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Abstract A new cosmological theory is proposed in the
theoretical framework of modified gravity theories which is
based on a tachyonic field non-minimally coupled with a spe-
cific topological invariant constructed with third order con-
tractions of the Riemann tensor. After proposing the action
of the cosmological model, the modified Friedmann relations
and the Klein–Gordon equations are obtained, describing
the corresponding geometrical corrections to the Einstein–
Hilbert action. The physical features of the cosmological sys-
tem are investigated by adopting the dynamical system anal-
ysis in the case of an exponential function for the geometrical
coupling term. The investigation revealed that the cosmolog-
ical system can explain the current accelerated expansion of
the Universe and the matter dominated epoch, showing a high
compatibility to the recent history of our Universe for various
values of the coupling coefficients.

1 Introduction

The general relativity theory represents an important suc-
cess in describing the behavior of the Universe at the large
scale structure dynamics. This theory represents the funda-
mental structure considered for describing the large scale
dynamics of the Universe, later embedded into the �CDM
model [1]. Although the �CDM simple model can explain
various phenomena at the large scale [1], it suffers from var-
ious pathological inconsistencies [2–5]. The modified grav-
ity approach [6–10] represents an important direction which
aims to further correct the basic theory of general relativity,
by taking into account various possible couplings with differ-
ent specific invariant components which are embedded into
the corresponding action [10]. To this regard, many studies
have proposed different modifications of the basic Einstein–
Hilbert action, by including or extending the geometrical sec-
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tor [10,11]. The main aim of these theories is related to the
description of the accelerated expansion at a consistent level,
offering some possible solution to various fundamental prob-
lems in the modern cosmology [7,12,13]. From an experi-
mental point of view, the accelerated expansion represents a
cryptic phenomena at the large scale, affecting the large scale
evolution of the Universe [12,14]. The consistent descrip-
tion and analysis of this phenomena is expected to offer new
insights and revolutions in the modern cosmology, having
specific effects in the development of various physical the-
ories and technologies. Since the discovery, the accelerated
expansion have been probed through various astrophysical
studies [15–19].

In the modified gravity landscape the Einsteinian cubic
gravity [20] represents an interesting and possible viable the-
ory studied in the recent years [21–31]. This theory is based
on a specific invariant, constructed using third order contrac-
tions of the Riemann tensor [20]. The non-linear extension
of the Einsteinian cubic gravity was proposed in Ref. [32],
a theory capable of explaining the late time acceleration of
the Universe. The dynamical analysis of the later theory was
performed in Refs. [33,34] for specific parameterizations in
the action. Recently, various black hole solutions have been
investigated in the Einsteinian cubic gravity theory [29,35–
39]. Furthermore, the properties of the inflationary era have
been analyzed in some specific theories [40–46]. The cou-
pling of a scalar field with a cubic term has been investigated
by considering a dynamical system analysis [47]. Recently,
it has been shown that the cubic gravity theory can be asso-
ciated to the developments of various types of pathological
instabilities [48] which have to be addressed in order to con-
struct a viable theory [49].

In the scalar tensor theories, a special class of dark energy
models is represented by the tachyonic cosmologies, a novel
approach originated from string theory [50,51]. The devel-
opment of tachyonic models has been considered in the past
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years, leading to various theoretical constructions [52–58]
which can explain the recent accelerated expansion at the
large scale structure. In the scalar tensor theories based on
general relativity the study of tachyonic fields has been con-
sidered in various cosmological applications [59–63]. More-
over, the study of cosmological models containing tachy-
onic fields has been applied in teleparallel gravity [64–70], a
viable alternative theory [71]. In these theories, the choice of
the potential energy term play a fundamental role, dictating
the future and past dynamics of the aforementioned mod-
els [61,72]. The study of tachyonic cosmological scenarios
for various classes of potential energies has been considered
[65,72–74], leading to viable models which can explain var-
ious cosmological features.

In the present paper we shall further extend the tachyonic
cosmology by considering a non-minimal coupling with a
novel topological invariant, based on cubic contractions of
the Riemann tensor. After we deduce the corresponding field
equation, we shall study the physical implications by adopt-
ing the dynamical system analysis. The study takes into con-
sideration two specific cases associated to the behavior of the
potential energy term. In the first case we consider an expo-
nential representation, while in the second one an inverse
hyperbolic sine function is studied. For all of the previous
mentioned cases we have analyzed the structure and proper-
ties of the phase space, discussing possible physical effects.

The present manuscript is organized as follows: in Sect. 2
we discuss the action and the corresponding field equations
for the dark energy model. Then, in Sect. 3 we analyze the
physical features for an exponential coupling and potential
by considering the dynamical system analysis. In Sect. 4 we
discuss the phase space structure where the potential energy
term is beyond the usual exponential case, considering an
inverse hyperbolic function. Finally, in Sect. 5 we have a short
summary of our analysis, discussing the main conclusions
which are applicable to the present study.

2 The description of the field equations

In the present study we shall consider a tachyonic cosmolog-
ical model non-minimally coupled with a topological invari-
ant constructed from the cubic contractions of the Riemann
tensor. The action corresponding to the present study is the
following:

S = Sm +
∫

d4x
√−g

×
[
R

2
− V (φ)

√
1 + ε

gμν∂μφ∂νφ

V (φ)
+ f (φ)P

]
, (1)

where the topological invariant is based on specific contrac-
tions of the Riemann tensor in the third order [32],

P = β1R
ρ σ

μ ν R γ δ
ρ σ R μ ν

γ δ + β2R
ρσ
μν R

γ δ
ρσ R

μν
γ δ

+β3R
σγ Rμνρσ R

μνρ
γ + β4RRμνρσ R

μνρσ

+β5Rμνρσ R
μρRνσ + β6R

ν
μR

ρ
ν R

μ
ρ

+β7RμνR
μνR + β8R

3, (2)

with β j , ( j = {1, . . . , 8}) constant parameters.
In this case the potential energy is V (φ), and ε is a constant

parameter which describes the canonical representation of
the tachyonic field. For a canonical tachyonic field ε = +1,
while for the non-canonical case we have ε = −1. The matter
part in the action is denoted by Sm , describing a barotropic
fluid which characterizes the dark matter sector, having the
corresponding density ρm and pressure pm , satisfying the
equation of state pm = ρmwm , with wm a constant coefficient
describing a non-relativistic behavior. In this case, the dark
matter fluid satisfies the standard continuity equation.

