + {Gr , [Gs, Jm]}. (2.8)

Using (2.2), (2.3)–(2.5), we obtain

−α(m, r)Pm+r+s −α(m, s)Pm+r+s = (r + s+bm+a)Pm+r+s .

(2.9)

Clearly, equating the coefficients of Pm+r+s , we recover

α(m, s) = −
(
bm + a

2
+ s

)
. (2.10)

The Jacobi identity applied on Jm, Jn and Gs reads as

[[Gs, Jm], Jn]+[[Jm, Jn],Gs]+[[Jn,Gs], Jm] = 0. (2.11)

A similar exercise on the above Jacobi identity followed by
equating the coefficient of Gm+n+s yields

α(m, s)α(n,m + s) + (m − n)α(m + s, s) = α(n, s)α(m, n + s).

(2.12)

It can be easily seen that the structure constant α(m, s) as
determined in (2.10) indeed satisfies the above equality. We
thus end up with a possibleN = 1 supersymmetric extension
of W (a, b) algebra given by

[Jm, Jn] = (m − n)Jm+n,

[Jm, Pn] = −(n + bm + a)Pm+n,

[Pm, Pn] = 0,

{Gr ,Gs} = Pr+s,

[Jm,Gs] = −
(
bm + a

2
+ s

)
Gm+s,

[Pm,Gs] = 0 (2.13)

Now that we have obtained a possible N = 1 extension of
the W (a, b) algebra, we can consider including another copy
of fermionic supercharges which we denote by Hs , where the
index s can take half-integer values. They satisfy the follow-
ing commutators with the superrotation and supertranslation
generators of the W (a, b) algebra

{Hr , Hs} = Pr+s, [Pm, Hs] = 0,

[Jm, Hs] = −
(
bm + a

2
+ s

)
Hm+s . (2.14)

The supercurrent generators Gs and Hs can be used to define
the following linear combinations

Q1
r = 1

2
(Gr + i Hr ) , Q2

r = 1

2
(Gr − i Hr ) . (2.15)

The newly defined generators Q1
r and Q2

r satisfy

{Q1
r , Q

2
s } = Pr+s, {Q1

r , Q
1
s } = 0, {Q2

r , Q
2
s } = 0,

[Jm, Qi
s] = −

(
bm + a

2
+ s

)
Qi

m+s, [Pm, Qi
s] = 0.

(2.16)

2.2 R-extension of supersymmetric W (a, b) algebra

Our next aim is to write the generalized algebra in the pres-
ence of R-charges. R-charge generators rotate the super-
charge generators and thus introduce additional non-trivialities
in the algebra. It is known that the introduction of R−charge
generators necessitates the introduction of S-charge genera-
tors [44] in the context of bms3 symmetries. Motivated by
the N = 2 bms3 algebra as discussed in [23], we begin our
analysis by proposing the following relations involving the
R-charge and S-charge generators

[Rn, Q
1
r ] = β(n, r) Q1

n+r , [Rn, Q2
r ] = −β ′(n, r)Q2

n+r ,

(2.17)
[Pn, Rm ] = σ(n,m)Sn+m , {Q1

r , Q
2
s } = Pr+s + η(r, s)Sr+s ,

(2.18)
[Rn, Jm ] = γ (n,m)Rn+m , [Sn, Jm ] = κ(n,m)Sn+m . (2.19)

In writing the above ansatz, we have assumed that the
addition of R− symmetry generators to the N = 2 super-
W (a, b) algebra will not affect the index structure of the
undeformed algebra. The Jacobi identity for the operators
Q1

m, Q2
n and Rs is given by

[{Q1
r , Q

2
s }, Rm] = {Q1

r , [Q2
s , Rm]} + {Q2

s , [Q1
r , Rm]}.

Using (2.17) and (2.18) in the above, we obtain

[Pr+s + η(r, s)Sr+s, Rm] = (β ′(m, s) − β(m, r))Pr+s+m

+ (β ′(m, s)η(r,m + s) − β(m, r)η(m + r, s))Sm+r+s .

(2.20)

Further, noting that [Sm, Rn] = 0 implies that the LHS
of (2.20) is independent of the translation generator Pm , in
order to make this Jacobi identity consistent, the coefficient of
the translation generator on the RHS must vanish identically,
implying

β ′(m, s) = β(m, r). (2.21)
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Since the above has to be true for arbitrary half-integer values
of r, s and integer values ofm, we conclude that both β ′(m, s)
and β(m, r) depend only on m, assuming they are linear
in their argument. For simplicity, we denote the structure
constant appearing in (2.17) as β(m).

Demanding further consistency of (2.20) yields

σ(r + s,m) = β(m)(η(r, s + m) − η(r + m, s)). (2.22)

The two Jacobi identities involving Q1
r , Jn and Rm , and

Rl , Jm and Jn ,

[[Q1
r , Jn], Rm] + [[Jn, Rm], Q1

r ] + [[Rm, Q1
r ], Jn] = 0,

[[Rl , Jm], Jn] + [[Jm, Jn], Rl ] + [[Jn, Rl ], Jm] = 0,

lead to

mβ(m) = γ (m, n)β(m + n), (2.23)

γ (l,m)γ (l + m, n) − (m − n)γ (l,m + n)

−γ (l, n)γ (l + n,m) = 0. (2.24)

Assuming the structure constants γ (m, n) and β(m) to be
linear in m and n, we explicitly take them to be of the form

β(m) = β0 + mβ1, (2.25)

γ (m, n) = γ0 + γ1m + γ2n. (2.26)

The above ansatz for γ (m, n) along with (2.24) ensures that

γ1 = 1. (2.27)

(2.23) then gives us five equations satisfied by four parame-
ters β0, β1, γ0 and γ2, where

γ0β0 = 0, β0γ2 + β1γ0 = 0,

γ0β1 = 0, β1(γ2 + 1) = 0,

γ2β1 = 0. (2.28)

Clearly, the above set of equations are over-constrained but
admit the following consistent solution

γ0 = 0, γ2 = 0, β1 = 0, (2.29)

while β0 is a nonzero constant that cannot be further fixed.
One can easily check that this is also consistent with the
Jacobi identity for Rm, Rn and Qi

r . Thus, we can write the
following commutation relations

[Rn, Q
1
r ] = β0Q

1
n+r , [Rn, Q

2
r ] = −β0Q

2
n+r ,

[Rn, Jm] = nRn+m . (2.30)

The Jacobi identity involving Jm, Jn and Sl ,

[[Jm, Jn], Sl ] + [[Jn, Sl ], Jm] + [[Sl , Jm], Jn] = 0

yields

κ(l,m)κ(l +m, n)− (m−n)κ(l,m+n)−κ(l, n)κ(n+ l,m) = 0.

(2.31)

Similar to the ansatz for γ (m, n), we assume the following
ansatz for κ(m, n)

κ(m, n) = κ0 + κ1m + κ2n. (2.32)

Plugging the above ansatz into (2.31), we obtain κ1 = 1. The
Jacobi identity for the operators Jl , Pm and Rn leads to the
relation

− (m + bl + a)σ (m + l, n) + σ(m, n)κ(m + n, l)

− nσ(m, n + l) = 0. (2.33)

Assuming a linear ansatz for σ(m, n), i.e.,

σ(m, n) = σ0 + σ1m + σ2n, (2.34)

one can substitute it back into (2.33) to obtain the set of seven
relations:

bσ1 = 0, σ0(κ0 − a) = 0,

σ1(κ2 − b − 1) = 0, σ2(κ2 − b − 1) = 0,

σ1(κ0 − a) = 0, σ2(κ0 − a) = 0,

σ0(κ2 − b) − aσ1 = 0. (2.35)

The above system of equations has two consistent solutions:

• Case I: σ0 = σ1 = 0; κ0 = a, κ2 = b + 1 while σ2 is
arbitrary.

• Case II: σ1 = σ2 = 0; κ0 = a, κ2 = b while σ0 is
arbitrary.

In light of the above, we can rewrite (2.18) and (2.19) as

Case I: [Pn, Rm] = σ2mSn+m,

[Sn, Jm] = (a + n + (b + 1)m)Sn+m;
Case II: [Pn, Rm] = σ0Sn+m,

[Sn, Jm] = (a + n + bm)Sn+m . (2.36)

Finally, we need to find the structure constant η(r, s) appear-
ing in {Q1

r , Q
2
s } in (2.18). Assuming a linear form of η(r, s)

i.e. η(r, s) = η0 + η1r + η2s, we use (2.22) to see that we
must have a relation of the form

σ(r + s,m) = mβ0(η2 − η1). (2.37)

It is quite evident that a choice of parameters as defined in
Case II in our preceding analysis is inconsistent with the
above equation since the LHS is a constant and independent
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of m. However, from the structure constants of Case I, we
arrive at the relation

σ2 = β0(η2 − η1). (2.38)

Finally, the Jacobi identity for Q1
r , Q

2
s and Jm can be written

as

[{Q1
r , Q

2
s }, Jm] = {Q1

r , [Q2
s , Jm]}+{Q2

s , [Q1
r , Jm]}. (2.39)

Using (2.18) and (2.19), the above gives rise to

η(r, s)κ(r + s,m) = ( bm+a
2 + s

)
η(r, s + m)

+ ( bm+a
2 + r

)
η(r + m, s). (2.40)

Since, κ(m, n) = a +m + (b+ 1)n, the above equation will
be satisfied if,

η0 = 0 and η1 = −η2. (2.41)

Thus, the R- and S-charge sector algebra under a defor-
mation reads:3

[Rn, Q
1
r ] = β0Q

1
n+r ,

[Rn, Q
2
r ] = −β0Q

2
n+r ,

[Pn, Rm] = −2β0η1mSn+m,

{Q1
r , Q

2
s } = Pr+s + η1(r − s)Sr+s,

[Rn, Jm] = nRn+m,

[Sn, Jm] = (a + n + (b + 1)m)Sn+m . (2.42)

Redefining Sn → Sn/η1 and Rn → β0Rn , we arrive at the
full W (a, b) algebra including R- and S-charge generators

[Jm, Jn] = (m − n)Jm+n,

[Jm, Pn] = −(n + bm + a)Pm+n,

[Jm, Q1
r ] = −

(
bm + a

2
+ r

)
Q1

m+r ,

[Jm, Q2
r ] = −

(
bm + a

2
+ r

)
Q2

m+r ,

[Jm,Rn] = −nRn+m,

[Jm,Sn] = −(a + n + (b + 1)m)Sn+m,

[Rm, Q1
r ] = Q1

m+r ,

[Rm, Q2
r ] = −Q2

m+r ,

{Q1
r , Q

2
s } = Pr+s + (r − s)Sr+s,

[Pm,Rn] = −2nSn+m . (2.43)

3 η1 = 0 or β0 = 0 are also viable choices of parameters that satisfy the
Jacobi identities. But for interpreting R0 as the R−symmetry generator,
we must consider nonzero values of those parameters.

