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Abstract In this paper, we study the deflection angle for
wormhole-like static aether solution by using Gibbons and
Werner technique in non-plasma, plasma, and dark matter
mediums. For this purpose, we use optical spacetime geom-
etry to calculate the Gaussian optical curvature, then imple-
ment the Gauss—Bonnet theorem in weak field limits. More-
over, we compute the deflection angle by using a technique
known as Keeton and Petters technique. Furthermore, we
analyze the graphical behavior of the bending angle i with
respect to the impact parameter b, mass m as an integra-
tion constant, and parameter g in non-plasma and plasma
mediums. We examine that the deflection angle is exponen-
tially increasing as direct with charge. Also, we observe that
for small values of b, ¥ increases, and for large values of
b the angle decreases. We also considered analysis to the
shadow cast of the wormhole relative to an observer at various
locations. Comparing it the Schwarzschild shadow, shadow
cast is possible for wormhole as r < 2m. At r > 2m, the
Schwarzschild is larger. As r — oo, we have seen that the
behavior of the shadow, as well as the weak deflection angle,
approaches that of the Schwarzschild black hole. Overall, the
effect of plasma tends to decrease the value of the observables
due to the wormhole geometry.

1 Introduction

Einstein’s theory of general relativity (GR) looked into the
physical existence of black holes (BHs) in the universe [1].
The American astronomer John Wheeler invented the word
“BH”. The study of BHs have received a lot of attention since
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the Event Horizon Telescope obtained the first images of the
Messier 87 BH and then Sagittarius A* BH [2,3]. Black hole
emits Hawking radiation as a complete thermal spectrum by
incorporating quantum theory. Stellar, intermediate, super-
massive and microscopic BHs are four main types of BHs.
The outer horizon, inner event horizon as well as the singu-
larity are the three “layers” of a BH. A BH’s event horizon
is the boundary around a BH and beyond which light cannot
escape. Singularity, is a region in space where the density of
the existing mass is infinite.

Wormholes (WHs), just like BHs, can be expressed as
solution of Einstein field equations. Schwarzschild BH solu-
tion is the simplest solution of Einstein field equations.
Flamm first proposed the concept of a WH, after the discov-
ery of Schwarzschild’s BH solution. A WH is a hypotheti-
cal spacetime that connects two separate regions of universe
and give a shortcut through them. Einstein and Rosen [4]
proposed the existence of WH-like objects, often known as
Einstein-Rosen bridges. Misner and Wheeler [5] formulated
the concept of a “WH” [6]. Wormholes have not been yet
physically demonstrated. After that, Wheeler [7] explained
that WHs are unstable and non-traversable even by a photon.
Morris and Thorne [8] invented the term traversable WH.
However, Morris, Thorne and Yurtsever [8] explained how
to convert a WH through traversing space into traversing-
time. They demonstrated that by computing the Einstein field
equations, we get the solution showing WH-geometry in a
terms of a static spherically symmetric line-element. After
that, by following the Morris-Thorne papers, a lot of physi-
cists looked into WHs from a different point of views [9-14].
Later on, another form of traversable WH were introduced
by Matt Visser [15], that is known as thin-shell WH in which
the path through the WH can be formed in such a way that
traversing path does not cross the region of exotic matter.
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Although, exotic matter causes the problem to create a stable
WH. Recently, it has been explained that WHs also play an
important part in explaining quantum entanglement [16].

The concept of gravitational lensing (GL) due to its grav-
itational effects occurs when a huge object distorts the space
around it and twisting the direction of light passes through it.
Gravitational lensing is a strong astrophysical tool for deter-
mining the mass of galaxies and clusters, as well as detecting
dark matter (DM) [17]. There are three types of GL; strong
GL, weak GL and micro GL [18, 19]. The strong GL enables
us to compute the area and intensity of a BH. Moreover, the
impact of “weak GL” is actually weaker but yet observable
analytically. Micro GL isn’t the same as strong and weak
GL. In this kind of lensing, the lens is small in comparison
to weak and strong GL.

Gibbons and Werner [20] proposed the method to cal-
culate the angle of deflection by various BHs in the weak
field limits. The bending angle v can be computed by using
asymptotically flat spacetime [20] such as:

v = —/ Kds. )
Poo

Here, K is the Gaussian curvature, d S is the surface compo-
nent and p, stands for infinite domain of the space.