Next, the large scale structure dynamics in the Universe
is described by the following Robertson–Walker metric,

ds2 = −dt2 + a2(t)δuvdx
udxv, (3)

with a(t) the scale factor, H(t) the Hubble parameter, and t
the cosmic time. If we adopt the following relations between
the constant parameters β j , ( j = {1, . . . , 8}) [32],

β7 = 1

12

[
3β1 − 24β2 − 16β3 − 48β4 − 5β5 − 9β6

]
, (4)

β8 = 1

72

[ − 6β1 + 36β2 + 22β3 + 64β4 + 3β5 + 9β6
]
, (5)

β6 = 4β2 + 2β3 + 8β4 + β5, (6)

β̄ = (−β1 + 4β2 + 2β3 + 8β4), (7)

then the third order tensor polynomial constructed from the
cubic contractions of the Riemann tensor is equal to [32]:

P = 6β̄H4(2H2 + 3Ḣ). (8)

Here, the dot represents the differentiation with respect to
the cosmic time t , while the prime denotes the differentiation
with respect to the argument of the specific function. The
variation of the action described in the Eq. 1 with respect
to the tachyonic field φ(t) gives the corresponding Klein–
Gordon equation,

[
1 − ε

φ̇2

V (φ)

]− 3
2
[

3ε
V ′(φ)φ̇2

V (φ)
− 2(V ′(φ) + εφ̈)

]

+12βH4 f ′(φ)(2H2 + 3Ḣ) − 6εH φ̇√
1 − ε

φ̇2

V (φ)

= 0. (9)

Furthermore, the variation of the action (1) with respect to
the inverse metric leads to the modified Friedmann relations
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which have the following form [32]:

3H2 = ρm + ρφ, (10)

3H2 + 2Ḣ = −pm − pφ, (11)

where the energy density of the tachyonic field is

ρφ = V (φ)√
1 − ε

φ̇2

V (φ)

+ 6β f (φ)H6 − 18βH5 d f (φ)

dφ
φ̇, (12)

with the pressure

pφ = −V (φ)

√
1 − ε

φ̇2

V (φ)
− 6β f (φ)H6 − 12β f (φ)H4 Ḣ

+12βH5 d f (φ)

dφ
φ̇ + 24βH3 d f (φ)

dφ
Ḣ φ̇

+6βH4φ̇2 d
2 f (φ)

dφ2 + 6βH4 d f (φ)

dφ
φ̈. (13)

Finally, we can define the barotropic parameter associated
to the dark energy field,

wφ = pφ

ρφ

, (14)

and the effective (total) equation of state for our cosmological
model,

weff = pm + pφ

ρm + ρφ

= −1 − 2

3

Ḣ

H2 . (15)

If we introduce the matter density parameter,

�m = ρm

3H2 , (16)

and the density parameter corresponding to the tachyonic
field,

�φ = ρφ

3H2 , (17)

we have the following constraint,

�m + �φ = 1. (18)

3 Dynamical effects in the case of an exponential
potential

In this section we shall discuss the main physical features
of the present cosmological model by applying the dynam-
ical system analysis, an important tool in the study of vari-
ous modified gravity theories. Analyzing the Friedmann con-

straint equation (10) we introduce the following dimension–
less variables:

x = φ̇√
V (φ)

, (19)

y =
√
V (φ)

H
√

3
, (20)

z = β f (φ)H4, (21)

in the case of an exponential coupling,

f (φ) = f0e
αφ, (22)

and potential energy,

V (φ) = e−λφ. (23)

Hence, in this case we have

V ′(φ) = −λV (φ), (24)

where λ is a positive constant coefficient which characterizes
the steepness of the potential energy.

The Friedmann constraint equation (10) can be written as:

1 = y2

√
1 − εx2

+ 2z − 6αzxy
√

3 + �m . (25)

Next, if we introduce another variable N = log(a) and
change the dependence of the dimension-less components to
N (the e-fold variable), we obtain the following autonomous
dynamical system, approximating the evolution of the cos-
mological system:

x ′ = φ̈

H2

1

y
√

3
+ λ

2

√
3x2y, (26)

y′ = −λ

√
3

2
xy2 − y

Ḣ

H2 , (27)

z′ = αzxy
√

3 + 4z
Ḣ

H2 , (28)

where the prime ′ describe the derivative with respect to N .
In this case the Klein–Gordon equation (9) can be written

in the following way:

−6
√

3H2xyε√
1 − x2ε

+
−27H4λx2y4ε − 6H2y2

(
εφ̈ − 3H2λy2

)

3H2y2
(
1 − x2ε

)3/2

+12αz
(

2H2 + 3Ḣ
)

= 0, (29)

while the acceleration equation (11) is equal to:

−3H2 − 2Ḣ = 3H2wm�m + 18α2H2x2y2z

−3H2y2
√

1 − x2ε + 12
√

3αH2xyz − 6H2z
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+24
√

3αxyz Ḣ − 12z Ḣ + 6αzφ̈. (30)

In order to apply the linear stability theory we need to express
the evolution equations (26)–(28) in an autonomous manner,
having in the r.h.s. a specific dependence on the auxiliary
variables {x, y, z}. This can be achieved by solving simulta-
neously the two algebraic equations (29)–(30), obtaining the
final relations for the unexpressed components in the (26)–
(28) equations.