where indices {m, n, p, q} ∈ Z, while {r, s} ∈ Z + 1
2 and

i ∈ {1, 2}. All other commutators vanish. The conformal
weight of the generators Pm and Sm are −b + 1 and −b,
respectively, while the weight of Q1, Q2 is − b

2 + 1. For
the specific case a = 0 and b = −1 which corresponds to
supersymmetric-bms3, we recover the same algebra as given
in [23].4

2.3 Central extensions of supersymmetric W (a, b)

One can show that the W (a, b) algebra for generic values of
its parameters just admits one central term in its Witt part, but
for certain specific values of a and b, it admits various central
extensions. The most general centrally extended supersym-
metric W (a, b) algebra can be written as

[Jm, Jn] = (m − n)Jm+n + u(m, n),

[Jm, Pn] = −(n + bm + a)Pm+n + v(m, n),

[Jm, Q1
r ] = −

(
bm + a

2
+ r

)
Q1

m+r + x1(m, r),

[Jm, Q2
r ] = −

(
bm + a

2
+ r

)
Q2

m+r + x2(m, r),

[Jm,Rn] = −nRn+m + y(m, n),

[Jm,Sn] = −(a + n + (b + 1)m)Sn+m + z(m, n),

[Rm, Q1
r ] = Q1

m+r + g1(m, r),

[Rm, Q2
r ] = −Q2

m+r + g2(m, r),

{Q1
r , Q

2
s } = Pr+s + (r − s)Sr+s + f (r, s),

[Pm,Rn] = −2nSn+m + h(m, n),

{Q1
r , Q

1
s } = w1(r, s), {Q2

r , Q
2
s } = w2(r, s),

[Pm, Pn] = t1(m, n), [Rm,Rn] = w(m, n),

[Rm,Sn] = k(m, n), [Sm,Sn] = s(m, n)

[Pm,Sn] = t2(m, n), [Pm, Qi
r ] = hi (m, r),

[Sn, Q
i
r ] = f i (n, r),

(2.44)

where the Jacobi identity between the generators will put con-
straints on unknown functions u, v, xi , y, z, w, gi , f, h, wi ,

ti , k, s, hi , f i , which denote the possible central extensions.
The analysis in Appendix A gives a complete classifica-

tion of all possible central extensions to the W (a, b) algebra
for arbitrary values of a and b. Although our ansatz (2.44)
was very general, we eventually ended up with only a few
nonzero central extensions for certain specific values of a
and b. To summarize our findings, we tabulate the nontriv-
ial central charges obtained for other specific domains of the
deformation parameters a and b in the following (Table 1):

4 There is a typo in Eq. 3.19 and Eq. 8.59 of [23]. The structure constant
in the [Mn, Rm ] commutator will be −2m instead of −4m; otherwise
the (G1

r ,G2
s , Rm) will not be satisfied.
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Table 1 Central extensions
Central extensions a = 0, b = −1 a = 0, b = 1 a = 0, b = 2 a �= 0, b �= 0

v(m, n) C (5)
j p m

3δm+n,0 0 0 0

f (r, s) 2C (5)
j p r

2δr+s,0 C (1)
qq δr+s,0 C (2)

qq r2δr+s,0 0

k(m, n) 2C (5)
j p mδm+n,0 0 C (2)

qq mδm+n,0 0

Note that in the above, we have not included the cen-
tral extension in the [Jm, Jn] commutator, which is the usual
Virasoro central extension C j jm3δm+n that is present for
any values of a and b. In addition, the central terms in the
[Jm,Rn] and [Rm,Rn] commutator also exist for all val-
ues of a and b and are given by y(m, n) = C (0)

jr m
2δm+n,0

and w(m, n) = Crrmδm+n,0, respectively. For all cases other
than those above, the central extensions vanish.

Here, we tabulate the W (a, b) for a = 0 and b = −1,
which is the same as the super-bms3 algebra

[Jm, Jn] = (m − n)Jm+n + C (1)
j j m3 δm+n,0,

[Jm, Pn] = −(n − m)Pm+n + C (5)
j p m3 δm+n,0,

[Jm, Q1
r ] = −

(
−m

2
+ r

)
Q1

m+r ,

[Jm, Q2
r ] = −

(
−m

2
+ r

)
Q2

m+r ,

[Jm,Rn] = −nRn+m + C (0)
jr m2 δm+n,0,

[Jm,Sn] = −nSn+m,

[Rm, Q1
r ] = Q1

m+r ,

[Rm, Q2
r ] = −Q2

m+r ,

{Q1
r , Q

2
s } = Pr+s + (r − s)Sr+s + 2C (5)

j p r2 δr+s,0,

[Pm,Rn] = −2nSn+m,

[Rm,Rn] = Crr m δm+n,0,

[Rm,Sn] = 2C (5)
j p mδm+n,0.

(2.45)

The above is largely in agreement with the results of [23]
except for the [Jm,Rn] case, where we find a new central
term. It is interesting to understand the source of this central
term in the three-dimensional asymptotically flat bulk super-
gravity theory. From the analysis of [23], one can observe
that such a central term would not arise with the usual
Barnich–Compere boundary conditions. Nevertheless, the
study of [45] clearly indicates that an asymptotically Rindler-
like behavior will modify the asymptotic symmetry algebra
with such central extensions. Therefore, with the Rindler-like
boundary condition, one can expect to obtain a BMS-like
symmetry with this new central term.

3 bms4 group and W(a, b; ā, b̄) algebra

Having established a realization of the extended W (a, b)
algebra, we now move on to generalize the above analysis
in four spacetime dimensions. Like before, our starting point
will be the bms4 algebra, which can be thought of as a spe-
cial case of the more general W (a, b; ā, b̄) algebra [37,46].
In the early 1960s, [1,2] attempted to understand and study
the radiation that would be detected by a distant observer.
Interestingly, they found that the full set of symmetries for
an asymptotically flat spacetime5 is an infinite-dimensional
group spanned by the so-called supertranslation and super-
rotation generators, dubbed the bms4 group.

The infinite-dimensional centerless asymptotic symmetry
algebra of four-dimensional flat spacetime, conventionally
known as the bms4 algebra [37,49], is given by

[Lm ,Ln] = (m − n)Lm+n[L̄m , L̄n
] = (m − n)L̄m+n[Lm , L̄n
] = 0

[Lm , Tp,q
] =

(
m + 1

2
− p

)
Tp+m,q

[L̄m , Tp,q
] =

(
m + 1

2
− q

)
Tp,q+m

[
Tp,q , Tk,l

] = 0 (3.1)

where the indices m, n, p, q, k, l ∈ Z. The generators Lm

and L̄m forming two independent copies of the Witt algebra
are known to correspond to superrotations, while the gen-
erators Tp,q are known to correspond to supertranslations.
Following [37,50], we briefly describe the map between the
global sector of bms4 algebra and Poincaré algebra.

Denoting the Lorentz generators as Mμν and the transla-
tions as Pμ, we know that in four spacetime dimensions, they
satisfy the algebra

[
Mμν, Mρσ

] = i(ημρMνσ + ησμMρν − ηνρMμσ − ησνMρμ)[
Mμν, Pσ

] = i(ησμPν − ησν Pμ)[
Pμ, Pν

] = 0 (3.2)

5 There are various equivalent ways in which one can specify asymp-
totic behavior of spacetimes. For a detailed exposition, the reader is
urged to consult [47,48] and references therein.
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where the indices μ, ν, ρ, σ ∈ {0, 1, 2, 3} and ημν ≡
diag(−1,+1,+1,+1) is the flat Minkowski metric. We can
define the generator of rotations and boosts as

Ji = 1

2
εi jkM

jk and Ki = M0i , (3.3)

respectively, where εi jk is the Levi-Civita tensor and the
indices i, j, k ∈ {1, 2, 3}. Further, we define the quantities

L±1 = i S1 ± S2, L̄±1 = i R1 ± R2

L0 = S3, L̄0 = R3 (3.4)

where

Ri = 1

2
(Ji + i Ki ) and Si = 1

2
(Ji − i Ki ). (3.5)

It can be easily verified that the set of operators {L±1,

L0, L̄±1, L̄0} satisfy the algebra

[Lm,Ln] = (m − n)Lm+n,[L̄m, L̄n
] = (m − n)L̄m+n,[Lm, L̄n
] = 0

for (m, n) ∈ {±1, 0}, thus showing that the set of operators
defined in (3.4) indeed correspond to the global part of the
infinite-dimensional bms4 algebra.

The translation generators Pμ can be mapped to linear
combinations of Tp,q , where (p, q) ∈ {0, 1}, as follows:

P0 = H = (T1,0 − T0,1)

P1 = (−i)(T1,1 + T0,0)

P2 = T1,1 − T0,0

P3 = T1,0 + T0,1 (3.6)

This demonstrates that appropriate combinations of the
global part of bms4 algebra consisting of the operators
{L±1,L0, L̄±1, L̄0, T1,0, T0,1, T0,0, T1,1} can be suitably
repackaged to give the Poincaré algebra. It is noteworthy
that the T0,1, T1,0, T0,0 and T1,1 gives rise to the translation
generators, while a certain combination of (Lm, L̄m) where
(m, n) ∈ {±1, 0} gives rise to the Lorentz generators.

Similarly, for four spacetime dimensions, it has been
proved that bms4 algebra is not rigid and can be deformed
into four-parameter family algebra called W (a, b; ā, b̄) alge-
bra, with commutators as

[Lm,Ln] = (m − n)Lm+n,

[L̄m, L̄n] = (m − n)L̄m+n,

[Lm, L̄n] = 0.

[Lm, Tp,q ] = −(a + bm + p)Tm+p,q ,

[L̄n, Tp,q ] = −(ā + b̄n + q)Tp,n+q ,

[Tp,q , Tk,l ] = 0,

(3.7)

where a, b, ā and b̄ are arbitrary real parameters. In this way,
bms4 algebra (3.1) can be viewed as W (− 1

2 ,− 1
2 ;− 1

2 ,− 1
2 ).

This algebra can be viewed as two copies of W (a, b) and
W (ā, b̄), with the identification of Tp,q as a product of super-
translation generators of both algebras. However, as we see
in the next section, this structure does not extend to the
supersymmetric extensions of the algebra. Another inter-
esting case is W (0, 0; 0, 0), which represents an infinite-
dimensional algebra of the symmetries of the near-horizon
geometry of non-extremal black holes [51]. The algebra with
a = b = ā = b̄ = − 1+s

2 for 0 < s < 1 describes the
asymptotic symmetry algebra of decelerating FLRW space-
time [39].