Numerous writers have used GBT to examine the angle
of deflection for various BHs and WHs [21-39] Javed et
al. [40,41] calculated the weak GL by stringy BH and tidal
charged BH. He and Lin [42] examined the GL for Kerr—
Newman BH having arbitrary uniform velocity. Crisnejo and
Gallo [43] looked into the deflection angle of light in the exis-
tence of plasma medium. Nakajima and Asada [44] studied
GL by Ellis WH. Deflection angle for static and axisym-
metric rotating Teo WH was examined by Jusufi and Ovgun
[45]. Ovgun [46] worked on the light deflection by Damour—
Solodukin WHs using GBT.

The discovery of DM [47] by weak deflection is an impor-
tant topic, as it can assist us to understand the massive struc-
ture of the universe [18]. Zwicky was the 1st astronomer who
proposed the DM. Dark matter is a type of matter which can-
not visualize directly. It does not release any light or energy,
that’s why standard instrument and detectors cannot detect it.
Dark Matter consists of 27% of the total mass energy of the
universe [48]. Dark matter can be detected by gravitational
interaction and possesses electromagnetic interactions [49].
Super-interacting massive particles, weakly interacting mas-
sive particles, sterile neutrinos and axions are the types of
dark matter candidates. Refractive index used in dark matter
maintains the propagation speed. The DM medium’s refrac-
tive index is defined as [49]:

n(w) =1+ BAg + Arw?. 2)

@ Springer

It’s important to remember that 8 = JT"Q)Z, Do 1S the mass

density of scattered DM particles, A, = —2¢2¢% and Ay i =
0. The polarizability of the DM candidate is connected to
@) (a)2) and higher terms. The charged DM candidate has an
order of @~ 2, while the neutral DM candidate has an order of
w?. Furthermore, if the parity and charge parity inequalities
are present, then the linear term appears in w.

Oost, Mukohyama and Wang [50] obtained the exact sta-
ble solution in Einstein-aether theory. The solution is asymp-
totically smooth, expressed in the isotropic coordinates and
specified by two parameters: mass m is an integration con-
stant and ¢4 is a combined coupling parameter. For c14 = 2,
metric reduces to Schwarzschild solution in Einstein theory
in isotropic coordinates and for cj4 # 2, the solution illus-
trates finite size throat that is slightly trapped but smoothly
connects the two untrapped patches: one of the patch has a
singularity at finite proper distance and other patch is asymp-
totically flat at infinite proper distance. The aether configura-
tion and spacetime geometry are similar to static WH aether
solutions [51]. The WH-like static aether solution is physi-
cally undesirable, according to the cosmic censorship con-
jecture [52]. Moreover, Zhu et al. studied the shadows and
deflection angle of charged and slowly rotating black holes
in Einstein-Zther theory [53].

One of the goal of this paper is to find the bending angle
for WH-like static aether solution by using GBT and Kee-
ton and Petters method. Moreover, we will study the impact
of plasma, non-plasma and DM mediums on the deflection
angle of given WH. After that, we analyze graphically, the
behaviour of ¢, b and m on the bending angle 1. In addi-
tion to these goals, while exploring the effects of plasma,
we also examined the behavior of the shadow radius of the
wormhole based on the different observer locations. To this
aim, we have used the methods pioneered by [54], which not
only been applied to BH shadows, but as well as wormholes.
Since then, the interest regarding the shadow of wormholes
have risen [55-68].

This paper is organized as follows: in Sect. 2, we dis-
cuss WH-like static aether solution. In Sect. 3, we compute
the bending angle of WH in non-plasma medium. Section 4,
consists of the calculations of the deflection angle in plasma
medium. We discuss the graphical behaviour of the deflec-
tion angle in plasma and non-plasma mediums. Section 5 is
based on the study of the effects of DM on the deflection
angle. In Sect. 6, we find the bending angle by using Keeton
and Petters method. In Sect. 7 we study shadow cast of the
wormhole and in Sect. 8 we conclude our results.