In this way we obtain the final expression of the
autonomous dynamical system:

x ′ = 1

y
(

54α2z2
(
1 − x2ε

)3/2 + 6zε
(

2
√

3αxy − 1
)

+ ε
)

·
(

− 9
√

3αx2y2zεwm − 162α2xyz2wm

√
1 − x2ε

−18
√

3αx2z2εwm

√
1 − x2ε

+18
√

3αz2wm

√
1 − x2ε + 9

√
3αx2zεwm

√
1 − x2ε

−9
√

3αzwm

√
1 − x2ε + 162α2x3yz2εwm

√
1 − x2ε

+9
√

3αy2zwm + 45
√

3αx4y2zε2 − 36αλx3y3zε

−18x3yzε2 + 3x3yε2 − 54
√

3α3x2y2z2
√

1 − x2ε

+27
√

3α2λx2y2z2
√

1 − x2ε

−54
√

3αx2y2zε + 6
√

3λx2y2zε − √
3λx2y2ε

+36α2xyz2
√

1 − x2ε

+6
√

3αx2z2ε
√

1 − x2ε − 6
√

3αz2
√

1 − x2ε

+5
√

3αx2zε
√

1 − x2ε

−5
√

3αz
√

1 − x2ε + 54
√

3α3x4y2z2ε
√

1 − x2ε

−27
√

3α2λx4y2z2ε
√

1 − x2ε − 36α2x3yz2ε
√

1 − x2ε

+36αλxy3z + 18xyzε − 3xyε

+√
3λy2 + 9

√
3αy2z − 6

√
3λy2z

)
, (31)

y′ = 1

2
√

1 − x2ε
(

54α2z2
(
1 − x2ε

)3/2 + 6zε
(

2
√

3αxy − 1
)

+ ε
)

·
(

18
√

3αxy2zεwm

√
1 − x2ε − 6yzεwm

√
1 − x2ε

+3yεwm

√
1 − x2ε − 3y3εwm

−54
√

3α2λx5y2z2ε2 + 72α2x4yz2ε2

+108
√

3α2λx3y2z2ε + 18α2x2y3zε
√

1 − x2ε

−63αλx2y3zε
√

1 − x2ε + 18αλy3z
√

1 − x2ε + 3x2y3ε2

−6
√

3αxy2zε
√

1 − x2ε

+6
√

3λxy2zε
√

1 − x2ε − √
3λxy2ε

√
1 − x2ε

−144α2x2yz2ε − 6yzε
√

1 − x2ε + 3yε
√

1 − x2ε

+18
√

3αx3y2zε2
√

1 − x2ε

−54
√

3α2λxy2z2 − 3y3ε + 72α2yz2
)
, (32)

z′ = 1√
1 − x2ε

(
54α2z2

(
1 − x2ε

)3/2 + 6zε
(

2
√

3αxy − 1
)

+ ε
)

·
(

− 36
√

3αxyz2εwm

√
1 − x2ε + 12z2εwm

√
1 − x2ε

−6zεwm

√
1 − x2ε + 6y2zεwm + 54

√
3α3x5yz3ε2

−144α2x4z3ε2

−108
√

3α3x3yz3ε + 54αλx2y2z2ε
√

1 − x2ε

−36αλy2z2
√

1 − x2ε − 6x2y2zε2 + 6
√

3αxyz2ε
√

1 − x2ε

+√
3αxyzε

√
1 − x2ε

+288α2x2z3ε + 12z2ε
√

1 − x2ε − 6zε
√

1 − x2ε

−36
√

3αx3yz2ε2
√

1 − x2ε + 54
√

3α3xyz3

+6y2zε − 144α2z3
)
. (33)

Next, we determine the corresponding critical points by
solving the algebraic equations obtained by setting the r.h.s.
of the autonomous system of equations (31)–(33) to zero
and ε = +1. For each critical point we associate a spe-
cific cosmological epoch, determining the physical features
and the dynamical properties. Hence, the dynamical prop-
erties are encoded in the properties of the corresponding
eigenvalues. For hyperbolic critical points having eigenval-
ues with a negative real part we can approximate the evolution
of the dynamical system, linearizing the solution using the
Hartman–Grobman theorem [75].

For our cosmological system we have obtained two classes
of critical points which are physically viable. The physi-
cal viability of the solutions is determined by the following
requirements. First, the location of the critical points in the
phase space should be associated to real variables. Notice
that the y variable should be real and positive, while x and
z must be only real. Secondly, the matter density param-
eter should be restricted �m ∈ [0, 1], considering a non-
negativity for the dimensionless energy densities. Assuming
the non-negativity of the matter density parameter, we obtain
the following restriction in the phase space structure (consid-
ering that 1 − 3

√
3αxy ≥ 0):

z ≤ z∗ =
√

1 − εx2 − y2

2
√

1 − εx2(1 − 3
√

3αxy)
. (34)

Notice that the z variable is by definition unbounded from
above in the case of a non-negativeβ, satisfying the constraint
(34). In the analysis, this particular choice of the auxiliary
variable could lead to a non-compact phase space structure
which might have additional critical points at infinity. In prin-
ciple, for this analysis one can either use the Poincaré projec-
tion method or redefine the dimension-less variables in such
a manner that bounded intervals are obtained. In the present
analysis we have neglected the analysis at infinity due to the
complicated form of the autonomous system of equations
(31)–(33).

The first critical point is located at the following coordi-
nates:

A =
[
x = √

1 + wm, y =
√

3
√

1 + wm

λ
, z = 0

]
. (35)
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Fig. 1 The figure describes a region in the phase space structure where
the A cosmological solution is saddle, in the case where wm = −0.0001

At this solution we note that the dark matter equation of state
dictates the value of the kinetic term, while for the potential
component we have an influence due to the steepness of the
potential, embedded into the value of the λ coefficient. The
effective equation of state is equal to

weff = wm, (36)

with the matter density parameter

�m = 1 − 3(1 + wm)√−wmλ2
. (37)

Due to the existence conditions the matter density parameter
should be real in the [0, 1] interval, implying that the wm

parameter is slightly negative and close to zero, a value not
ruled out by astrophysical observations. This cosmological
solution represents a matter-scaling era where the tachyon
field tracks matter, a critical point which appeared also in
various dynamical studies [65]. This cosmological solution
is similar to the one found in the minimal coupling case [73],
possible alleviating the cosmic coincidence problem. The
matter domination (�m ≈ 0) is obtained in the limit λ2 	
(−wm)−1/2. For this cosmological solution we have obtained
the following eigenvalues:

[
3(α − 2λ) (wm + 1)