4 Supersymmetric W(a, b; ā, b̄) algebra fromN = 2
super-bms4

In this section, we write down a supersymmetric extension
of W (a, b; ā, b̄) algebra with two supercharges. To get to
this, like the bms3 algebra, our first goal is to write the
supersymmetrized bms4 algebra. The first attempt towards
the construction of a super-bms algebra was carried out in
[52], which however did not consider superrotation genera-
tors. [53] further explored asymptotic fermionic charges in
N = 1 supergravity on a four-dimensional asymptotically
flat background.6 [43,56] have derived such an algebra by
analyzing operator product expansions (OPEs) of appropri-
ate operators of Einstein–Yang–Mills theory at the celestial
sphere. However, their convention for indices on the super-
translation generators is different from ours. This changes
the index structure that appears in the commutators. We fix
the index structure of the supersymmetrized bms4 algebra
by demanding consistency between its global part and the
four-dimensional super-Poincaré algebra, which along with
(3.2) now also contains

{QA, Q̄Ḃ

} = 2(σμ)AḂ Pμ ,
[
Mμν,QA

] = i(σμν) B
A QB ,

[Mμν, Q̄ Ȧ] = i(σ̄μν) Ȧ
Ḃ
Q̄Ḃ . (4.1)

Our starting point in the current context is the algebra stated
at (3.1). However, as mentioned earlier, we need to deter-
mine the index structure once we include the super-current
generators, which we denote by Qi

r and Q̄i
r , where i = 1, 2

while r ∈ Z + 1
2 . We begin with the global algebra to deter-

mine the indices. Hence, we propose the following ansatz
involving the supertranslation and superrotation generators
with the fermionic supercurrent generators

{Qi
r , Q̄

j
s } = δi j T f (r,s),g(r,s); [Lm , Qi

r ] = α(m, r)Qi
h(m,r) ;

6 There also exists a realization of super-bms algebra at spatial infinity
[54,55].
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[L̄m , Q̄i
r ] = ᾱ(m, r)Q̄i

h̄(m,r)
, (4.2)

and all other elements in the super-algebra are zero. We must
note here that it is not a priori necessary that the other possible
(anti)-commutators are zero for a four-dimensional asymp-
totically flat supergravity theory; however, we consider this
simplified deformation for the purpose of this paper. Our
approach is pragmatic—we simply want to write a possi-
ble supersymmetric extension of bms4 algebra such that its
global part coincides with the super-Poincaré algebra. The
OPE analysis of [43,56] found that the only nonzero com-
mutators in super-bms4 algebra are those mentioned above
in (4.2). This motivates us to propose the ansatz as written
above. We further make the simplifying assumption that the
functions parameterizing the indices f, g, h, h̄ are all linear
in their arguments.7

We demand that the map between supercurrent modes and
the fermionic generators of the super-Poincaré algebra be

Qi
1 → Qi

+ 1
2
, Qi

2 → Qi
− 1

2
,

Q̄i
1̇

→ Q̄i
+ 1

2
, Q̄i

2̇
→ Q̄i

− 1
2
.

Assuming the indices f and g are linear in their arguments,
one can fix the explicit form using the global sector, i.e., the
super-Poincaré algebra, to obtain

{Qi
r , Q̄

j
s } = δi j Tr+ 1

2 ,−s+ 1
2
,

{Qi
r , Q

j
s } = {Q̄i

r , Q̄
j
s } = 0,

[Lm, Qi
r ] =

(m
2

− r
)
Qi

m+r ,

[L̄m, Q̄ j
s ] =

(m
2

+ s
)
Q̄ j

−m+s .

(4.3)

The details of the derivation are provided in Appendix 1.
Thus, a particular realization of the N = 2 super-bms4

algebra can be written as

[Lm,Ln] = (m − n)Lm+n,

[L̄m, L̄n] = (m − n)L̄m+n,

[Lm, Tp,q ] =
(
m + 1

2
− p

)
Tm+p,q ,

[L̄m, Tp,q ] =
(
m + 1

2
− q

)
Tp,m+q ,

{Qi
r , Q̄

j
s } = δi j Tr+1/2,−s+1/2,

[Lm, Qi
r ] =

(m
2

− r
)
Qi

m+r ,

[L̄m, Q̄i
r ] =

(m
2

+ r
)
Q̄i−m+r . (4.4)

while the other (anti)-commutators are identically zero. One
can easily check that all the Jacobi identities are satisfied

7 This structure does not hold for certain symmetry algebras such as
that discussed in [57].

for the above algebra. Now that we have fixed the indices
in the super-bms4 algebra, we assume that deformations do
not change that and thus will carry over to the W (a, b; ā, b̄)
algebra. Thus, the supersymmetrizedW (a, b; ā, b̄) algebra is

[Lm ,Ln] = (m − n)Lm+n,

[L̄m , L̄n] = (m − n)L̄m+n,

[Lm , Tp,q ] = − (a + bm + p) Tm+p,q ,

[L̄m , Tp,q ] = − (
ā + b̄m + q

)
Tp,m+q ,

{Qi
r , Q̄

j
s } = δi j Tr+1/2,−s+1/2,

[Lm , Qi
r ] = α(m, r)Qi

m+r = −
(
a + bm + r + 1

2

)
Qi
m+r ,

[L̄m , Q̄i
r ] = −ᾱ(m, r)Q̄i

m+r = −
(
ā + b̄m − r + 1

2

)
Q̄i−m+r ,

(4.5)

where all other commutators are zero. α(m, r) is fixed by the
Jacobi identity for Qi

r , Q̄
j
s and Lm , which is given by

[{Qi
r , Q̄

j
s },Lm] = {Qi

r , [Q̄ j
s ,Lm]} + {Q̄ j

s , [Qi
r ,Lm]} (4.6)

Similarly. we fix ᾱ(m, r) using the Jacobi identities of
Qi

r , Q̄
j
s and L̄m .

5 R-extended supersymmetric W(a, b; ā, b̄) algebra

Before going to the R-extension of the W (a, b; ā, b̄) alge-
bra, let us briefly recall some important points about super-
Poincaré algebras in the presence of R−symmetry. R-
charge rotates the SUSY generators among themselves. The
R−extension is the largest subgroup of the automorphism
group of the supersymmetry algebra which commutes with
the Lorentz group. As discussed in [58], generic N = 2
super-Poincaré algebra contains two species of R-symmetry
generators—vectorial and axial—which act on the super-
charges as

[Qi
± 1

2
, R0] = Qi

± 1
2
, [Q̄i

± 1
2
, R0] = −Q̄i

± 1
2
,

[Qi
± 1

2
, R̄0] = ±Qi

± 1
2
, [Q̄i

± 1
2
, R̄0] = ∓Q̄i

± 1
2

(5.1)

As a matter of fact, theories with extended supersymmetries
are extremely rich precisely due to the presence of these two
kinds of supercharges. These R-symmetries can in fact be
used as a powerful tool to define various twistings in a theory
(A-type or B-type), resulting in what is known as topological
field theories whose correlators happen to be independent of
the background metric. Although, conventionally, theories
with either kind of R-symmetry are considered, in general,
the full theory does contain both kinds of R-symmetries. In
the current context, since we are specifically interested in
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N = 2 SUSY, the R-symmetry generator in fact generates
the groupU (1)V ×U (1)A. Following [58], we will associate
R0 with the vectorial R-symmetry while R̄0 will be associ-
ated as the axial R-symmetry. Another important aspect of
super-Poincaré algebras is that the R−charges commute with
the bosonic Poincaré generators. We utilize these facts in our
constructions. To be precise, in the following we demand
that our R-extended W (a, b; ā, b̄) algebra must have van-
ishing commutators of the R−charge generators with other
bosonic generators in the global sector for the deformation
W (−1/2,−1/2;−1/2,−1/2)8

In order to realize the extension of R-charges in the context
of W (a, b; ā, b̄) algebra, we will start with a general ansatz,

[Qi
r , Rn] = β(i)(r, n)Qi

θ1(r,n), [Q̄i
r , Rn] = β̄(i)(r, n)Q̄i

θ̄1(r,n)
,

[Qi
r , R̄n] = κ(i)(r, n)Qi

θ2(r,n), [Q̄i
r , R̄n] = κ̄(i)(r, n)Q̄i

θ̄2(r,n)
.

(5.2)

It must be noted that in the above ansatz, although i is a
repeated index on the RHS, there is no sum over i . While
we will be primarily interested in N = 2 algebras, the dis-
cussion in this section is valid for an arbitrary value of N .
Thus we consider i = 1, 2, . . . ,N . Furthermore, since we
are working in a very general setting, we assume that β i is
different for i = 1, 2, . . . ,N . This is of course not the most
general extension one can think of, but rather a simpler start-
ing point, which is also consistent with the global subsector
(5.1).

In the following analysis, we will assume that the indices
appearing in the above ansatz are linear in their arguments,
which is a basic feature of most algebras. Consistency with
the global subsector, i.e., (5.1), fixes the form of the indices
as

[Qi
r , Rn] = β(i)(r, n)Qi

cn+r , [Q̄i
r , Rn] = β̄(i)(r, n)Q̄i

c̄n+r

[Qi
r , R̄n] = κ(i)(r, n)Qi

kn+r , [Q̄i
r , R̄n] = κ̄ (i)(r, n)Q̄i

k̄n+r
.

(5.3)

where c, c̄, k and k̄ are integers, and the structure constants
are nonzero at least in the global subsector, i.e., when r = ± 1

2
and n = 0. We have to find their form away from the global
sector. Subsequently, we will concentrate on the commuta-
tors [Rn, Tp,q ] and [R̄n, Tp,q ]. Consider the Jacobi identity

for the operators Qi
r , Q̄

j
s and Rn , which gives us

[{Qi
r , Q̄

j
s }, Rn] = {Qi

r , [Q̄ j
s , Rn]} + {Q̄ j

s , [Qi
r , Rn]}.

Using (5.3), in the above, we get

8 W (−1/2,−1/2; −1/2,−1/2) is the bms4 algebra whose global sec-
tor coincides with the N = 2 super-Poincaré algebra.

δi j [Tp,q , Rn]
= δi j

[
β̄( j)

(
−q + 1

2
, n

)
Tp,−c̄n+q

+β(i)
(
p − 1

2
, n

)
Tcn+p,q

]
.

In the above equation, i, j are free indices. In particular for
N = 2 SUSY , we see that

[Tp,q , Rn] = β̄(1)

(
−q + 1

2
, n

)
Tp,−c̄n+q

+ β(1)

(
p − 1

2
, n

)
Tcn+p,q

= β̄(2)

(
−q + 1

2
, n

)
Tp,−c̄n+q

+ β(2)

(
p − 1

2
, n

)
Tcn+p,q .