2 Wormbhole-like static aether solution

The Einstein aether theory is a vector tensor theory which
violates Lorentz invariance by connecting the metric to a
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unit time-like vector field (the aether field) at every point
in space. According to the Einstein-aether theory, WH solu-
tions have been studied. The spherically symmetric WH-like
static aether solution of the Einstein field equations connects
two separate regions of space and give a shortcut through
them. Exact solution to Einstein-aether theory is exposing
analytically in isotropic coordinates (¢, r, ¢, 8), given as fol-
lows [56]:

1 — N4 1+ q+2
ds* = —(—2’) a2+ S 2 a7y )

1 /-A(r) B B
00_5( A B(r)>’ Fo =
o 1 _ rA’(r)) _ rB'(r)

M= Er< YA T B )

L1 Aw) | B

o 2A(r) | 2B(r)

where 0 and 1 are showing the r-coordinate and ¢-coordinate,
respectively and the optical metric’s Ricci scalar is calculated
as:

1

- A 247 2 2 /
R= rA(r)B(r)3 ( rBEY A+ ANBE A

)
I+ (=39 +rA"(r) = A (~rB'(r) + BG)(B'(r) +rB" (1))
) 1/2 (6)
where ¢ =2 < ) > 2.
2—cl4 The Gaussian curvature is defined as:
R Gt (1= 2) (2 + 1) (—253)" (m2g — dmr +4977)
K=—=- . @)

(m? — 4;'2)4

Note thatm is an integration constant and c14 is small nonneg-
ative parameter. The static spherically symmetric spacetime
for WH-like static aether solution can also be written as [56]

ds®> = —A(r)dt*> + B(r)dr® + D(r)d$2?, “)

where dQ? = d6? + sin®> 0d¢> and

1—mNg D 14 Fya+2
A(r)=(1+3n_r) . B() = rg)zil_i_g;q_z.
2r 2r

Here, mass m is an integration constant, r is radial coordinate
and g is parameter. It is noted that ¢ > 2, the above metric
has a curvature singularity and a marginally trapped throat
[69].

3 Deflection angle ¥ in non-plasma medium

In this section, we determine the bending angle of WH in non-
plasma medium by using GBT. When source and observer
are both in the tropical region and null photon also in the
same region, so one can infer that (0 = %). In order to get
optical metric, we put ds> = 0 in Eq. (4) and get;

B(r)r2
A(r)

= &er

2
=0 do>. )

dt*

The non-zero Christoffel symbols for the above metric can
be obtained as:

For the given WH, using Eq. (6), the Gaussian curvature
is computed as:

K= =22+ 0(m?). @®)

r

In the region of non-singular domain 7., the deflection angle
for WH-like static aether solution by using GBT, can be
obtained by using the following formula;

// KdS +7§ kdt + ) e = 2mE(H,), )
e BH(’ i

in the above expression, k indicates geodesic curvature, stated
as k = g(Vyn, ij) and g(n, n) = 1, ij denotes unit acceler-
ation vector and €; expresses the exterior angle at the ith
vertex. As e — 00, the corresponding jump angles reduce
into 7 /2 and we obtain 8y + 65 — 7. Euler characteristic
is E(H,) = 1. So,

/ /Cds+y§ kdt + € = 2mE(H,), (10)
He oH,

here, €; = m represents jump angle. As e — o0, the geodesic
curvature is obtained as

k(D) =| Vp, D | . (11)
Since the radial component of geodesic curvature is;

(Vp, Do) = DgdyD} + T, (D?)*. (12)

@ Springer
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For large value of e, D,
result is;

= r(¢) = e = const, then the

. 1
(VD))" — —. (13)
e e

The geodesic curvature does not have a topological defect
s0, k(D,) — e~!. However, by using the optical metric Eq.
(5), it can be expressed as follows: dt = ed¢. As a result,
we have:

k(D,)dt = d¢. (14)

Now, using previous expression one can obtain the following
equation;

h— o0 Y
/f de+y§ ki "= // ICdS+/ do.
e aH(’ TOO O

15)

The Oth order light ray in the weak field limits is calculated as
r(t) = b/sin ¢. Using Egs. (9) and (15), the bending angle
can be obtained as

T o0
—/ / Ky/detg drd¢, (16)
0 b/ sin ¢
where

M:r—i—qu—i—O(mz).