λ
,

3

4

(
wm − 1 ± �

�

)]
, (38)

where

� =
√

−λ4w3
m (wm + 1)

(
λ2 + 17λ2w2

m + 14λ2wm + 48 (−wm) 5/2 + 48
√−wm + 96

√−wmwm
)
, (39)

� = λ3wm

√−wm (wm + 1). (40)

Fig. 2 The figure describes the value of the matter density parameter
�m as a function of dark matter equation of state parameter wm and
the strength of the potential energy, encoded into the value of the λ

coefficient

From the above expressions we can note that this solu-
tion has a high sensitivity to the values of various coeffi-
cients, wm, λ, α. This solution can be either stable, saddle, or
unstable, depending on the particular choice of the wm, λ, α

parameters.
For this solution, we have displayed in Fig. 1 some possi-

ble intervals where the corresponding behavior is associated
to a saddle dynamics. In the implementation of this figure
we have used an interpolation method based on a neural net-
work approach, with an initial grid considered as the training
set. The architecture of the neural network is based on four
internal linear layers, separated through a specific activation
function. After training, the neural network can be considered
for the interpolation, obtaining possible regions in the phase
space structure where the A cosmological solution has a sad-
dle behavior. For example, in the case where �m ≈ 0.70, if
we set λ = 32, wm = −0.0001, and α = 100, we obtain
a saddle cosmological solution which can mimic the matter
dominated era.

In Fig. 2 we have the dependence of the matter den-
sity parameter �m in the {wm, λ} plane. It can be seen that
the matter density parameter can span easily by fine–tuning
the [0, 1] interval, being compatible to various astrophysical
observations. Furthermore, in Fig. 3 we have displayed the
value of the matter density parameter �m as a function of
λ, the strength of the potential energy. In this case we have
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Fig. 3 The figure describes the
value of the matter density
parameter �m as a function of
the strength of the potential
energy, encoded into the value
of the λ coefficient. In this figure
we have considered
wm = −0.0001 (left) and
wm = −0.1 (right)

Fig. 4 The figure describes the evolution towards the A critical point
in the {x, y} plane (α = 1, wm = −0.01, λ = 8.9, ε = 1)

Fig. 5 The evolution towards the A cosmological solution in the {x, z}
plane

fixed wm = −0.0001 and wm = −0.1. Lastly, for this solu-
tion we have analyzed the phase space structure, displaying
various aspects of the numerical evolution in Figs. 4, 5, 6
and 7. In these figures we can observe the convergence of the
numerical solution towards the analytical solution, in the case
where the A critical points represents an attractor. The evo-

Fig. 6 The evolution towards A in the {y, z} plane

Fig. 7 The figure describes the evolution in the 3D space for various
initial conditions, towards the A cosmological solution

lution towards an era where the tachyon field tracks matter is
displayed in Fig. 8, a particular solution with the following
corresponding eigenvalues: (−5.48,−1.49,−0.01). In this
case the effective equation of state is equal to wm = −0.01
and the matter density parameter is satisfying �m = 0.3.
The solution describe a hyperbolic critical point where the
dynamics corresponds to a stable epoch.
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The second cosmological solution is located at the coor-
dinates:

B =
[
x = 0, y =

√
2α√

2α − λ
, z = λ

2(λ − 2α)

]
, (41)

a de-Sitter epoch where the effective equation of state corre-
sponds to a cosmological constant,

weff = −1. (42)

The matter density parameter is �m = 0, a solution where
the scalar field completely dominates in terms of density
parameters. For this solution, we can note that the field is
at rest, without any kinetic energy. The potential energy vari-
able y and the coupling component which is encoded into the
z variable are both influenced by the strength of the coupling
function, displayed by the α coefficient, and the steepness of
the exponential potential. From a dynamical point of view
we have obtained the following eigenvalues,

[
− 3 (wm + 1) ,

1

�
(−� ± √

3
√

�)

]
, (43)

where

� = 2(2α − λ)3
(
α2

(
27λ2 + 8

)
+ 4αλ − 4λ2

)2
, (44)

� = 24α7
(

27λ2 + 8
)2 − 12α6λ

(
2187λ4 + 864λ2 + 64

)

+18α5λ2
(

729λ4 − 288λ2 − 128
)

−3α4λ3
(

729λ4 − 3456λ2 − 640
)

+α3
(

480λ4 − 4536λ6
)

+ 72α2λ5
(

9λ2 − 14
)

+384αλ6 − 48λ7, (45)

� = −(λ − 2α)6
(
α2

(
27λ2 + 8

)
+ 4αλ − 4λ2

)3

×
(

32α3λ − α2
(

161λ2 + 24
)

+ 4αλ
(

8λ2 − 3
)

+ 12λ2
)

.

(46)

For the B critical point we have analyzed the values of
the corresponding eigenvalues and the associated dynami-
cal behavior. In Fig. 9 we have considered an interpolation
method based on a neural network approach, determining a
possible region where the B cosmological solution has a sta-
ble dynamical behavior. Note that the corresponding dynami-
cal behavior is influenced by the strength of the coupling with
the cubic component (which encodes geometrical effects due
to the third order contractions of the Riemann tensor), and
the steepness of the potential energy.

4 Beyond the exponential potential

In this section we shall investigate the structure and properties
of the phase space in the case where the potential energy
term is beyond the usual exponential case. To this regard, we
shall consider that the potential is represented by an inverse
hyperbolic sine,

V (φ) = V0sinh
−ξ (χφ), (47)

where V0, ξ, χ are constant parameters. This potential has
been considered in various cosmological models [65,76–78],
representing a viable function. In order to study such a poten-
tial energy, we need to introduce another variable,

λ = − 1

V (φ)

dV (φ)

dφ
. (48)

Then, the dynamical system is a four dimensional system,
where we have to add the following differential equation,

λ′ = −√
3λ2xy(� − 1), (49)

where � is defined as follows:

� =
V (φ)

d2V (φ)

dφ2

(
dV (φ)
dφ

)2
. (50)

Taking into account the inverse hyperbolic sine decomposi-
tion, we have:

� = 1 + 1

ξ
− ξχ2

λ2 , (51)

and the last dynamical equation reduces to:

λ′ = −xy
√

3

(
−ξχ2 + λ2

ξ

)
. (52)

In what follows we shall present the corresponding critical
points and the specific fundamental properties obtained in
the case where the potential is represented by a hyperbolic
sine function. The first critical point found in our analysis is
located at the following coordinates:

C =
[
x = 0, y, z = 1

2
− y2

2
, λ = 2α(y2 − 1)

y2

]
. (53)

We can note that for this solution the field is at rest, with-
out any kinetic energy, while the y variable associated to
the potential energy represents an independent parameter.
The specific values of the last two variables (z, λ), which
are associated to the non-minimal coupling function and the
steepness of the potential, respectively, are influenced by
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Fig. 8 The figure describes the
evolution of the corresponding
density parameters and the
effective equation of state in the
case where the A cosmological
solution represents an attractor
(wm = −0.01, λ = 6.51, ε =
1, α = 1)

the potential component. From a physical point of view this
cosmological solution describes a de-Sitter epoch (�m =
0, weff = −1). For this solution, the general form of the
eigenvalues is too complex to be written here. However, if
we set y = 1, ξ > 0, we obtain a simpler form of the corre-
sponding eigenvalues:

[
0,−3 (wm + 1) ,

1

2

(
−

√
12ξχ2 + 9 − 3

)
,

1

2

(√
12ξχ2 + 9 − 3

)]
, (54)

describing a non hyperbolic solution which can be saddle. In
this case the dynamical aspects are influenced by the values
of the ξ and χ coefficients.

The second cosmological solution is represented by the
following critical point,

D± =
[
x = ±√

1 + wm , y =
√

3
√

wm + 1

ξχ
, z = 0, λ = ±ξχ

]
.

(55)

This solution corresponds to a scaling solution (�m = 1 −
3(wm+1)

ξ2χ2√−wm
, weff = wm), having the following eigenvalues

(for the D+ solution):
⎡
⎣ − 6 (wm + 1)

ξ
,

3 (wm + 1) (α − 2ξχ)

ξχ
,

3

4

⎛
⎝±

√
ξ6χ4w2

m (wm + 1)
(
17ξ2χ2w2

m + 14ξ2χ2wm + 48 (−wm) 5/2 + 48
√−wm + 96

√−wmwm + ξ2χ2
)

ξ4χ3wm
√

wm + 1
+ wm − 1

⎞
⎠

⎤
⎦ . (56)

Hence, this physical point is similar to the A solution dis-
cussed earlier in the case where the potential is represented
by an exponential function. From a dynamical perspective if
we consider that the dark matter pressure is negative but very
close to zero and ξ < 0, then the first eigenvalue becomes
positive, implying that this solution cannot be stable. Hence,
it is either saddle or unstable, depending of the values of the
specific coefficients {α, ξ, χ}. By imposing that the second
eigenvalue is negative and wm = −0.0001, we have obtained

some constraints to the specific coefficients,

ξ < 0 ∧
(

χ < 0 ∨ α > 0 ∨ χ >
0.5α

ξ

)
∧

(
χ <

0.5α

ξ
∨ α ≤ 0 ∨ χ > 0

)
, (57)

where the latter solution appears as a saddle cosmological
solution in the phase space structure. As can be noted, the
structure of the phase space in the case where the potential
energy term is represented by an inverse hyperbolic sine is
similar to the exponential potential case.

5 Summary and conclusions

In the present manuscript we have proposed a novel cosmo-
logical model, by adding to the Einstein–Hilbert Lagrangian
a tachyonic field non-minimally coupled with a topological
invariant constructed with specific third order contractions
of the Riemann tensor. In this scenario the dark energy com-
ponent is represented by the tachyonic field which depends
on the cosmic time. After proposing the action correspond-
ing to this cosmological system, we have obtained the basic
equations whichdescribe the evolution of such a theoretical

model, obtained by applying the variational principle. To this
regard, the Klein–Gordon equation is obtained by varying the
action with respect to the tachyonic field, while the modified
Friedmann relations are deduced by varying the inverse met-
ric. Since the present model does not take into account an
interaction between the tachyonic field and the matter com-
ponent, the standard continuity equation is also satisfied.

The physical features of the current cosmological system
are investigated by adopting the dynamical system analysis,
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Fig. 9 The figure describes a specific region where the de-Sitter crit-
ical point B is stable. The figure takes into account also the existence
conditions, implying that the y component is real and positive

an important tool used in the study of various modified grav-
ity theories. In the present paper we have analyzed the phase
space structure and properties in the case of an exponential
coupling function. Furthermore, for the potential energy we
have considered two specific cases, the exponential potential
and a distinct potential, the hyperbolic sine potential. In the
case of an exponential potential the structure of the phase
space has three dimensions, having two types of cosmologi-
cal solutions. The first type is represented by the de-Sitter
epoch, a cosmological solution where the tachyonic field
acts as a cosmological constant, with a constant equation
of state. At this critical point the value of the coupling coef-
ficient which encodes specific interactions with the topolog-
ical cubic invariant is affecting the dynamical consequences.
To this regard, we have obtained specific constraints for the
coupling coefficients where the attractor behavior is attained
in the distant future. The second type of cosmological solu-
tions is represented by a scaling solution, an epoch where
the total (effective) equation of state of the cosmological
system corresponds to the matter component. From a phys-
ical point of view this solution is viable only if we take into
account that the dark matter fluid has a negative equation of
state, slightly close to zero. This implies that the dark mat-
ter component corresponds to an exotic fluid with a negative
pressure. From a theoretical perspective such a solution has
been also found in different tachyonic dark energy models
[65]. In the case of the second solution the dynamical fea-
tures have been investigated, revealing some values of the
coupling coefficients where the matter epoch corresponds
to a saddle behavior, compatible with the recent evolution
at the large scale structure. Lastly, we have also considered
that the potential energy term is represented by an inverse
hyperbolic sine function, discussing the phase space struc-
ture and the corresponding dynamical effects. Finally, due to
the presented arguments we can note that the present cosmo-
logical setup represents a viable alternative theory which can

explain the evolution of the Universe – the matter dominated
epoch and the dark energy phenomenon, constituting a feasi-
ble theoretical framework, at least at the level of background
dynamics.