(5.4)

which also implies β(1)(r, n) = β(2)(r, n) and β̄(1)(r, n) =
β̄(2)(r, n). An identical exercise with Qi

r , Q̄
j
s and R̄n gives

[Tp,q , R̄n] = κ̄ (1)

(
−q + 1

2
, n

)
Tp,−k̄n+q

+ κ(1)

(
p − 1

2
, n

)
Tkn+p,q

= κ̄ (2)

(
−q + 1

2
, n

)
Tp,−k̄n+q

+ κ(2)

(
p − 1

2
, n

)
Tkn+p,q ,

(5.5)

leading to the condition that κ(1)(r, n) = κ(2)(r, n) and
κ̄ (1)(r, n) = κ̄ (2)(r, n). Given the relation between the struc-
ture constants for i = 1, 2, we see that the index is extrane-
ous, and hence we will subsequently simply be dropping it
from our notation. Thus, we may write more simply

[Qi
r , Rn] = β(r, n)Qi

cn+r , [Q̄i
r , Rn] = β̄(r, n)Q̄i

c̄n+r ,

[Qi
r , R̄n] = κ(r, n)Qi

kn+r , [Q̄i
r , R̄n] = κ̄(r, n)Q̄i

k̄n+r
,

[Tp,q , Rn] = β̄

(
−q + 1

2
, n

)
Tp,−c̄n+q

+β

(
p − 1

2
, n

)
Tcn+p,q ,

[Tp,q , R̄n] = κ̄

(
−q + 1

2
, n

)
Tp,−k̄n+q

+κ

(
p − 1

2
, n

)
Tkn+p,q . (5.6)

Note that the above commutation relations also ensure
that the Jacobi identities between Tp,q , Tm,n, Rl as well as
Tp,q , Qi

r , Rn (and its corresponding counterparts with Qi
r

replaced with Q̄ j
s and Rn replaced with R̄n) are also satisfied.
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Now that we have identified Rn and R̄n to the vectorial and
axial R-supercurrents, we make a further assumption that

[Rn, R̄m] = 0. (5.7)

The above assumptions applied to the Jacobi identity of
Rn, R̄m and Qi

r leads to a relation between the structure con-
stants

κ(cn + r,m)β(r, n) = κ(r,m)β(km + r, n), (5.8)

and analogously the Jacobi identity of Rn, R̄m and Q̄i
r gives

rise to

κ̄(c̄n + r,m)β̄(r, n) = κ̄(r,m)β̄(k̄m + r, n). (5.9)

The above two relations seem to put certain constraints on
the free parameters c, c̄, k and k̄. However, we will explore
this subsequently.

Finally, we need to fix the algebra between the R-
supercurrents and the superrotations Lm and L̄m . For this
purpose we consider a set of Jacobi identities detailed in
Appendix C between C.1 and C.28. This analysis helps us to
fix the form of the commutators between the R-charge super-
currents and the superrotation generators. Thus, by simply
imposing Jacobi identities in a systematic manner we have
obtained the following simplified algebra involving the R-
supercurrents

[Qi
r , Rn] = β(r, n)Qi

cn+r , [Q̄i
r , Rn] = β̄(r, n)Q̄i

ξcn+r ,

[Qi
r , R̄n] = κ(r, n)Qi

kn+r , [Q̄i
r , R̄n] = κ̄(r, n)Q̄i

ξkn+r ,

[Tp,q , Rn] = β̄

(
−q + 1

2
, n

)
Tp,−ξcn+q

+β

(
p − 1

2
, n

)
Tcn+p,q ,

[Tp,q , R̄n] = κ̄

(
−q + 1

2
, n

)
Tp,−ξkn+q

+ κ

(
p − 1

2
, n

)
Tkn+p,q ,

[Rn,Lm] = w1(n,m)Lcn+m + h1(n,m)Rn+cm

+ h̄1(n,m)R̄kcn+km,

[Rn, L̄m] = w2(n,m)L̄−ξcn+m

+ h2(n,m)Rn−ξcm + h̄2(n,m)R̄kcn−ξkm,

[R̄n,Lm] = w3(n,m)Lkn+m

+ h3(n,m)Rkcn+cm + h̄3(n,m)R̄n+km,

[R̄n, L̄m] = w4(n,m)L̄−ξkn+m

+ h4(n,m)Rkcn−ξcm + h̄4(n,m)R̄n−ξkm . (5.10)

In Appendix C we have further listed the Jacobi identities
involving the R-supercurrent generator and superrotation
generator which will help to fix the form of w and h.

5.1 Algebra with linear structure constants

In our analysis so far, the structure constants have been kept
arbitrary. However, at this point, we make two powerful sim-
plifying assumptions which will somewhat reduce the com-
plexity of the problem. The assumptions are as follows:

• The structure constants appearing in the proposed algebra
are linear in their arguments.

• The global subsector of W (−1/2,−1/2;−1/2,−1/2)

algebra must coincide with the R-extendedN = 2 super-
Poincarë algebra.

This leads us to propose an ansatz of the form

μi (n, p) = ωi0 + ωi1n + ωi2 p (for i = 1, 2, 3, 4), (5.11)

where μi denotes the structure constants w(n, p), h(n, p)
or h̄(n, p). Since, for the global subsector, we must have
[R0,Lm] = [R̄0,Lm] = [R0, L̄m] = [R̄0, L̄m] = 0, it
implies that μi (0, 0) = μi (0, 1) = μi (0,−1) = 0. This
along with the proposed ansatz leads us to conclude that
these structure constants must be of the form

μi (n, p) = ωn, (5.12)

where ω is an arbitrary constant.
The global sector of the R-supercurrent, i.e., R0 and R̄0,

is supposed to commute with the generators of the Poincaré
algebra Mμν, Pμ, while its commutator with the SUSY gen-
erators Qi

± 1
2
, Q̄i

± 1
2

must be nonzero. Specifically, imposing

this constraint on the translation generators Pμ, and using the
identification (3.6)–(3.6), we obtain

[T0,0, R0] = [T0,1, R0] = [T1,0, R0] = [T1,1, R0] = 0.

(5.13)

An identical set of relations is true for R̄0. The above implies
that the structure constants are related by

β̄

(
+1

2
, 0

)
= β̄

(
−1

2
, 0

)
= −β

(
+1

2
, 0

)
= −β

(
−1

2
, 0

)
�= 0.

(5.14)

Now, assuming that both β(r, n) and β̄(r, n) are linear in its
argument, the above relation immediately implies that they
must be of the form

β(r, n) = β1n + β0 and β̄(r, n) = β̄1n − β0, (5.15)

where β1, β2, β̄1 and β̄2 are constants. One can repeat the
same exercise with the structure constants κ(r, n) and κ̄(r, n)
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to see that they are also independent of the first index r and
hence can be written as

κ(r, n) = κ1n + κ0 and κ̄(r, n) = κ̄1n − κ0. (5.16)

One immediate consequence of the above is that (5.8) and
(5.9) is now trivially satisfied. With all of these conclusions,
we have a more simplified algebra, given by

[Qi
r , Rn] = β(n)Qi

cn+r , [Q̄i
r , Rn] = β̄(n)Q̄i

ξcn+r ,

[Qi
r , R̄n] = κ(n)Qi

kn+r , [Q̄i
r , R̄n] = κ̄(n)Q̄i

ξkn+r ,

[Tp,q , Rn] = β̄ (n) Tp,−ξcn+q + β (n) Tcn+p,q ,

[Tp,q , R̄n] = κ̄ (n) Tp,−ξkn+q + κ (n) Tkn+p,q ,

[Rn,Lm ] = w1(n)Lcn+m + h1(n)Rn+cm + h̄1(n)R̄kcn+km ,

[Rn, L̄m ] = w2(n)L̄−ξcn+m + h2(n)Rn−ξcm + h̄2(n)R̄kcn−ξkm ,

[R̄n,Lm ] = w3(n)Lkn+m + h3(n)Rkcn+cm + h̄3(n)R̄n+km ,

[R̄n, L̄m ] = w4(n)L̄−ξkn+m + h4(n)Rkcn−ξcm + h̄4(n)R̄n−ξkm .

(5.17)

Now, we will focus on (C.22) specifically, which yields two
equations given by

w1(n)(a + bcn + bm + p) − h1(n)β (n + cm)

−h̄1(n)κ (ckn + km) + cnβ (n) = 0, (5.18)

−h1(n)β̄ (n + cm) − h̄1(n)κ̄ (ckn + km) = 0. (5.19)

The first equation written above must be true for arbitrary
integral values of m, n and p. However, it contains a term of
the form w1(n)p which must vanish, implying that w1(n) =
0 identically. A similar argument can be applied to the Jacobi
identities (C.24), (C.26) and (C.28) to reach the conclusion
that w2 = w3 = w4 = 0 too. Plugging in the linear forms
of h1(n), h̄1(n) and β(n) in the equations (5.18) and (5.19),
we obtain

cβ1 − ω1β1 − ckκ1ω̄1 = 0,

−cω1β1 − kκ1ω̄1 = 0,

cβ0 − ω1β0 − κ0ω̄1 = 0.

(5.20)

The above set of equations implies that β1 = 0. Applying
the exact same argument to (C.24), (C.26) and (C.28) yields
β̄1 = κ1 = κ̄1 = 0. Essentially, this shows that irrespective
of the arguments, β, β̄, κ and κ̄ are constants and related as
β = −β̄ and κ = −κ̄ . However, (5.18) and (5.19) reduce to
simply

−ω1β0 − ω̄1κ0 + cβ0 = 0 and ω1β0 + ω̄1κ0 = 0, (5.21)

which leads us to conclude that the structure constant β must
be identically zero, which is clearly in contradiction with
(5.14). (C.24), (C.26). Similarly, (C.28) leads to the con-
clusion that β̄, κ and κ̄ must also be vanishing. Thus we

essentially find that an infinite-dimensional extension of R-
charges in N = 2 bms4 algebra is impossible with linear
structure constants. Therefore we conclude that a generic
N = 2 W (a, b; ā, b̄) algebra (4.5) of 4 cannot have infinite
R−extension with linear structure constants. In Appendix
D we have further assumed that the structure constants are
quadratic in the arguments. Still, one cannot have infinite
R−extension.

6 Conclusion

As mentioned earlier, symmetry algebras are powerful tools
which severely constrain the dynamics and vacua of gauge
and gravity theories. In this work, we have concentrated on
supersymmetric W (a, b) and W (a, b; ā, b̄) algebras which
are deformations of the asymptotic symmetry algebra of
supergravity theories in three and four spacetime dimen-
sions, respectively. Earlier works [36,37] have established
that generic deformations of bms3 algebras involve two
parameters a and b, while generic deformations of bms4

algebras involve a, b, ā and b̄. The a = 0, b = −1 center-
less R-extension of supersymmetric W (a, b) algebra given
by (2.43) indeed matches with earlier results of [23], where
the authors performed an asymptotic symmetry analysis to
obtain the super-bms3 algebra. We also classified and wrote
down the possible central extensions of the supersymmetric,
R-extended W (a, b) algebra. We observed interesting and
novel central charges appearing in the {Q1

r , Q
2
s } anticommu-

tator, denoted by f (r, s), for various values of a and b. We
also found that [Jm,Rn] admits a quadratic central charge
which was not realized through the asymptotic symmetry
analysis performed in [23], although it seems to be present
for arbitrary values of a and b. Thus, it remains an inter-
esting open problem to find the importance of this central
term in the context of three-dimensional asymptotically flat
supergravity theory in more generic contexts. As mentioned
earlier, the W (0, 0) and W (0, 1) algebras have also appeared
as asymptotic symmetry algebras of gravity theories [40,41],
so it is worth exploring appropriate boundary/fall-off condi-
tions to obtain supersymmetric W (0, 0) and W (0, 1) alge-
bras as asymptotic symmetry algebras in some supergravity
theory. To conclude, the analysis of the present work, being
mathematically rigorous, provides new asymptotic algebras
and hence opens up the possibility for finding new boundary
conditions for supergravity fields. We hope to report on these
possibilities in future works.

