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Abstract A common statistical problem in particle physics
is to extract the number of samples which originate from a
statistical process in an ensemble containing a mix of sev-
eral contributing processes. The probability density func-
tion of each process is usually not exactly known. Barlow
and Beeston found an exact likelihood for the problem of
fitting binned templates obtained from Monte-Carlo simu-
lation to binned data, which propagates the uncertainty of
the templates into the result. Solving the exact likelihood
is technically challenging, however. The original paper also
did not provide a way to use weighted simulation samples
with varying weights. Other papers have introduced alterna-
tive likelihoods to address these points. In this paper, a new
approximate likelihood is derived from the exact Barlow–
Beeston one. The new likelihood is generalized to fits of
weighted templates to weighted data. The performance of the
new likelihood is evaluated based on toy examples. The per-
formance is excellent – point estimates have small bias and
confidence intervals have good coverage – and is comparable
to the exact Barlow–Beeston likelihood when the templates
are not weighted. The new likelihood evaluates faster than
the Barlow–Beeston one when the number of bins is large.

1 Introduction

Barlow and Beeston [1] were the first to describe the exact
likelihood for the problem of fitting a composite model con-
sisting of binned templates obtained from Monte-Carlo sim-
ulation to binned data. The fit estimates the yield (number of
samples) which originates from each component. In this sce-
nario, the component probability density functions (p.d.f.s)
are not available in parameterized form, but are obtained
implicitly from simulation. The shapes of the templates are
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not exactly known since the simulated sample is finite. There-
fore, the value of each template in each bin is a nuisance
parameter, constrained through Poisson statistics by the sim-
ulated sample.

The exact likelihood has many nuisance parameters; one
for each component in each bin. Since the number of bins
can be large (especially when distributions are multidimen-
sional), Barlow and Beeston provide an algorithm to esti-
mate the nuisance parameters implicitly by solving a non-
linear equation per bin for a given set of yields. Since nui-
sance parameters are implicitly found, only the yields remain
as external parameters, which are found numerically in the
usual way; for example, with the Migrad algorithm in the
Minuit library [2].

This approach is elegant, but also has drawbacks. It was
observed by Conway [3] that the finite accuracy of the
non-linear solver may introduce discontinuities in the likeli-
hood that confuse algorithms that use gradient-descent, like
Migrad. This seems to be rarely an issue in practice, but it
can lead to fits that fail to converge or fits that produce incor-
rect uncertainty estimates. Even then, solving a non-linear
equation per bin numerically introduces a non-negligible
computational cost.

Conway proposed a simplified treatment [3] to address
these issues. The exact likelihood is replaced by a simpli-
fied one where the uncertainty in the template is captured
by a multiplicative factor, which in turn is constrained by a
Gaussian penalty term. This introduces only one nuisance
parameter per bin instead of one per component per bin, and
it allows one to estimate each nuisance parameter by solving
a simple quadratic equation. The computation of the simpli-
fied likelihood does not suffer from numerical instabilities
and is faster.

Conway did not derive the simplified likelihood rigorously
from the exact likelihood of Barlow and Beeston. The present
work grew from such a derivation, motivated by the wish to
gain insight into the practical limits of Conway’s approxi-
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mate likelihood. This exercise lead to the discovery of a new
approximate likelihood that has the same computational ben-
efits, while having better statistical properties.

The exact likelihood by Barlow and Beeston was derived
under the assumption that the bin contents for the data and
templates are Poisson-distributed. This assumption falls short
when the bin contents in templates or data are sums of ran-
dom weights, and therefore, the likelihood does not perform
well when applied to such problems. Barlow and Beeston
were aware of this limitation, but did not provide a full solu-
tion. Argüelles et al. [4] first described an alternative likeli-
hood which is applicable to a weighted simulation. In their
Bayesian derivation, the nuisance parameters are integrated
out using a prior that is conditional on the simulation weights.
The prior is based on results from Bohm and Zech [5], who
showed that the distribution for a variable which is the sum of
random weights can be approximately described by a mod-
ified Poisson distribution. The authors demonstrate that the
marginalized likelihood works well in a frequentist approach,
where point estimates for the yields are obtained by maxi-
mizing the likelihood, and limits are obtained by constructing
the profile likelihood1 and applying Wilk’s theorem [6]. The
intervals have good coverage [4].