Acknowledgements This work was supported by a grant of the
Romanian Ministry of Research, Innovation and Digitalization, CNCS
– UEFISCDI, project number PN-III-P4-ID-PCE-2020-1142, within
PNCDI III. The work was partially supported by the project 41PFE/
30.12.2021, financed by the Ministry of Research, Innovation and Dig-
italization through Program 1 – Development of the National R&D Sys-
tem, Subprogram 1.2. Institutional performance – Financing projects for
excellence in RDI. For this project we have considered various compu-
tations in Wolfram Mathematica [79] and xAct [80].

Data Availability Statement This manuscript has no associated data
or the data will not be deposited. [Authors’ comment: The present
manuscript has no associated data, the considered approach is theo-
retical.]

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adaptation,
distribution and reproduction in any medium or format, as long as you
give appropriate credit to the original author(s) and the source, pro-
vide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indi-
cated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permit-
ted use, you will need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.
Funded by SCOAP3. SCOAP3 supports the goals of the International
Year of Basic Sciences for Sustainable Development.

References

1. C.M. Will, Living Rev. Relativ. 17, 4 (2014). arXiv:1403.7377 [gr-
qc]

2. A.G. Riess, S. Casertano, W. Yuan, J.B. Bowers, L. Macri,
J.C. Zinn, D. Scolnic, Astrophys. J. Lett. 908, L6 (2021).
arXiv:2012.08534 [astro-ph.CO]

3. M. Asgari et al. (KiDS), Astron. Astrophys. 645, A104 (2021).
arXiv:2007.15633 [astro-ph.CO]

4. E. Di Valentino, O. Mena, S. Pan, L. Visinelli, W. Yang, A. Mel-
chiorri, D.F. Mota, A.G. Riess, J. Silk, Class. Quantum Gravity 38,
153001 (2021). arXiv:2103.01183 [astroph. CO]

5. S. Vagnozzi, Phys. Rev. D 102, 023518 (2020). arXiv:1907.07569
[astro-ph.CO]

6. S. Nojiri, S.D. Odintsov, eConf C0602061, 06 (2006).
arXiv:hep-th/0601213

7. K. Bamba, S. Capozziello, S. Nojiri, S.D. Odintsov, Astrophys.
Space Sci. 342, 155 (2012). arXiv:1205.3421 [gr-qc]

8. S. Nojiri, S.D. Odintsov, Phys. Rev. D 68, 123512 (2003).
arXiv:hep-th/0307288

9. S. Nojiri, S.D. Odintsov, Phys. Rep. 505, 59 (2011).
arXiv:1011.0544 [gr-qc]

10. S. Nojiri, S.D. Odintsov, V.K. Oikonomou, Phys. Rep. 692, 1
(2017). arXiv:1705.11098 [gr-qc]

11. N. Frusciante, L. Perenon, Phys. Rep. 857, 1 (2020).
arXiv:1907.03150 [astro-ph.CO]

12. E.J. Copeland, M. Sami, S. Tsujikawa, Int. J. Mod. Phys. D 15,
1753 (2006). arXiv:hep-th/0603057

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/1403.7377
http://arxiv.org/abs/2012.08534
http://arxiv.org/abs/2007.15633
http://arxiv.org/abs/2103.01183
http://arxiv.org/abs/1907.07569
http://arxiv.org/abs/hep-th/0601213
http://arxiv.org/abs/1205.3421
http://arxiv.org/abs/hep-th/0307288
http://arxiv.org/abs/1011.0544
http://arxiv.org/abs/1705.11098
http://arxiv.org/abs/1907.03150
http://arxiv.org/abs/hep-th/0603057


1069 Page 10 of 11 Eur. Phys. J. C (2022) 82 :1069

13. S. Capozziello, M. De Laurentis, Phys. Rep. 509, 167 (2011).
arXiv:1108.6266 [gr-qc]

14. N. Aghanim et al. (Planck), Astron. Astrophys. 641, A6 (2020).
arXiv:1807.06209 [astro-ph.CO]

15. A.L. González-Morán, R. Chávez, E. Terlevich, R. Terlevich, D.
Fernández-Arenas, F. Bresolin, M. Plionis, J. Melnick, S. Basi-
lakos, E. Telles, Mon. Not. R. Astron. Soc. 505, 1441 (2021).
arXiv:2105.04025 [astroph.CO]

16. J.R. Bermejo-Climent, M. Ballardini, F. Finelli, D. Paoletti, R.
Maartens, J.A. Rubiño Martín, L. Valenziano, Phys. Rev. D 103,
103502 (2021). arXiv:2106.05267 [astro-ph.CO]

17. S. Cao, J. Ryan, B. Ratra, Mon. Not. R. Astron. Soc. 504, 300
(2021). arXiv:2101.08817 [astro-ph.CO]

18. W. Yang, E. Di Valentino, S. Pan, Y. Wu, J. Lu, Mon. Not. R.
Astron. Soc. 501, 5845 (2021). arXiv:2101.02168 [astro-ph.CO]

19. M. Muccino, L. Izzo, O. Luongo, K. Boshkayev, L. Amati, M. Della
Valle, G.B. Pisani, E. Zaninoni, Astrophys. J. 908, 181 (2021).
arXiv:2012.03392 [astro-ph.CO]