The construction of the R-extended supersymmetric
W (a, b; ā, b̄) algebra turned out to be more involved. Phys-
ically, the R-charge generators are supposed to rotate the
global SUSY-generators, which motivates us to propose an
ansatz of the form (5.2). We essentially tried to extend the
super-W (a, b; ā, b̄) algebra (written explicitly in (4.5)) by a
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U (1)V × U (1)A group where each sector is represented by
infinitely many generators. One of the sectors of the U (1)V
symmetry can be thought of as vectorial R-symmetry, while
the other copy of the U (1)A symmetry can be thought of
as axial R-symmetry. We considered two primary guiding
principles to fix the algebra:

• For a = b = ā = b̄ = − 1
2 , the global subalgebra must

be identical to the R-extended super-Poincaré algebra.
• The indices appearing in all the proposed commutators

involving the R-charges must be linear in their argu-
ments.

In order to simplify our calculations, we considered both
linear and quadratic structure constants. In either case, we
realized that having infinitely many R-charges is in contra-
diction with one or more Jacobi identities that must be fol-
lowed by such a graded Lie algebra. Essentially, it seems
there is an obstruction in the u(1)× u(1) extension of super-
W (a, b; ā, b̄) algebra—which will naturally hinder the con-
struction of an R-extended super-bms4 algebra. Recent work
[59] has carried out u(1) and u(N ) extensions of bms4

by analyzing celestial amplitudes of Einstein–Maxwell and
Einstein–Yang–Mills theories, and has indeed obtained non-
trivial asymptotic symmetry algebras at the boundary which
does include infinitely many generators parameterizing the
u(1) oru(N ) symmetry. This is, however, not in contradiction
with our results. Our demand on the behavior of R-charges,
i.e., it must non-trivially rotate the global SUSY generators,
forces us to demand (5.14), which ensures the [Qi

r , Rm] com-
mutator to be nonzero for the global sector. Such a constraint
need not be followed for the u(1) or u(N ) gauge groups
that enter the analysis of [59]. Relaxing (5.14) in our current
work does indeed recover the symmetry algebras derived in
[59]. Finally, the methodology of our construction by thor-
oughly analyzing all possible Jacobi identities while impos-
ing consistency with the global subsector is quite general.
It is possible to adapt this algorithm to construct u(1) or
u(N ) extension for other exotic symmetry algebras. We must
emphasize that in this paper, we have studied the R-extended
super-W (a, b) and super-W (a, b; ā, b̄) algebras for generic
permissible values of a and b. However, it is only for specific
values of a and b, physical theories of gravity or supergravity
are known where these are realized as boundary symmetry
algebras. It will be interesting to explore what kind of super-
gravity theories give rise to these wide ranges of W -algebras
for more generic values of a, b, ā and b̄.

Let us conclude the paper with the importance of the
study of supersymmetric extensions of the deformations of
bms algebras. As is well understood, bms algebras are sym-
metries of asymptotically flat gravity theories at their null
boundaries. Some of their deformations have also been real-
ized as the symmetry algebra at the horizon of certain black

hole backgrounds. In the context of three spacetime dimen-
sions, the presence of extended supersymmetries and internal
R−symmetries plays crucial roles in characterizing the soft
hair modes (that give nontrivial cosmological solutions) and
their thermodynamics [16,22,60,61]. A similar study has not
been performed for four spacetime dimensions, where non-
trivial black hole and gravitational wave solutions exist. In the
context of bms4, the soft hair modes contribute to black hole
entropy, although they do not correspond to the entire micro-
scopic degeneracy. The microscopic degeneracy for a class
of four-dimensional N = 2, 4, 8 supersymmetric BPS black
holes is very well understood [62–67]. It would be interest-
ing to understand how much of this entropy is contributed by
the soft hairs. Such a study will be involved and is not within
the scope of the present work. However, our present results
suggest that, for black holes appearing in N = 2 supergrav-
ity theory, where the internal R−symmetry (that only scales
the supercharges) will not have any contributions to the soft
hairs. A similar study for other supergravity theories with
exotic internal symmetries remains an open problem for the
future.
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Appendix A: Fixing the structure constants of centrally
extended supersymmetric W(a, b)

In this section we have provided a detailed analysis to find the
form of structure constants involved in the central extension
of N = 2 supersymmetric W (a, b) algebra. The nontriv-
ial central extensions of N = 2 supersymmetric W (a, b)
algebra belong to its second real cohomology H2(W,R). To
compute it, we must take two steps:

• Consider all possible central terms in various commuta-
tors

• Eliminate the trivial central terms.

For the first step, we set some unknown functions in var-
ious commutators, and try to find the (nontrivial) form of
the functions by using the constraints obtained from Jacobi
identity analysis (also known as 2-cocycle conditions). Then,
it should be checked which of these functions cannot be
absorbed by the redefinition of the generators. These terms
are nontrivial central extensions of the algebra or equivalently
the elements of the second real cohomology of the algebra.

The central term in the commutator [Jm, Jn], which we
denoted as u(m, n), is an arbitrary antisymmetric function.
The Jacobi identity

[Jm, [Jn, Jl ]] + [Jn, [Jl , Jm]] + [Jl , [Jm, Jn]] = 0, (A.1)

leads to the relation

(n−l)u(m, n+l)+(l−m)u(n,m+l)+(m−n)u(l, n+m) = 0,

(A.2)

which has the nontrivial solution u(m, n) = C (1)
j j (m3 −

m) δm+n,0. This, as expected, is in the form of the usual Vira-
soro central charge. Other Jacobi identities do not put any new
constraint on u(m, n). A redefinition of Jm → Jm + Aδm,0

with an appropriate choice of A can be used to absorb the
linear term in m.

One can fix the central term v(m, n) of the [Jm, Pn] com-
mutator in the following way. The Jacobi identity between
Jm, Jn and Pl leads to

−(a + bn + l)v(m, n + l) + (a + bm + l)v(n,m + l)

−(m − n)v(n + m, l) = 0. (A.3)

Specific values of a and b yield even more nontrivial solu-
tions. We systematically tabulate all the cases below

1. a = b = 0 where, v(m, n) = (C (1)
j p m

2 + C (2)
j p m)δm+n,0,

2. a = 0, b = 1 where, v(m, n) = (C (3)
j p m + C (4)

j p )δm+n,0,

3. a = 0, b = −1 where, v(m, n) = (C (5)
j p m

3 +
C (6)

j p m)δm+n,0,

4. a = 0, b �= 0, 1,−1 where, v(m, n) = C (7)
j p mδm+n,0,

5. a �=0 and b is arbitrary where, v(m, n)=C (8)
j p

(
1+ b−1

a m
)

δm+n,0.

Here the subscript j p denotes the central extension in the
[J, P] commutator. Out of the eight central terms appearing
in the above five scenarios, onlyC (1)

j p ,C (3)
j p ,C (4)

j p andC (5)
j p are

the nontrivial ones. Other central terms can be absorbed by a
simple redefinition of Pm → Pm + Bδm,0 and subsequently
choosing the constant B in an appropriate manner. Thus we
drop the remaining central terms C (2)

j p ,C (6)
j p ,C (7)

j p and C (8)
j p

for the remaining analysis.
The above analysis demonstrates that there may be certain

values for the parameters a and b for which certain central
terms will be allowed in the algebra. This opens up a host
of possibilities in the central extension. We will focus on the
most general extension that is admissible for arbitrary values
of a and b.

The commutator [Jm, Q1
r ] may admit a central term given

by

[Jm, Q1
r ] = −

(
bm + a

2
+ r

)
Q1

m+r + x1(m, r), (A.4)

where x1(m, r) is an arbitrary function. The Jacobi identity
between Jm, Jn and Q1

r gives us

−
(
bn + a

2
+ r

)
x1(m, n + r)

+
(
bm + a

2
+ r

)
x1(n,m + r)

−(m − n)x1(n + m, r) = 0. (A.5)

The x1 central term appearing in the [Jm, , Q1
r ] commutator

is identically zero since a central term proportional to δm+r,0

is identically zero, as m is an integer and r is a half-integer.
An identically similar argument is true for x2(m, r) which is
the central extension in the [Jm, Q2

r ] commutator.
The central term in the [Jm, Sn] commutator is denoted

by z(m, n), and the full commutator is written as

[Jm,Sn] = −(a + n + (b + 1)m)Sn+m + z(m, n). (A.6)

The Jacobi identity of Jm, Jn and Sl yields

− (a + (b + 1)n + l)z(m, n + l)

+ (a + (b + 1)m + l)z(n,m + l) − (m − n)z(n + m, l) = 0,

(A.7)

which admits the following nontrivial solutions
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1. a �= 0 andb are arbitrary, where z(m, n) = C (0)
js

(
1 + b

am
)

δm+n,0,
2. a = 0 and b �= 0,−1,−2, where z(m, n) =

C (1)
js mδm+n,0,

3. a = 0 and b = −1, where z(m, n) = (C (2)
js m +

C (3)
js m

2)δm+n,0,

4. a = 0 and b = −2, where z(m, n) = (C (4)
js m +

C (5)
js m

3)δm+n,0,

5. a = b = 0, where z(m, n) = (C (6)
js + C (7)

js m)δm+n,0.

Again, performing the shift Sm → Sm + Sδm,0 will remove
some of the constants appearing above with an appropriate
choice of S. A detailed analysis reveals that we can drop
C (0)

js ,C (1)
js ,C (2)

js and C (4)
js .

The central term y(m, n)

[Jm,Rn] = −nRn+m + y(m, n), (A.8)

can be determined from the Jacobi identity of Jm, Jn and Rl ,
which gives

−ly(m, n+l)+ly(n,m+l)−(m−n)y(n+m, l) = 0. (A.9)

This has the nontrivial solution y(m, n) = C (0)
jr m

2δm+n,0.
This was discussed in earlier works [37,68].

The anticommutator {Q1
r , Q

2
s } may have the possible cen-

tral term f (r, s) and is given by

{Q1
r , Q

2
s } = Pr+s + (r − s)Sr+s + f (r, s). (A.10)

The Jacobi identity of Q1
r , Q

2
s and Jm gives

(
bm + a

2
+ s

)
f (r, s + m) +

(
bm + a

2
+ r

)
f (r + m, s)

= −v(m, r + s) − (r − s)z(m, r + s). (A.11)

The above equation needs to be dealt with on a case-by-case
basis. We tabulate all possible solutions for various values of
the deformation parameter a and b.