Using the Gaussian curvature upto the leading order terms
and angle of deflection is calculated as

~ 240 (). (17
b

The first term of the obtained deflection angle v (17) is
depending on the first order of mass m, ¢ and b. While, the
higher order terms of v are depending upon higher orders of
m, g and b. For the sake of simplicity, we consider the only
first order term of the mass m. The obtained bending angle
in non-plasma medium converts into the deflection angle of
Schwarzschild BH after putting g = 2.

4 Deflection angle ¥ in plasma medium

This section is based on the computation of the deflection
angle for WH-like static aether solution in plasma medium.
The refractive index n(r) for WH-like solution is calculated
as

W (r)
w3 ()

n? ror)=1- A(r),

@ Springer

which can also be represented as:

2

nr) =\ [1- =A@, (18)

where electron plasma frequency is denoted by w,, while w
denotes photon frequency calculated at infinity by observer,
then the corresponding optical metric can be defined as;

B(r)r
A(r)

@drz

di* = gl dxldx" = n’ (A(r)

2 dg ) . (19)

For our metric, we can write the above values as:

_mNd9
A(r):(l fnr) B(r):Dr(Zr) a+

T

)q+2

The Gaussian optical curvature can be defined as:

A"(r) A'(r)B'(r) A'(r)D'(r)
- 2B(r)n(r)? - 4B(r)2n(r)2  4B(r)D(r)n(r)?
A'(r)?
" 2A(")B(r)n(r)?
A(r)B'(r)D'(r) A(r)D"(r)
4B(r)2D(r)n(r)? - 2B(r)D(r)n(r)?
A(r)D'(r)? 20
4B(r)D(r)*n(r)?’

Using Eq. (20), the Gaussian optical curvature can be
obtained as:

3
K~ -2 3gm w, +O<m2>. 1)
r 273
We compute the bending angle by using the GBT, for this
purpose we apply straight line approximation r = il;l 5 at

Oth order and obtain the deflection angle as;

— hm/ / Kds, (22)
R—0

where dS = /—gdrd¢ and

w? 2
ds = <2q q—> m+ O <m2> drdp. (23)
wOO OO
Using Eq. (22), the deflection angle in plasma medium can
be obtained as:
2mg  mq w?

e (24)
b wZ

The obtained deflection angle (24) depends on m, b and
q. The above results presents that photon rays are travel-
ling into a homogenous plasma medium. We examined that
Eq. (24) converted into Eq. (17), if the effect of plasma is
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Fig. 1 Plot of ¢ versus b

(i) m=1

neglected. For ¢ = 2, the obtained angle (24) also reduces
into the Schwarzschild angle. y versus b

Here, we use p = c%c = 107" and examine the graphical
behaviour of angle v w.r.t b and fixed m = 1 which are
discussed below.

Figure 1 shows the relationship between v and b by vary-
ing g and fixing m. It consists of small values of b and m.
When the values of impact parameter b approaches to zero,
the deflection angle i approaches towards the infinity at
m = 1. As b increases i.e ; b — 400, the ¥ approaches
to zero. It is to be noted that the graphical behaviour of bend-
ing angle in the non-plasma case after neglecting the plasma
effect will be similar with the plasma case. The impact of the
plasma on the bending angle is negligible, one can obtain the
same graphs by taking same values in both plasma Eq. (24)
and non-plasma mediums Eq. (17).

5 Deflection angle in dark matter medium

This section is devoted to study the impact of the DM medium
on deflection angle. For this purpose, we use DM medium’s
refractive index (2):

n(w) =14 BAo + Arw’.

The WH’s optical geometry in two-dimensional is:

> 2B,
dt“ =n <A(r)dr +

B(ryr?
A(r) a9 > )

b
m
where
1— N9 D 1+ fLya+?
A(r)=< En) By = 20 _Cra
1 ﬂ r (l—ﬂ)q

The Gaussian curvature is expressed as
qm 2
K>~ — @) ( ) . 26
P+ Ao+ Azt T O 2o

The deflection angle can be obtained as:

R—o0

T R
¥ = — lim / /  K\deig drdg. @7)
0o J-b

sin
For the given line-element one can be determined as;

Jdetg = r(1 4 BAg + Arw®)? + 2gm(1 + BAg + Arw?)?