20. P. Bueno, P.A. Cano, Phys. Rev. D 94, 104005 (2016).
arXiv:1607.06463 [hep-th]

21. R.A. Hennigar, R.B. Mann, Phys. Rev. D 95, 064055 (2017).
arXiv:1610.06675 [hep-th]

22. P. Bueno, P.A. Cano, Phys. Rev. D 94, 124051 (2016).
arXiv:1610.08019 [hep-th]

23. R.A. Hennigar, M.B.J. Poshteh, R.B. Mann, Phys. Rev. D 97,
064041 (2018). arXiv:1801.03223 [gr-qc]

24. M.R. Mehdizadeh, A.H. Ziaie, Mod. Phys. Lett. A 35, 2050017
(2019). arXiv:1903.10907 [gr-qc]

25. A. Cisterna, N. Grandi, J. Oliva, Phys. Lett. B 805, 135435 (2020).
arXiv:1811.06523 [hep-th]

26. M.B.J. Poshteh, R.B. Mann, Phys. Rev. D 99, 024035 (2019).
arXiv:1810.10657 [gr-qc]

27. P. Bueno, P.A. Cano, A. Ruipérez, JHEP 03, 150. arXiv:1802.00018
[hep-th]

28. R.A. Konoplya, A.F. Zinhailo, Z. Stuchlik, Phys. Rev. D 102,
044023 (2020). arXiv:2006.10462 [gr-qc]

29. C. Adair, P. Bueno, P.A. Cano, R.A. Hennigar, R.B. Mann, Phys.
Rev. D 102, 084001 (2020). arXiv:2004.09598 [gr-qc]

30. K. Giri, P. Rudra, Nucl. Phys. B 978 (2022) 115746. https://doi.org/
10.1016/j.nuclphysb.2022.115746, https://www.sciencedirect.
com/science/article/pii/S0550321322000979

31. M. Marciu, Eur. Phys. J. C 81, 1084 (2021). https://doi.org/10.
1140/epjc/s10052-021-09871-6

32. C. Erices, E. Papantonopoulos, E.N. Saridakis, Phys. Rev. D 99,
123527 (2019). arXiv:1903.11128 [grqc]

33. M. Marciu, Phys. Rev. D 101, 103534 (2020). arXiv:2003.06403
[gr-qc]

34. I. Quiros, R. García-Salcedo, T. Gonzalez, J.L.M. Martínez, U.
Nucamendi, Phys. Rev. D 102, 044018 (2020). arXiv:2003.10516
[gr-qc]

35. M. Kord Zangeneh, A. Kazemi, Eur. Phys. J. C 80, 794 (2020).
arXiv:2003.04458 [hep-th]

36. A.M. Frassino, J.V. Rocha, Phys. Rev. D 102, 024035 (2020).
arXiv:2002.04071 [hep-th]

37. D.J. Burger, W.T. Emond, N. Moynihan, Phys. Rev. D 101, 084009
(2020). arXiv:1910.11618 [hep-th]

38. P.A. Cano, D. Pereñiguez, Phys. Rev. D 101, 044016 (2020).
arXiv:1910.10721 [hep-th]

39. W.T. Emond, N. Moynihan, JHEP 12, 019. arXiv:1905.08213 [hep-
th]

40. G. Arciniega, J.D. Edelstein, L.G. Jaime, Phys. Lett. B 802, 135272
(2020). arXiv:1810.08166 [gr-qc]

41. G. Arciniega, P. Bueno, P.A. Cano, J.D. Edelstein, R.A. Hennigar,
L.G. Jaime, Phys. Lett. B 802, 135242 (2020). arXiv:1812.11187
[hep-th]

42. J.D. Edelstein, D. Vázquez Rodríguez, A. Vilar López, JCAP 12,
040. arXiv:2006.10007 [hep-th]

43. G. Arciniega, P. Bueno, P.A. Cano, J.D. Edelstein, R.A. Hennigar,
L.G. Jaime, Int. J. Mod. Phys. D 28, 1944008 (2019)

44. I. Quiros, R. De Arcia, R. García-Salcedo, T. Gonzalez, F.X.
Linares Cede no, U. Nucamendi, Phys. Rev. D 103, 064043 (2021).
arXiv:2007.06111 [gr-qc]

45. P.A. Cano, K. Fransen, T. Hertog, Phys. Rev. D 103, 103531 (2021).
arXiv:2011.13933 [hep-th]

46. J.D. Edelstein, R.B. Mann, D.V. Rodríguez, A. Vilar López, JHEP
01, 029. arXiv:2007.07651 [hep-th]

47. M. Marciu, Phys. Rev. D 102, 023517 (2020). arXiv:2004.07120
[gr-qc]

48. M.C. Pookkillath, A. De Felice, A.A. Starobinsky, JCAP 07, 041.
arXiv:2004.03912 [gr-qc]

49. J.B. Jiménez, A. Jiménez-Cano, JCAP 01, 069. arXiv:2009.08197
[gr-qc]

50. A. Mazumdar, S. Panda, A. Perez-Lorenzana, Nucl. Phys. B 614,
101 (2001). arXiv:hep-ph/0107058

51. A. Sen, Phys. Scr. T 117, 70 (2005). arXiv:hep-th/0312153
52. Y.-S. Piao, R.-G. Cai, X.-M. Zhang, Y.-Z. Zhang, Phys. Rev. D 66,

121301 (2002). arXiv:hep-ph/0207143
53. J.S. Bagla, H.K. Jassal, T. Padmanabhan, Phys. Rev. D 67, 063504

(2003). arXiv:astro-ph/0212198
54. V.K. Shchigolev, M.P. Rotova, Mod. Phys. Lett. A 27, 1250086

(2012). arXiv:1203.5030 [gr-qc]
55. V.K. Shchigolev, M.P. Rotova, Gravit. Cosmol. 18, 88 (2012).

arXiv:1105.4536 [gr-qc]
56. P.P. Avelino, L. Losano, J.J. Rodrigues, Phys. Lett. B 699, 10

(2011). arXiv:1103.1384 [astro-ph.CO]
57. G.W. Gibbons, Phys. Lett. B 537, 1 (2002). arXiv:hep-th/0204008
58. S. Mukohyama, Phys. Rev. D 66, 024009 (2002).

arXiv:hep-th/0204084
59. E.M. Teixeira, A. Nunes, N.J. Nunes, Phys. Rev. D 100, 043539

(2019). arXiv:1903.06028 [gr-qc]
60. G.W. Gibbons, Class. Quantum Gravity 20, S321 (2003).

arXiv:hep-th/0301117
61. E.J. Copeland, M.R. Garousi, M. Sami, S. Tsujikawa, Phys. Rev.