In this paper, we derive a new approximate likelihood
from the Barlow–Beeston one. The likelihood is transformed
so that the minimum value is asymptotically chi-square dis-
tributed, following the approach of Baker and Cousins [7].
This allows one to use the minimum value as a goodness-of-
fit test statistic. Furthermore, the new approximate likelihood
is generalized to handle weighted templates and weighted
data, based on results from Bohm and Zech [5]. In the last
part of the paper, the performance of the new likelihood is
compared to alternative likelihoods in fits to two toy examples
which idealize real problems in high-energy and astroparticle
physics.

2 Derivation of the likelihood

We will derive the new likelihood in this section starting
with a general remark by Baker and Cousins [7] who note
that likelihoods for binned data can be transformed such that
the minimum value doubles as an asymptotically chi-square-
distributed test statistic, Q. The following monotonic trans-
formation is applied to the likelihood L, without loss of gen-
erality given here for a single bin,

Q( �p) = −2 ln

[L(n;μ( �p))
L(n; n)

]
, (1)

1 A profile likelihood for parameters of interest θ is obtained by
maximizing with respect to all nuisance parameters φ, L(θ) =
arg maxφL(θ, φ).

where n is the count of samples in the bin and μ is the model
expectation, which is a function of model parameters, �p. In
the constant denominator, μ is replaced by n. It is sufficient
to analyse the likelihood for a single bin, since each bin is
an independent sample so that Ltot = ∏

i L(ni ;μi ( �p)) and
Qtot = ∑

i Q(ni ;μi ( �p)).
If the model is correct, Q follows a chi-square distribu-

tion with ndof degrees of freedom in the asymptotic limit of
infinite sample size, where ndof is the difference between the
number of bins and the number of fitted parameters. In the
following, we will refer to Q as the “likelihood”, although it
is in fact a monotonic function of a likelihood.

In the likelihoods that are derived here, the nuisance
parameters from the templates add a balance of zero to ndof,
since each bin with a simulated count has one corresponding
nuisance parameter. Therefore, ndof of the total likelihood is
still given by the difference of the number of bins and the
number of yields.

2.1 Barlow–Beeston likelihood

Barlow and Beeston first described an exact likelihood for
Poisson-distributed binned data and templates [1]. To make
this paper self-contained, we briefly summarize their deriva-
tion. The log-likelihood for a bin that contains a Poisson
distributed count n with expectation μ is

lnL = n ln μ − μ − ln n!. (2)

The last term is constant with respect to changes in μ and
can be omitted. In a template fit, μ is the sum over templates
that are normalized and scaled with the respective yield yk
of that component,

μ =
∑
k

yk ξk

Mk
, (3)

where ξk is the expected contribution of component k to this
bin, and Mk is the sum over all ξk from different bins. The
key insight here is that ξk cannot be identified with the count
ak obtained from a particular simulation run. Instead, ak is a
random realization from a Poisson distribution with expec-
tation ξk . Just like μ is constrained by n, ξk is constrained
by ak . We can write down another log-likelihood for each
template k,

lnLk = ak ln ξk − ξk − ln ak !, (4)

where the last term can be omitted again. The (pseudo)random
process that generates ak is independent of the real process
that generates n. Therefore, the likelihoods can be added to
form the total likelihood for the inference problem,

lnL +
∑
k

lnLk = n ln μ − μ +
∑
k

ak ln ξk − ξk, (5)
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now without constant terms. This is the exact likelihood for
this statistical problem, if n and ak are Poisson distributed.
Estimates for the yk are obtained by maximizing Eq. 5 over
yk and ξk . The ξk are nuisance parameters. They are not of
interest, but the likelihood has to be maximized with respect
to the ξk , too. The number of nuisance parameters can be
large; evaluating to K × N for K components and N bins.
Barlow and Beeston show how these can be found numeri-
cally by solving only N decoupled non-linear equations; for
details we refer the reader to the original paper [1].