1. When a = b = 0, we obtain the solution as f (r, s) =
C (0)
qq rδr+s,0. Also, for consistency of the above equation,

we must have C (1)
j p = C (6)

js = C (7)
js = 0. This in turn

ensures that for a = b = 0, v(m, n) = z(m, n) = 0.
Note that the linear term appearing in f (r, s) cannot be
absorbed in the shift of generators. A possible absorbing
of the central term can be performed by shifting the super-
translation generators Pn . This was already performed
earlier to ensure that C (2)

j p drops out in the expression
of the central charge. Thus, there is no more freedom to
absorb this piece in the generators.

2. When a = 0 and b = 1, we obtain the solution
f (r, s) = C (1)

qq δr+s,0. Again, consistency demands that

we set C (3)
j p = C (4)

j p = 0, again ensuring that v(m, n)

vanishes for this case.
3. When a = 0 and b = −1, we obtain the solution

f (r, s) = 2C (5)
j p r

2δr+s,0 along with the constraint that

C (3)
js = 0. This implies that for a = 0 and b = −1, we

have z(m, n) = 0.
4. When a = 0 and b = −2, we obtain the solution as

f (r, s) = C (5)
js r

3δr+s,0.
5. When a = 0 and b = 2, we obtain the solution f (r, s) =

C (2)
qq r2δr+s,0, while for a = 0 and b �= −2,−1, 0, 1, 2,
f (r, s) must vanish identically.

6. When a �= 0 and b are arbitrary, we recover f (r, s) = 0
identically.

g1(m, n) is an arbitrary symmetric function which denotes
the central term in the [Rm, Q1

r ] commutator and is given by

[Rm, Q1
r ] = Q1

m+r + g1(m, r). (A.12)

For g1(m, r) ∝ δm+r,0, we can easily conclude that this will
be zero identically, sincem is an integer and r is a half-integer.

The commutator of [Pm,Rn] may admit a central term
h(m, n), which appears as follows:

[Pm,Rn] = −2nSm+n + h(m, n). (A.13)

The Jacobi identity of Jm,Rn and Pl leads to

(bm + a + l)h(l + m, n) + nh(l,m + n) = 2nz(m, n + l).

(A.14)

Clearly, the RHS of the above equation depends crucially
on the values of a and b. However, dealing case-by-case, it
turns out that h(m, n) = 0 for all values of a and b along
with the constraintC (5)

js = 0. This in turn implies that z(m, n)

vanishes for a = 0 and b = −2.
The commutator of [Rm,Sn] can admit a central extension

given by

[Rm,Sn] = k(m, n). (A.15)

The Jacobi identity of Q1
r , Q

2
s and Rm gives

(r − s)k(m, r + s)+ f (r,m+ s)− f (m+ r, s) = 0. (A.16)

Depending on the form of f (r, s), we will have different
solutions for k(m, n). We list the possible solutions as fol-
lows:
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1. For a = b = 0, the above equation simplifies to

(r − s)k(m, r + s) = C (0)
qq mδm+r+s,0. (A.17)

For the above equation to be consistent, we must have
C (0)
qq = 0, which further implies for this case that
f (r, s) = k(m, n) = 0.

2. For a = 0, b = 1, we simply recover (r−s)k(m, r+s) =
0, which immediately implies that k(m, n) = 0.

3. For a = 0, b = −1, we see that the equation for k(m, n)

is satisfied provided that k(m, n) = 2C (5)
j p mδm+n,0.

4. For a = 0, b = −2, consistency demands us to set
C (5)

js = 0, which in turn ensures that z(m, n) = f (r, s) =
k(m, n) = 0.

5. For a = 0, b = 2, we see the solution of k(m, n) =
C (2)
qq mδr+s,0.

6. For a �= 0 and arbitrary b, we must have k(r, s) = 0.

A quick glance at (2.44) tells us that the central extension
to the commutator [Rm,Rn] will affect the Jacobi identity
between Jm , Rn and Rp. Denoting the central extension in
this case as

[Rm,Rn] = w(m, n), (A.18)

the Jm , Rn , Rp Jacobi identity leads to

pw(n, p + m) = nw(p,m + n). (A.19)

A little algebra shows that the solution to the above functional
equation is given by w(m, n) = Crrmδm+n,0.

The central term in the [Sm, Sn] commutator is denoted as
s(m, n) and can be explicitly written as

[Sm,Sn] = s(m, n). (A.20)

The Jacobi identity between Pm,Rn and Sl gives

ns(l,m + n) = 0, (A.21)

which naturally implies s(m, n) = 0 identically. The reader
can easily verify that the Jacobi identities of (Rm,Sn, Qi

r ),
(Rm, Pn, Qi

r ) and (Q1
r , Q

2
s , Pm) imply f i (m, n) = hi (m, n)

= t2(m, n) = 0. The supertranslation commutator [Pm, Pn]
also does not admit any central term, as discussed in further
detail in an earlier work [36] by one of the authors.

Finally, we consider the anticommutator {Q1
r , Q

1
s } which

may admit a central term as

{Q1
r , Q

1
s } = w1(r, s). (A.22)

It is clear that w1(r, s) must be symmetric in its arguments.
The Jacobi identity between Q1

r , Q
1
s and Rm gives

w1(r, s + m) + w1(s,m + r) = 0. (A.23)

For m = 0, we see that w1(m, n) should be antisymmet-
ric, which is clearly a contradiction. Thus, w1(m, n) = 0
identically, and a similar argument involving Q2

r yields
w2(m, n) = 0. This completes a full description of the cen-
tral extension for the W (a, b) algebra, which clearly depends
on the values of the parameters a and b.

Appendix B: Solving ansatz for supersymmetricW(a, b;
ā, b̄)

In this section, we solve for the indices and structure con-
stants proposed in the ansatz (4.2). As mentioned earlier, the
linearity of the indices implies

f (r, s) = f0 + f1r + f2s,

g(r, s) = g0 + g1r + g2s.
(B.1)

where fi and gi are constants. Using (4.1), along with (3.6)–
(3.6), we must have

{Qi
1, Q̄ j

1̇
} = −2(P0 − P3)δ

i j = 4T1,0δ
i j ,

{Qi
1, Q̄ j

2̇
} = 2(P1 − i P2)δ

i j = −4iT1,1δ
i j ,

{Qi
2, Q̄ j

1̇
} = 2(P1 + i P2)δ

i j = −4iT0,0δ
i j ,

{Qi
2, Q̄ j

2̇
} = −2(P0 + P3)δ

i j = −4T0,1δ
i j .

(B.2)

Thus, the mapping (4.3) requires the functions f (r, s) and
g(r, s) to satisfy

f

(
+1

2
,+1

2

)
= 1, f

(
+1

2
,−1

2

)
= 1,

f

(
−1

2
,+1

2

)
= 0, f

(
−1

2
,−1

2

)
= 0,

g

(
+1

2
,+1

2

)
= 0, g

(
+1

2
,−1

2

)
= 1,

g

(
−1

2
,+1

2

)
= 0, g

(
−1

2
,−1

2

)
= 1.

(B.3)

Thus, we need to solve for the six unknowns fi , gi (i =
0, 1, 2) appearing in (B.1) from the above eight equations.
There does exist a consistent solution to the above system
given by

f0 = g0 = +1

2
, f1 = −g2 = 1, f2 = g1 = 0. (B.4)
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Thus, we eventually recover

{Qi
r , Q̄

j
s } = δi j Tr+ 1

2 ,−s+ 1
2
, {Qi

r , Q
j
s } = {Q̄i

r , Q̄
j
s } = 0

(B.5)

The exact map (4.3) can be seen to be

Qi
1 = 2Qi

+ 1
2
, Q̄i

1̇
= 2Q̄i

+ 1
2
, Qi

2 = −2i Qi
− 1

2
,

Q̄i
2̇

= −2i Q̄i
− 1

2
. (B.6)

Using the above map, along with the map described in Sect.
3, we obtain

[L−1, Q
i
+ 1

2
] = −Qi

− 1
2
, [L0, Q

i
+ 1

2
] = −1

2
Qi

+ 1
2
,

[L+1, Q
i
+ 1

2
] = 0,

[L−1, Q
i
− 1

2
] = 0, [L0, Q

i
− 1

2
] = 1

2
Qi

− 1
2
,

[L+1, Q
i
− 1

2
] = Qi

+ 1
2
.

(B.7)

Further assuming linearity of the structure constant α(m, r)
and h(m, r) appearing in (4.2), we see that the above global
sector is consistent provided one has

[Lm, Qi
r ] =

(m
2

− r
)
Qi

m+r . (B.8)

An identical exercise on the “barred” sector first leads us to
the relations

[L̄−1, Q̄
i
+ 1

2
] = 0, [L̄0, Q̄

i
+ 1

2
] = 1

2
Q̄i

+ 1
2
,

[L̄+1, Q̄
i
+ 1

2
] = Q̄i

− 1
2
,

[L̄−1, Q̄
i
− 1

2
] = −Q̄i

+ 1
2
, [L̄0, Q̄

i
− 1

2
] = −1

2
Q̄i

− 1
2
,

[L̄+1, Q̄
i
− 1

2
] = 0.

(B.9)

This shows that we must have

[L̄m, Q̄ j
s ] =

(m
2

+ s
)
Q̄ j

−m+s . (B.10)

AppendixC:Jacobi identities for supersymmetricW(a, b;
ā, b̄)

1. Jacobi identity for Lm, Qi
r , Rn and Lm, Q̄ j

s , Rn

We start with the Jacobi identity for Lm, Qi
r and Rn ,

which is given by

[[Lm, Qi
r ], Rn] + [[Qi

r , Rn],Lm] + [[Rn,Lm], Qi
r ] = 0.

(C.1)

Using (4.5) and (5.6), we can simplify the above equation
to obtain

[[Rn,Lm], Qi
r ] + [α(m, r)β(m + r, n)

−β(r, n)α(m, cn + r)]Qi
cn+m+r = 0. (C.2)

Clearly, looking at the above, on very general grounds,
one can schematically write

[Rn,Lm] = w1(n,m)Lt1(n,m)

+h1(n,m)Ru1(n,m) + h̄1(n,m)R̄v1(n,m). (C.3)

The Jacobi identity for Lm, Q̄ j
s and Rn along with (4.5)

and (5.3) leads to

[[Rn,Lm], Q̄ j
s ] = 0. (C.4)

Now, if we consider the [Rn,Lm] to be of the form
as (C.3), we easily see that the part [Ru(n,m), Q̄

j
s ] and

[R̄v(n,m), Q̄
j
s ] will be generically nonzero individually

for arbitrary values of n,m and s; however, a linear com-
bination with specific forms of h1 and h̄1 might presum-
ably ensure that the expression vanishes. Note that (C.3)
has certain features which put it in stark contrast to its
three-dimensional W (a, b) analog. Firstly, the first term
appearing on the RHS in the above equation has no ana-
log for the W (a, b) algebra as stated explicitly in (2.43).
We can also see that commutators similar to the W (a, b)
algebra, i.e.,

[Rn,Lm] ∼ Ru(n,m) and [R̄n,Lm] ∼ R̄v(n,m) (C.5)

are clearly inconsistent with (C.4) for arbitrary values of
the indices m and n.