D 71, 043003 (2005). arXiv:hep-th/0411192
62. A. Banijamali, M. Solbi, Gen. Relativ. Gravit. 49, 103 (2017)
63. A. Sen, Mod. Phys. Lett. A 17, 1797 (2002). arXiv:hep-th/0204143
64. A. Banijamali, B. Fazlpour, Astrophys. Space Sci. 342, 229 (2012).

arXiv:1206.3580 [physics.gen-ph]
65. S. Bahamonde, M. Marciu, J.L. Said, Eur. Phys. J. C 79, 324 (2019).

arXiv:1901.04973 [gr-qc]
66. A. Rezaei Akbarieh, Y. Izadi, Eur. Phys. J. C 79, 366 (2019).

arXiv:1812.06649 [gr-qc]
67. H. Motavalli, A.R. Akbarieh, M. Nasiry, J. Exp. Theor. Phys. 123,

33 (2016)
68. B. Fazlpour, A. Banijamali, Adv. High Energy Phys. 2015, 283273

(2015). arXiv:1408.0203 [gr-qc]
69. A. Banijamali, Adv. High Energy Phys. 2014, 631630 (2014)
70. G. Otalora, Phys. Rev. D 88, 063505 (2013). arXiv:1305.5896 [gr-

qc]
71. S. Bahamonde, K.F. Dialektopoulos, C. Escamilla-Rivera, G. Far-

rugia, V. Gakis, M. Hendry, M. Hohmann, J.L. Said, J. Mifsud, E.
Di Valentino (2021). arXiv:2106.13793 [gr-qc]

72. L.R.W. Abramo, F. Finelli, Phys. Lett. B 575, 165 (2003).
arXiv:astro-ph/0307208

73. I. Quiros, T. Gonzalez, D. Gonzalez, Y. Napoles, Class. Quantum
Gravity 27, 215021 (2010). arXiv:0906.2617 [gr-qc]

74. W. Fang, H.-Q. Lu, Eur. Phys. J. C 68, 567 (2010). arXiv:1007.2330
[hep-th]

75. S.D. Odintsov, V.K. Oikonomou, Phys. Rev. D 96, 104049 (2017)
76. N. Roy, N. Bhadra, JCAP 06, 002. arXiv:1710.05968 [gr-qc]

123

http://arxiv.org/abs/1108.6266
http://arxiv.org/abs/1807.06209
http://arxiv.org/abs/2105.04025
http://arxiv.org/abs/2106.05267
http://arxiv.org/abs/2101.08817
http://arxiv.org/abs/2101.02168
http://arxiv.org/abs/2012.03392
http://arxiv.org/abs/1607.06463
http://arxiv.org/abs/1610.06675
http://arxiv.org/abs/1610.08019
http://arxiv.org/abs/1801.03223
http://arxiv.org/abs/1903.10907
http://arxiv.org/abs/1811.06523
http://arxiv.org/abs/1810.10657
http://arxiv.org/abs/1802.00018
http://arxiv.org/abs/2006.10462
http://arxiv.org/abs/2004.09598
https://doi.org/10.1016/j.nuclphysb.2022.115746
https://doi.org/10.1016/j.nuclphysb.2022.115746
https://www.sciencedirect.com/science/article/pii/S0550321322000979
https://www.sciencedirect.com/science/article/pii/S0550321322000979
https://doi.org/10.1140/epjc/s10052-021-09871-6
https://doi.org/10.1140/epjc/s10052-021-09871-6
http://arxiv.org/abs/1903.11128
http://arxiv.org/abs/2003.06403
http://arxiv.org/abs/2003.10516
http://arxiv.org/abs/2003.04458
http://arxiv.org/abs/2002.04071
http://arxiv.org/abs/1910.11618
http://arxiv.org/abs/1910.10721
http://arxiv.org/abs/1905.08213
http://arxiv.org/abs/1810.08166
http://arxiv.org/abs/1812.11187
http://arxiv.org/abs/2006.10007
http://arxiv.org/abs/2007.06111
http://arxiv.org/abs/2011.13933
http://arxiv.org/abs/2007.07651
http://arxiv.org/abs/2004.07120
http://arxiv.org/abs/2004.03912
http://arxiv.org/abs/2009.08197
http://arxiv.org/abs/hep-ph/0107058
http://arxiv.org/abs/hep-th/0312153
http://arxiv.org/abs/hep-ph/0207143
http://arxiv.org/abs/astro-ph/0212198
http://arxiv.org/abs/1203.5030
http://arxiv.org/abs/1105.4536
http://arxiv.org/abs/1103.1384
http://arxiv.org/abs/hep-th/0204008
http://arxiv.org/abs/hep-th/0204084
http://arxiv.org/abs/1903.06028
http://arxiv.org/abs/hep-th/0301117
http://arxiv.org/abs/hep-th/0411192
http://arxiv.org/abs/hep-th/0204143
http://arxiv.org/abs/1206.3580
http://arxiv.org/abs/1901.04973
http://arxiv.org/abs/1812.06649
http://arxiv.org/abs/1408.0203
http://arxiv.org/abs/1305.5896
http://arxiv.org/abs/2106.13793
http://arxiv.org/abs/astro-ph/0307208
http://arxiv.org/abs/0906.2617
http://arxiv.org/abs/1007.2330
http://arxiv.org/abs/1710.05968


Eur. Phys. J. C (2022) 82 :1069 Page 11 of 11 1069

77. L.A. Urena-Lopez, T. Matos, Phys. Rev. D 62, 081302 (2000).
arXiv:astro-ph/0003364

78. V. Sahni, A.A. Starobinsky, Int. J. Mod. Phys. D 9, 373 (2000).
arXiv:astro-ph/9904398

79. Wolfram Research, https://www.wolfram.com/mathematica,
Mathematica

80. J.M. Martin-Garcia, xAct: Efficient tensor computer algebra for the
Wolfram Language

123

http://arxiv.org/abs/astro-ph/0003364
http://arxiv.org/abs/astro-ph/9904398
https://www.wolfram.com/mathematica

	Tachyonic cosmology with cubic contractions of the Riemann tensor
	Abstract 
	1 Introduction
	2 The description of the field equations
	3 Dynamical effects in the case of an exponential potential
	4 Beyond the exponential potential
	5 Summary and conclusions
	Acknowledgements
	References