The transformation in Eq. 1 applied to the exact likelihood
gives

Q = 2
(
μ − n − n(ln μ − ln n)

)
+2

∑
k

ξk − ak − ak(ln ξk − ln ak). (6)

This can be written more succinctly using the Cash statistic
C(k; λ) = 2(λ − k − k(ln λ − ln k)) [8];

Q(�y, �ξ) = C(n;μ(�y, �ξ)) +
∑
k

C(ak; ξk). (7)

2.2 Conway’s approximation

Conway proposed an approximate likelihood [3] as an alter-
native to Eq. 5. The likelihood was not rigorously derived in
the original publication, therefore we will attempt to do that
here.

Without loss of generality, the template amplitudes in
Eq. 7 can be parameterized as ξk = akβk , since the extremum
of the likelihood is also invariant to monotonic transforma-
tions of the parameters. The central approximation is to set
β ≈ βk ; the component factors are replaced by a single fac-
tor,

μ =
∑
k

ykξk
Mk

=
∑
k

ykβkak
Mk

≈ β
∑
k

ykak
Mk︸ ︷︷ ︸

μ0

. (8)

This approximation is valid in the limit where μ is dominated
by a single component. Applied to Eq. 7, one gets

Q ≈ C(n;βμ0) +
∑
k

C(ak;βak). (9)

The second term can be simplified,

∑
k

C(ak;βak)

= 2
∑
k

βak − ak − ak(ln(βak) − ln ak)

= 2(βa − a − a ln β) = 2a
(
β − 1 − ln β

)
,

with a = ∑
k ak . One obtains the intermediate result

Q = C(n;βμ0) + 2a
(
β − 1 − ln β

)
. (10)

To obtain Conway’s likelihood, the logarithm ln β is in
the second term is approximated further by a Taylor series
around β = 1 to second order,

2a
(
β − 1 − ln β

)

≈ 2a

(
β − 1 − (β − 1) + 1

2
(β − 1)2

)

= a(β − 1)2.

This approximation is valid in the asymptotic limit a → ∞
which implies that β can deviate only slightly from 1. In
practice, the simulation sample is often smaller than the data
sample, such that a is often smaller than n. The approxima-
tion is not expected to work well in these cases.

In Conway’s original formula [3], (β − 1)2 is divided by
the estimated variance Vβ of β, not multiplied by a. This
largely overcomes the limitation introduced by setting βk ≈
β. Conway’s idea is to treat the second term like a Gaussian
penalty for the nuisance parameter β, which means we need
to divide by the expected variance Vβ of β.

We demonstrate that Vβ ≈ 1/a when a single component
is dominant, while in general, Vβ is larger. Recall the defini-
tion β = μ/μ0, where μ0 is considered constant. One finds
via error propagation,

Vβ = Vμ

μ2
0

with Vμ =
∑
k

y2
k Vξ,k

M2
k

. (11)

With the plug-in estimate Vξ,k = ξk ≈ ak , one obtains

Vβ =
∑

k
y2
k

M2
k
ak(∑

k
yk
Mk

ak
)2 . (12)

In the limit where only one of the components is dominant
(the same limit in which the central approximation βk ≈ β

is valid), one gets

Vβ ≈
y2
k

M2
k
a

(
yk
Mk

a
)2 = 1

a
. (13)

When more than one component is dominant, Vβ > 1/a.
We thus obtain Conway’s likelihood [3],

Q(�y, β) = C(n;βμ0(�y)) + (β − 1)2

Vβ

. (14)

A value for the nuisance parameter β is obtained by solving
the score function ∂Q/∂β = 0 which leads to a quadratic
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equation for β that has only one valid solution (β > 0),

β = 1 − Vβμ0

2
+

√
nVβ +

(
1 − Vβμ

2

)2

. (15)

In summary, Conway’s likelihood is only expected to perform
well in the limit of large simulation samples.

2.3 New approximation

Starting again from Eq. 10, we note that the likelihood treats
data and simulation symmetrically,

Q = C(n;βμ0) + 2a
(
(β − 1) − ln β

)
= C(n;βμ0) + C(a;βa). (16)

One can solve the score function ∂Q/∂β = 0 directly, the
solution is

β = n + a

μ0 + a
. (17)

This formula for β is even simpler than the one derived by
Conway, and can be easily interpreted. The nuisance param-
eter β balances the pulls of the observed value n in data and
the observed value in the simulation a. If a � n, βμ0 → n,
irrespective of the actual value of μ0. In other words, the bin
provides no information for the component yields yk , which
are constrained only through the potential tension between
μ0 and n. For a → ∞, β → 1 and Q → C(n;μ0); we
recover the basic Poisson-likelihood.