2. Jacobi identity for L̄m, Q̄ j
s , Rn and L̄m, Qi

r and Rn

The Jacobi identity of L̄m, Q̄ j
s and Rn leads us to

[[Rn, L̄m], Q̄ j
s ]

+
(

β̄(s, n)

(
ā + b̄m − c̄n − s + 1

2

)

−β̄(−m + s, n)

(
ā + b̄m − s + 1

2

))
Q̄ j

c̄n+s−m = 0.

(C.6)

The above, along with the Jacobi identity for L̄m, Qi
r ,

which simplifies to

[[Rn, L̄m], Qi
r ] = 0, (C.7)

suggests a relation of the form

[Rn, L̄m] = w2(n,m)L̄t2(n,m)
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+ h2(n,m)Ru2(n,m) + h̄2(n,m)R̄v2(n,m). (C.8)

3. Jacobi identity for Lm, Qi
r , R̄n and Lm, Q̄ j

s , R̄n

The Jacobi identity for Lm, Qi
r and R̄n leads to

[[R̄m,Lm], Qi
r ]

+
(

κ(r, n)

(
a + bm + kn + r + 1

2

)
κ(m + r, n)

−
(
a + bm + r + 1

2

))
Qi

kn+m+r = 0, (C.9)

while the Jacobi identity for Lm, Q̄ j
s and R̄n gives

[[R̄n,Lm], Q̄ j
s ] = 0. (C.10)

This leads us to propose

[R̄n,Lm] = w3(n,m)Lt3(n,m) + h3(n,m)Ru3(n,m)

+h̄3(n,m)R̄v3(n,m). (C.11)

4. Jacobi identity for L̄m, Qi
r , R̄n and L̄m, Q̄ j

s , R̄n

The Jacobi identity for L̄m, Qi
r , R̄n simplifies to

[[R̄n, L̄m], Qi
r ] = 0 (C.12)

and the L̄m, Q̄ j
s , R̄n Jacobi identity leads to

[[R̄n, L̄m], Q̄ j
s ]

+
(

κ̄(s, n)

(
ā + b̄m − k̄n − s + 1

2

)

−κ̄(−m + s, n)

(
ā + b̄m − s + 1

2

))
Q̄ j

k̄n+s−m
= 0.

(C.13)

The above two equations lead us to the ansatz

[R̄n, L̄m] = w4(n,m)L̄t4(n,m)

+h4(n,m)Ru4(n,m) + h̄4(n,m)R̄v4(n,m). (C.14)

5. Jacobi identity for Lm, Tp,q , Rn and L̄m, Tp,q , Rn

The Jacobi identity for the operators Lm, Tp,q and Rn is
given by

[[Lm, Tp,q ], Rn]+[[Tp,q , Rn],Lm]+[[Rn,Lm], Tp,q ] = 0,

(C.15)

which upon using (4.5) and (5.6) leads us to the relation

[[Rn,Lm], Tp,q ]
+

(
(a + bm + cn + p)β

(
p − 1

2
, n

)

−(a + bm + p)β

(
m + p − 1

2
, n

))
Tcn+m+p,q = 0,

(C.16)

which is consistent with the ansatz (C.3). Further, the
Jacobi identity for L̄m, Tp,q , Rn gives

[[Rn, L̄m], Tp,q ]
+

(
β̄

(
−q + 1

2
, n

)
(ā + b̄m − c̄n + q)

−β̄

(
−m − q + 1

2
, n

)
(ā + b̄m + q)

)
Tp,−c̄n+m+q = 0,

(C.17)

which is consistent with the ansatz (C.8).
6. Jacobi identity for Lm, Tp,q , R̄n and L̄m, Tp,q , R̄n

The Jacobi identity for Lm, Tp,q , R̄n leads to

[[R̄n,Lm], Tp,q ]
+

(
κ

(
p − 1

2
, n

)
(a + bm + kn + p)

−κ

(
m + p − 1

2
, n

)
(a + bm + p)

)
Tkn+m+p,q = 0,

(C.18)

while for the other tuple, namely L̄m, Tp,q , R̄n , we have

[[R̄n, L̄m], Tp,q ]
+

(
κ̄

(
−q + 1

2
, n

)
(ā + b̄m − k̄n + q)

−κ̄

(
−m − q + 1

2
, n

)
(ā + b̄m + q)

)
Tp,−k̄n+m+q = 0.

(C.19)

One can easily see that the above two equations are indeed
consistent with the proposed ansatze (C.8) and (C.14),
respectively.

Armed with a series of ansatze and a number of Jacobi iden-
tities, we enumerate below the index structure and which
equations they follow from.

• Plugging ansatz (C.3) in (C.2), we get

−w1(n,m)α(t1, r)Q
i
t1+r − h1(n,m)β(r, u1)Q

i
cu1+r
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−h̄1(n,m)κ(r, v1)Q
i
kv1+r

+[α(m, r)β(m + r, n)−β(r, n)α(m, cn+r)]Qi
cn+m+r = 0.

(C.20)

The above equation must be satisfied for arbitrary per-
missible values of m, n and r . Also, by definition, β and
κ cannot be identically zero. This implies that

u1(n,m) = n + m

c

v1(n,m) = c

k
n + m

k
.

Since, clearly, the indices must be integers, we see that
both k and c must divide every integer, which naturally
implies that both can take values ±1. Using (C.4), we
further get

c̄

c
= k̄

k
= ξ (say), (C.21)

where ξ is some real number. Further looking at (C.20),
we can have w1 be either identically zero or t1 = cn+m.
Further, (C.16) gives

(−w1(n,m)(a + bcn + bm + p)

− h1(n,m)β

(
p − 1

2
, n + m

c

)

− h̄1(n,m)κ

(
p − 1

2
,
c

k
n + m

k

)

+ (a + bm + cn + p)β

(
p − 1

2
, n

)

− (a + bm + p)β

(
m + p − 1

2
, n

))
Tcn+m+p,q

+
(

−h1(n,m)β̄

(
−q + 1

2
, n + m

c

)
− h̄1(n,m)κ̄

×
(

−q + 1

2
,
c

k
n + m

k

))
Tp,−c̄n−ξm+q = 0.

(C.22)

In the above expression, each of the coefficients of the
Tcn+m+p,q and Tp,−c̄n−ξm+q has to vanish individually.

• Ansatz (C.8) along with (C.6) implies t2(n,m) = −c̄n+
m provided w2 does not vanish identically. Along similar
arguments as before, we also conclude that

u2 = n − m

c̄

v2 = c̄

k̄
n − m

k̄
.

Again, since both u2 and v2 must be integers for all values
of m and n, this leads us to conclude that c̄ and k̄ can only
take values ±1. Thus, ξ appearing in (C.21) can only be
±1. Now, since c2 = k2 = c̄2 = k̄2 = ξ2 = 1, we can
rewrite

u1 = n+mc, v1 = kcn+km, u2 = n−ξcm, v2 = kcn−ξkm.

(C.23)

Further, using (C.17), we get

− w2(n,m)(ā − b̄c̄n + b̄m + q) − h2(n,m)β̄

×
(

−q + 1

2
, n − ξ

m

c

)

− h̄2(n,m)κ̄

(
−q + 1

2
,
c

k
n − ξ

m

k

)

+ β̄

(
−q + 1

2
, n

)
(ā + b̄m − c̄n + q)

− β̄

(
−m − q + 1

2
, n

)
(ā + b̄m + q) = 0,

(C.24)

and

h2(n,m)β

(
p − 1

2
, n − ξ

m

c

)
+ h̄2(n,m)κ

×
(
p − 1

2
,
c

k
n − ξ

m

k

)
= 0. (C.25)

• Ansatz (C.11) along with (C.9) tells us that we must have

u3 = k

c
n + m

c
≡ kcn + cm

v3 = n + m

k
≡ n + km,

while w3 identically vanishes or t3 = kn+m. The Jacobi
identity (C.18) implies

−w3(n,m)(a + bkn + bm + p) − h3(n,m)β

×
(
p − 1

2
, kcn + cm

)

− h̄3(n,m)κ

(
p − 1

2
, n + km

)

+ κ

(
p − 1

2
, n

)
(a + bm + kn + p)

− κ

(
m + p − 1

2
, n

)
(a + bm + p) = 0, (C.26)
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and

h3(n,m)β̄

(
−q + 1

2
, kcn + cm

)
+ h̄3(n,m)κ̄

×
(

−q + 1

2
, n + km

)
= 0.

(C.27)

• Ansatz (C.14) along with (C.13) tells us that

u4 = k

c
n − ξ

m

c
≡ kcn − ξcm

v4 = n − ξ
m

k
≡ n − ξkm,

along with t4 = −k̄n+m provided if w4 is nonzero. The
Jacobi identity (C.19) gives

− w4(n,m)(ā + b̄m − ξkb̄n + q) − h4(n,m)β̄

×
(

−q + 1

2
, kcn − ξcm

)

− h̄4(n,m)κ̄

(
−q + 1

2
, n − ξkm

)

+ κ̄

(
−q + 1

2
, n

)
(ā + b̄m − k̄n + q)

− κ̄

(
−m − q + 1

2
, n

)
(ā + b̄m + q) = 0,

(C.28)

and

h4(n,m)β

(
p − 1

2
, kcn − ξcm

)
+ h̄4(n,m)κ

(
p − 1

2
, n − ξkm

)
= 0 . (C.29)

To finalize the form of w and h we need to consider Jacobi
identities involving two R-supercurrent generators and one
superrotation generator.

1. Jacobi identity for Rm, Rn and Lp leads to

w1(n, p)w1(m, cn + p) = w1(m, p)w1(n, cm + p),

h1(m, cn + p)w1(n, p) = h1(n, cm + p)w1(m, p),

h̄1(m, cn + p)w1(n, p) = h̄1(n, cm + p)w1(m, p).

(C.30)

2. Jacobi identity for Rm, Rn and L̄p leads to

w2(n, p)w2(m,−ξcn + p) = w2(m, p)w2(n,−ξcm + p),

h2(m,−ξcn + p)w2(n, p) = h2(n,−ξcm + p)w2(m, p),

h̄2(m,−ξcn + p)w2(n, p) = h̄2(n,−ξcm + p)w2(m, p).

(C.31)

3. Jacobi identity for R̄m, R̄n and Lp leads to

w3(n, p)w3(m, kn + p) = w3(m, p)w3(n, km + p),

h3(m, kn + p)w3(n, p) = h3(n, km + p)w3(m, p),

h̄3(m, kn + p)w3(n, p) = h̄3(n, km + p)w3(m, p).