+0 (m?). (28)
The deflection angle for WH-like static aether solution in
DM medium can be calculated as;

2mgq
b(1+4 BAg + Arw?)®’

/S (29)
which is depending upon m, ¢ and b. If ¢ = 2, then
the obtained bending angle reduces into bending angle of
the Schwarzschild BH upto first order of m in dark matter
medium. We also observe that the bending angle in case of
dark matter medium is larger than in general. This expres-
sion simplifies to the vacuum case in the absence of the DM
medium.

@ Springer
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6 Deflection angle by Keeton and Petters method

The calculations of the deflection angle () of the WH-
like static aether solution by using the Keeton and Petters
technique are discussed in this section. The PPN (post—post-
Newtonian) framework is a direct method to deal with all
kinds of gravity ideas for which the weak-deflection limit is
stated as in a single variable m in a series expansion. The con-
cept was extended to the 3rd-order [70]. However, Keeton
and Petters modified that technique to make it more com-
patible with their approach and offers new-results [71]. The
spacetime geometry is supposed to be stable, non-linear
spherically symmetric and asymptotically flat:

ds®> = —A(r)dt* + B(r)dr* + r?dQ>. (30)

The coefficients of Eq. (30) should be written in PPN series
upto the 3rd-order [71] as follows:

2 3
A(r) =1+ 2a <;£2)+2a2 <%> + 2a3 (%) 4.

€1y
2 3
=12 (&) v (4) s (2) 4
c c c

(32)
where ¢ is a three-dimensional Newtonian potential;
LA (33)
c r

The deflection angle in a series form is defined as;

N RN R

where
A = 2(a; + by),
b2
Ay = Zaf —ay +ayby — Zl + by | 7,
2 3 2 2
Ay=3 (35a1 +15a2by — 3a;(10ay + b? — 4by) + 6a3
+ b3 — 6azby — 4byby + 8b3) . (35)

The spacetime metric for WH-like static aether solution
already defined by Eq. (4);

ds® = —A(r)di® + B(r)dr® + D(r)dQ?,
with dQ? = d6? + sin® 0d¢>,

| _mN\4g 1 4 frya+2
wor=(2E) . w = 020

14+ 7 (1 —fya=2

Dividing the right hand side of the metric with B(r), where
B(r) = D(r)/r?*. Then the standard form of metric is written

@ Springer

as;
A
ds? = 20 40 +dr? + r?dQ?, (36)
B(r)
A 2 1 + 4¢*>)m?
where G(r) = ") =1- gm , (1 +4g7)m
B(r) r 2r2
(—=7q — 8¢*)m* 4
F 4 0 (m ) . 37)
and H(r)=1,

Now, we compare the G(r) with A(r) and B(r) with H(r)
and write the PPN coefficients as;

1 7q + 8¢°
a =4¢q, a2=q2+_’ asz = s

4 12
by =by=0b3;=0.
After putting all above coefficient into Eq. (35) we get;

1 8
Al =2q, A= q2__ T, A3=6q3——q.

4 3
Hence, the bending angle for WH-like static aether solution
by Keeton and Petters method can be computed as;

s=u(3) () )

+ <6q3 - 8?61) (%)3 +0O (%)4. (38)

The obtained deflection angle depends on m, g and b.
The obtained angle (38) reduces to the deflection angle of
Schwarzschild by using Keeton and Petters technique when
qg =2.

7 Photon ring and wormhole shadow

In this section, let us examine the photonsphere and the
shadow produced by the wormhole considered in this study.
There have been various studies of the shadow of black
holes and shadow of wormholes [35,36,72-91]. But first time
here we will include the influence of a non-magnetized cold
plasma with electron plasma frequency w, (r), which can be
done through by means of deriving the equations of motion
(EoS) through the Hamiltonian [54] to wormhole spacetime.