To summarize, Eq. 16 is derived from the exact likelihood
without using a truncated Taylor series, in contrast to Con-
way’s likelihood. Real and simulated counts are described
with Poisson statistics, same as the exact Barlow–Beeston
likelihood. Maximum-likelihood estimation based on Pois-
son statistics generally performs better than a likelihood
based on a Gaussian approximation for Poisson-distributed
data [1,4]. The new likelihood is therefore expected to per-
form better in fits where the simulated sample is small.

Bins with a = 0 should be excluded from the calculation,
since they do not contribute anything to the yields. Alterna-
tively, one can replace a = 0 in numerical calculations with
a tiny number like 10−100, which has the same effect.

Equation 16 is still limited by the original approximation
β ≈ βk . It does not perform well when more than one com-
ponent dominates in a bin. A mixture of components has a
larger variance than βa, which is the variance of the Poisson
distribution associated to the term C(a;βa). One can obtain
a better approximation by replacing C with a Poisson-like
distribution that allows for a larger variance, analogue to the
final step in the derivation of Conway’s likelihood. This is dis-
cussed next, after the likelihood is generalized for weighted
samples.

2.4 Weighted samples

In practice, the data and the simulation samples may be
weighted. Simulations are often weighted to reduce discrep-
ancies between the simulated and the real experiment, or as
a form of importance sampling. Data may be weighted to
correct losses from finite detection efficiency. In both cases,
a count n is replaced by a sum of weights, n = ∑

i wi .
Barlow and Beeston discussed the impact of weighted sim-
ulated samples in their paper [1] and showed how the exact
likelihood can be adapted when the distribution of weights
is extremely narrow, but do not provide a solution for the
general case.

Bohm and Zech [5] derived the scaled Poisson distribution
(SPD), an approximate probability distribution for a sum of
independent weights. The SPD becomes exact in the limit
that all weights are equal, and is a good approximation to
the correct distribution otherwise. The basic idea is to use
a Poisson distribution that is scaled such that its variance is
equal to Vn = ∑

i w
2
i , which differs in general from n =∑

i wi [5]. This can be achieved by multiplying n and its
model prediction, μ, with the scale factor t = n/Vn .

Argüelles, Schneider, and Yuan were the first to use the
SPD in the context of template fitting [4]. In contrast to the
frequentist approach in this paper, they derived a Bayesian
marginalized likelihood, in which the nuisance parameter μ

is removed by integrating over a prior p(μ),

LG =
∫ ∞

0

μne−μ

n! p(μ) dμ. (18)

The prior p(μ) in this equation is conditional on the simula-
tion outcome. It is the posterior obtained by applying Bayes’
theorem on the simulated sample,

p(μ;μ0, Vμ) = 1

Np
L(μ0;μ, Vμ) q(μ), (19)

where L(μ0;μ, Vμ) is the likelihood to observe μ0, given
that μ and Vμ are the true values, μ0 is the expected bin
content given components yield �y and the simulation weights
�w, Vμ is the estimated variance of μ around μ0, Np is a
normalization constant, and q(μ) is a subjective prior for μ.
The authors take q(μ) to be uniform in their main result,
but also consider other priors, see Ref. [4] for details. The
variables μ0 and Vμ are calculated as

μ0 =
∑
k,i

ykwk,i

Mk
=

∑
k

yk mk

Mk

Vμ =
∑
k,i

(
ykwk,i

Mk

)2

=
∑
k

y2
k Vm,k

M2
k

, (20)

where mk and Vm,k are the sum of weights and the sum of
weights squared for component k, respectively, and Mk is the
sum of mk over all bins. The authors identify L(μ0;μ, Vμ)
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with the SPD, which takes the following form,