(C.32)

4. Jacobi identity for R̄m, R̄n and L̄p leads to

w4(n, p)w4(m,−ξkn + p) = w4(m, p)w4(n,−ξkm + p),

h4(m,−ξkn + p)w4(n, p) = h4(n,−ξkm + p)w4(m, p),

h̄4(m,−ξkn + p)w4(n, p) = h̄4(n,−ξkm + p)w4(m, p).

(C.33)

5. Jacobi identity for Rm, R̄n and Lp leads to

w3(n, p)w1(m, kn + p) = w1(m, p)w3(n, cm + p),

h1(m, kn + p)w3(n, p) = h3(n, cm + p)w1(m, p),

h̄1(m, kn + p)w3(n, p) = h̄3(n, cm + p)w1(m, p).

(C.34)

6. Jacobi identity for Rm, R̄n and L̄p leads to

w4(n, p)w2(m,−ξkn + p) = w2(m, p)w4(n,−ξcm + p),

h2(m,−ξkn + p)w4(n, p) = h4(n,−ξcm + p)w2(m, p),

h̄2(m,−ξkn + p)w4(n, p) = h̄4(n,−ξcm + p)w2(m, p).

(C.35)

Finally, we have another family of Jacobi identities involv-
ing two superrotation generators and one R-supercurrent
generator. The Jacobi identities forLm, L̄n, Rn andLm, L̄n, R̄n

are trivially satisfied. We list the equations that follow from
the nontrivial Jacobi identities systematically.

1. Jacobi identity for Lm,Ln and Rp implies

(m − n)w1(p,m + n) + w1(p,m)(n − cp − m)

−w1(p, n)(m − cp − n)

+ h1(p, n)w1(p + cn,m)

− h1(p,m)w1(p + cm, n)

+ h̄1(p, n)w3(kcp + kn,m)

− h̄1(p,m)w3(kcp + km, n) = 0, (C.36)

(m − n)h1(p,m + n) + h1(p, n)h1(p + cn,m)

− h1(p,m)h1(p + cm, n)

= h̄1(p,m)h3(kcp + km, n)
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− h̄1(p, n)h3(kcp + kn,m), (C.37)

(m − n)h̄1(p,m + n) + h1(p, n)h̄1(p + cn,m)

− h1(p,m)h̄1(p + cm, n) =
× h̄1(p,m)h̄3(kcp + km, n)

− h̄1(p, n)h̄3(kcp + kn,m). (C.38)

2. Jacobi identity for Lm,Ln and R̄p implies

(m − n)w3(p,m + n) + w3(p,m)(n − kp − m)

−w3(p, n)(m − kp − n)

+ h3(p, n)w1(kcp + cn,m)

− h3(p,m)w1(kcp + cm, n)

+ h̄3(p, n)w3(p + kn,m)

− h̄3(p,m)w3(p + km, n) = 0, (C.39)

(m − n)h3(p,m + n) + h3(p, n)h1(kcp + cn,m)

− h3(p,m)h1(kcp + cm, n) =
h̄3(p,m)h3(p + km, n)

− h̄3(p, n)h3(p + kn,m), (C.40)

(m − n)h̄3(p,m + n) + h3(p, n)h̄1(kcp + cn,m)

− h3(p,m)h̄1(kcp + cm, n) =
h̄3(p,m)h̄3(p + km, n)

− h̄3(p, n)h̄3(p + kn,m). (C.41)

3. Jacobi identity for L̄m, L̄n and Rp implies

(m − n)w2(p,m + n) + w2(p,m)(n + ξcp − m)

−w2(p, n)(m + ξcp − n)

+ h2(p, n)w2(p − ξcn,m)

− h2(p,m)w2(p − ξcm, n)

+ h̄2(p, n)w4(kcp − ξkn,m)

− h̄2(p,m)w4(kcp − ξkm, n) = 0, (C.42)

(m − n)h2(p,m + n) + h2(p, n)h2(p − ξcn,m)

− h2(p,m)h2(p − ξcm, n)

= h̄2(p,m)h4(kcp − ξkm, n)

− h̄2(p, n)h4(kcp − ξkn,m), (C.43)

×(m − n)h̄2(p,m + n) + h2(p, n)h̄2(p − ξcn,m)

− h2(p,m)h̄2(p − ξcm, n)

= h̄2(p,m)h̄4(kcp − ξkm, n)

− h̄2(p, n)h̄4(kcp − ξkn,m). (C.44)

3. Jacobi identity for L̄m, L̄n and R̄p implies

(m − n)w4(p,m + n) + w4(p,m)(n − ξkp − m)

−w4(p, n)(m − ξkp − n)

+ h4(p, n)w2(kcp − ξcn,m)

− h4(p,m)w2(kcp − ξcm, n)

+ h̄4(p, n)w4(p − ξkn,m)

− h̄4(p,m)w4(p − ξkm, n) = 0, (C.45)

(m − n)h4(p,m + n) + h4(p, n)h2(kcp − ξcn,m)

− h4(p,m)h2(kcp − ξcm, n)

= h̄4(p,m)h4(p − ξkm, n)

− h̄4(p, n)h4(p − ξkn,m), (C.46)

(m − n)h̄4(p,m + n) + h4(p, n)h̄2(kcp − ξcn,m)

−h4(p,m)h̄2(kcp − ξcm, n)

= h̄4(p,m)h̄4(p − ξkm, n)

− h̄4(p, n)h̄4(p − ξkn,m). (C.47)

AppendixD:Algebrawith non-linear structure constants

We can relax the criteria of the linearity of structure con-
stants and assume further that they can be at best quadratic
in the arguments. Continuing to refer to the structure con-
stants wi , hi and h̄i as μi , we write down an ansatz of the
form

μi (n, p) = ωi0 + ωi1n + ωi2 p + ωi3np + ωi4n
2 + ωi5 p

2.

(D.1)

Since μi (0, p) must vanish for p = 0,±1, we can write

μi (n, p) = n(ωi1 + ωi3 p + ωi4n). (D.2)

Demanding (5.14), we see that β and κ (and similarly β̄ and
κ̄) must take the form

β(r, n) = β0 + β2n + β3r
2 + β4n

2 + β5rn, (D.3)

κ(r, n) = κ0 + κ2n + κ3r
2 + κ4n

2 + κ5rn (D.4)

Unlike the linear case, (5.8) and (5.9) are not trivially satisfied
now. Focusing specifically on (5.9), we recover the following
equations

β0κ3 = β3κ0 = β2κ3 = β3κ2 = β3κ4 = β4κ3 = 0,

β5κ2 = β2κ5 = β5κ4 = β4κ5 = β3κ3 = β5κ5 = 0,

kβ5κ3 = cβ3κ5, kβ5κ0 = cβ0κ5,

kβ3κ3 + 2β3κ5 = cβ3κ3 + 2β5κ3 = cβ5κ3

+ 2β4κ3 = kβ3κ5 + 2β3κ4 = 0.

(D.5)

We will obtain an analogous set of equations following from
(5.9). The above set of equations implies

β3 = κ3 = β5 = κ5 = 0, (D.6)

123



3 Page 22 of 23 Eur. Phys. J. C (2023) 83 :3

thus making the structure constants β(r, n) (and β̄(r, n))
and κ(r, n) (and κ̄(r, n)) independent of r . As before, (5.14)
implies

β0 = −β̄0 (and similarly κ0 = −κ̄0) (D.7)

Now, armed with the above results from (C.22), we again
recover equations very close to those of (5.18) and (5.19),
which again leads us to conclude that wi = 0 identically.
Thus, in this case, the two equations following from (C.22)
simplify to

− h1(n,m)β(n + cm)

− h̄1(n,m)κ(kcn + km) + cnβ(n) = 0, (D.8)

− h1(n,m)β̄(n + cm)

− h̄1(n,m)κ̄(kcn + km) = 0. (D.9)

Plugging in the forms of the ansatze for h1(n,m), h̄1(n,m),

β(n) and κ(n) in (D.8) and equating the various coefficients
of the monomials in m and n gives

cβ0 − ω1β0 − ω̄1κ0 = 0, (D.10)

ω3β0 + cω1β2 + ω̄3κ0 + kω̄1κ2 = 0, (D.11)

ω4β0 − cβ2 + ω1β2 + ω̄4κ0 + ckω̄1κ2 = 0, (D.12)

ω4β2 − cβ4 + ω1β4 + ckω̄4κ2 + ω̄1κ4 = 0, (D.13)

cω3β2 + ω1β4 + kω̄3κ2 + ω̄1κ4 = 0, (D.14)

ω3β2 + cω4β2 + 2cω1β4 + ckω̄3κ2

+ kω̄4κ2 + 2cω̄1κ4 = 0, (D.15)

ω4β4 + ω̄4κ4 = 0, (D.16)

ω3β4 + ω̄3κ4 = 0, (D.17)

2cω3β4 + ω4β4 + 2cω̄3κ4 + ω̄4κ4 = 0, (D.18)

ω3β4 + 2cω4β4 + ω̄3κ4 + 2cω̄4κ4 = 0 . (D.19)

The same exercise with (D.9) gives the following equations

ω1β0 + ω̄1κ0 = 0, (D.20)

ω4β0 − ω1β̄1 + ω̄4κ0 − ckω̄1κ̄2 = 0, (D.21)

ω3β0 − cω1β̄1 + ω̄3κ0 − kω̄1κ̄2 = 0, (D.22)

ω1β̄4 + ω4β̄1 + ckω̄4κ̄2 + ω̄1κ̄4 = 0, (D.23)

ω1β̄4 + cω3β̄1 + kω̄3κ̄2 + ω̄1κ̄4 = 0, (D.24)

2cω1β̄4 + ω3β̄1 + cω4β̄1

+ ckω̄3κ̄2 + kω̄4κ̄2 + 2cω̄1κ̄4 = 0, (D.25)

ω4β̄4 + ω̄4κ̄4 = 0, (D.26)

ω3β̄4 + ω̄3κ̄4 = 0, (D.27)

2cω3β̄4 + ω4β̄4 + 2cω̄3κ̄4 + ω̄4κ̄4 = 0, (D.28)

ω3β̄4 + 2cω4β̄4 + ω̄3κ̄4 + 2cω̄4κ̄4 = 0. (D.29)

The above system of equations is highly nontrivial to solve
in general. But from (D.10) and (D.20) we easily see that

β0 = 0, (D.30)

which implies that β(0) = 0, and similarly we find β̄(0) =
κ(0) = κ̄(0) = 0. This is in contradiction with the con-
straint from the global subalgebra (5.14). Thus, akin to the
case of linear structure constants, even for quadratic struc-
ture constants, an extension by U (1)V × U (1)A realized as
infinitely many generators Rn and R̄n (R-symmetry genera-
tors) of W (a, b, ā, b̄) algebra turns out to be impossible.
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