1. 1 p?
H=—g*pipp== <— L

2 2
Pr Py 2
2 2\ T A + +e(r) )

B(r) = C(r)
(39)



Eur. Phys. J. C (2022) 82:1057

Page 7 of 10 1057

We only considered motion along the equatorial plane, thus,
D(r) = C(r). We can then derive the EoS through

oH

ﬁi = _W’

. 9H

=2
api

(40)

which enables us to extract the two constants of motion:

d¢

dt
E:A(r)ﬁ, L:C(r)ﬁ. 41)

Also, using this, we can define the impact parameter as

L C(r)d¢

b== = .
E  A(r) dt

(42)

Going back to the metric, null geodesics requires that ds> =
0, and the orbit equation can then be expressed as

dr\*> _ C@r) (h(r)? |
(%) _B(r>< pr )

Following methods in Ref. [54], the orbit equation allows

one to define the function
w2
(1 — —;A(r)) ,
@y

under the assumption that the homogeneous plasma is non-
gravitating [43]. Itis also easy to see how the above reduces to
the standard case if n(r) = 0. The photonsphere can then be

(43)

C)
A(r)

Cr)

0’ =45

h(r)* =

(44)

A static observer at infinity can construct the following
relation,

A crH\"d
tan(g) = lim 22 = (EO) T4l g
Ax—0 Ax B(r) dr P
which can be simplified into
2
sin’ (otgn) = Ltz (48)
h(robs)

with the help of the orbit equation. The critical impact param-
eter can be sought off under the condition d*r/d¢? = 0 and
we find

b2~ _ h("ph)
B! (rpn) C(rpn) — B(rpn) C/ (rpn) ]
X[ (rpn) B' (rpn) C (rph)
—h(rpn) B(rph) C' (rpn) — 21’ (rpn) B(rph) C (rpn)1,
(49)

where the derivatives with respect to r are evaluate at r —
rph- The analytic expression is quite lengthy with the inclu-
sion of plasma, but for the case without its influence, we can
obtained two solutions:

m*/q? — L(o* F )72 (0F £ 1)

b2 =
2wt

crit —

(50)

This will be used to the calculation of the shadow, which
gives us the exact analytical formula of

+

1/2
R [Sré‘bSmZW (@ F DM (@F £ D172 Qrgpy — m)4=D Qrons + m)‘z“””} T
sh =

w

sought off by solving r in &’ (r) = 0. Depending how compli-
cated the expression for the metric coefficients whether one
can obtain an analytic expression or not. One can determine
the photonsphere radii via

603 2 ’ / _
—A@r)”—A@) ) C(r) +C(r)A(r) =0, (45)
@

and for the case of n(r) = 0, we get

Fon = %wi, (46)

where we write first o = ¢ £ /g2 — 1 for brevity [47]. We
note that there is a third solution rpy = m/2, but it does not
produce any shadow cast due to the wormhole.

for the case n(r) = 0. For the case with plasma, we
plot it numerically. See Fig. 2. We can then see how the
shadow radius behave in relation to the location of the static
observer with respect to the wormhole. We can see that the
Schwarzschild case behave as it is. But, when the worm-
hole is considered, we can see that the zero radius shadow
is nearer to the black hole. The lower left inset plot reveals
that the effect of plasma is not that evident. But we can see
that the shadow radius of the wormhole slightly increases,
then decreases again. The intersection point, near r = 2m,
indicates that the angular radius of the shadow is 0 = /2.
In this location, the observer will see that half of the sky is
dark. After, we can see the obvious deviations at farther dis-
tances. Notably, the plasma’s effect is to increase the worm-
hole shadow. At very large distances, we can see that the
rate of the change in the shadow radius levels-off near the

@ Springer
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Fig. 2 Plot of the shadow 6
radius of the wormhole at
varying locations of a static
observer. Here, we compared 5 4
the shadow behavior between = e
the Schwarzschild case, and the //:/—::::: ——————— (; -0 T
wormhole with and without the 4 g B
influence of plasma. We set g —=
m = 1 and the plasma parameter % 55 Tttt
p= 10! o ] S ——
£ 5.0 -
& .
24 90 95 100
2 — Schw
1 — g=2.0
— g=21
1 1 — g=22
0 ---- g=2.0,p=10"1
0 T T Tt a= 2.1'
0 1 2 --—-g=22,
- 1 T T T T T T
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Schwarzschild case. It indicates that the shadow can be use-
ful to detect the imprints of plasma. Finally, we remark that in
this plot, we have only used the upper sign in Eq. (2). Using
the lower sign, one can verify that using ¢ > 0 does not
produce any shadow, and using ¢ < O gives infinitely large
shadow near the wormhole, which is unphysical. However,
we found out that at very large distances, the effect of the
second solution is nearly the same as the one in the upper
right inset plot.

Let us now use the DM refractive index n(w) in Eq. (2)
for the next case. We then find that the location of the pho-
tonsphere is independent of n(w):
n(@)’[C' (N A@r) — A'(r)C(r)] = 0, (52)
which yields the same expression for the photonsphere in Eq.
(46). For the critical impact parameter, we find

n(w)2m2m(wi F 1)2(1*q)(wﬂ: + 1)2(q+1)

b2
doF(wEqg — 1)

cri

(==

)

(53)

where we are only interested in using the upper sign. With
Eq. (48), we can get an analytical expression for the shadow
radius as

Reh = 4mn(@)(—1)7r2 (m — 2robs) T~ (m + 2rgps) =@V

obs
[ — T(w* F 120-0 (F + 1)2@+D ]
X | £ )
do*(wrqg — 1)

(54)

@ Springer

which is quite a worked out equation. Interestingly, for static
observers in a remote location from the wormhole, we can
apply Taylor expansion to get a simplified and approximated
equation:

Ry = ey | Y9~ [ F D200 o £ 1y2en ]
= e 4ot (0Fq — 1) '
(55)
In a case where g = 2, we find
Ry = 33/3mn(w), (56)

where we could see clearly the influence of dark matter
to the shadow radius. Furthermore, in this remote region,
we saw again that the effect of the wormhole mimics the
Schwarzschild case.

8 Conclusion

In this paper, we have discussed WH-like static aether solu-
tion and derived deflection angle in the non-plasma, plasma
and DM mediums. Also, we have found the deflection angle
by using Keeton and Petters technique. For this purpose, we
have used an optical metric to determine Gaussian optical
curvature and then applied GBT to examine the deflection
angle.

We have examined that deflection angle (17) in the non-
plasma medium, plasma medium (24), DM medium (29) and
by Keeton and Petters technique (38) is depending upon the
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parameter g, mass m as a integrating constant and impact
parameter b.

The graphical behaviour of bending angle in the plasma
medium has examined in such a way that when we make a
relation between ¥ and b and vary the value of ¢g. We have
seen that the deflection angle increases when the values of ¢
increases. Moreover, when we make a relation between v and
m and varying b, we have noticed that the angle is decrease.
Afterwards, we have noticed that when we make a relation
between i and g and varying m, the angle is increases. Itis to
be mentioned here that the plots in non-plasma have shown
the same behaviour as plasma medium.

We have observed that if the plasma effect is ignored as
(% — 0), then the bending angle (24) has reduced into
the bending angle (17). In case of DM medium, we have
observed that if we removed the effect of DM medium then
this obtained angle converts into the angle obtained in (17).
We have also examined that the obtained deflection angles by
plasma, non-plasma, DM and Keeton and Petters technique
reduces to the Schwarzschild deflection angle upto 1st order
term of m by taking g = 2.

The results we have obtained for WH-like static aether
solution in the presence of different mediums i.e plasma and
non-plasma shows that deflection angle ¢ has direct rela-
tion with mass m and a parameter ¢ which means that WH
with greater mass has greater gravitational pull and bends the
light passing by it at large angle. Whereas, WH with smaller
mass deflect the light at smaller angle. We also notice that
deflection angle ¥ has inverse relation with impact param-
eter b, which shows that smaller value of impact parameter
has larger deflection angle and vice versa.

Also, we have examined the impact of DM medium on
bending angle of WH-like static aether solution. The refrac-
tive index in DM medium has taken homogeneously nonuni-
form. Hence it is concluded that bending angle by WH-like
static aether solution increases with increasing parameter g
and m, while the bending angle decreases in a increasing
medium of DM. It is showed that how weak deflection angle
of WH is the affected by parameter ¢ and m.

To broaden the scope of the study, we also examined the
behavior of the shadow radius of the wormhole, comparing it
to the case where it is surrounded by plasma. Our main result
indicates that as the photons travels through the plasma, its
imprints or effects can be perceived by a static observer at
infinity through the increased shadow size. Although highly
unlikely in terms of situational applicability, our calculation
also reveals that for observers near the wormhole, the effects
of plasma is rather weak, compared to an observer at a very
large distance.
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