L(μ0;μ, Vμ) = e−sμ(sμ)sμ0

�(sμ0 + 1)
, (21)

where �(x) is the gamma function and s = μ0/Vμ. Inserting
Eq. 21 into Eq. 18 leads to an integral that can be solved
analytically [4]. The final marginalized likelihood is

LASY = ssμ0+1�(n + sμ0 + 1)

n!(s + 1)n+sμ0+1�(sμ0 + 1)
. (22)

The authors demonstrate that the marginalized likelihood
LASY has good statistical properties even when used in a fre-
quentist approach (point estimation via maximization over
parameter space, interval computation via likelihood profil-
ing). It cannot be transformed into a chi-square distributed
test statistic with the result from Baker and Cousins [7], since
the form of Eq. 22 is not compatible.

We take a different approach and generalize the likelihood
in Eq. 16 to weighted samples by introducing the generalized
Cash statistic for weighted samples,

C(n;μ) → C (sn; sμ) , (23)

which is obtained by constructing the SPD likelihood and
then applying the Baker–Cousins transform. We exploit the
symmetry of Eq. 16 and apply the generalization to both
terms, which allows us to handle both weighted data and
weighted simulation. By doing so, we also lift the limitation
that Eq. 16 is only a good approximation for a single dominant
component. Since the SPD is fundamentally a generalized
Poisson distribution with larger variance, we can now account
for the larger variance that a mix of components has over a
single component. The final form of the new likelihood is

Q = C(tn;βtμ0) + C(sμ0;βsμ0), (24)

with

n =
∑
i

w′
i , Vn =

∑
i

w′
i
2
, t = n

Vn
,

μ0 =
∑
k

yk mk

Mk
, Vμ =

∑
k

y2
k Vm,k

M2
k

, s = μ0

Vμ

,

where w′
i are data weights, while mk and Vm,k are the sum of

weights and sum of weights squared of the simulated com-
ponent k respectively. The nuisance parameter β becomes

β = tn + sμ0

tμ0 + sμ0
. (25)

The final form of the new likelihood in Eq. 24 is no longer
identical to Eq. 16 even if all weights are unity. In this case,
we have

s =
∑
k

yk ak
Mk

/ ∑
k

y2
k ak

M2
k

, (26)

where ak is the count in template k, compared to Eq. 11. If
only a single component k is dominant, we recover sμ0 ≈ a.

Conway’s likelihood in Eq. 14 is generalized to weighted
samples in an analogous way. The variances Vξ,k in Eq. 11 are
replaced by Vm,k , and weighted data is handled in the same
way as in Eq. 24 by replacing the Cash statistic. The original
Barlow–Beeston likelihood in Eq. 7 can also be generalized
with Eq. 23, but we do not attempt this here. The marginalized
likelihood in Eq. 22 cannot treat weighted data in its current
form, only weighted simulation. We also do not attempt to
generalize it further here.

3 Toy study

The properties of the estimated yields, obtained with the
likelihoods presented here, are studied in two toy exam-
ples. The yields are estimated by minimizing the likelihoods
given by Eq. 7 (Barlow–Beeston), Eq. 14 (Conway), Eq. 22
(Argüelles–Schneider–Yuan), and Eq. 24 (this work). We are
interested in the bias of the estimated signal yield, the bias of
the estimated uncertainty of the signal yield, and the cover-
age probability of intervals obtained by likelihood profiling.
Biases should be small, and the coverage probability should
be equal to the expected confidence level.

The minimization is performed with the Minuit2 library
[2] as implemented in iminuit [9]. In the case of Eq. 7,
the nuisance parameters are found by the Barlow–Beeston
algorithm from the reference implementation
TFractionFitter in the ROOT framework [10]. Two-
sided limits are generated with the Minos algorithm, which
computes the profile likelihood and applies Wilk’s theorem
[6] to construct an interval.

In both toy scenarios, samples are drawn from two over-
lapping components. The parameters of these components
are listed in Table 1. In case A, a normally distributed sig-
nal is mixed with a comparably flat exponentially distributed
background. In this example, most bins are dominated by a
single component. It idealizes the common problem in high-
energy physics where a narrow resonance peaks in the mass
distribution over a smooth background. Two normally dis-
tributed components are mixed for case B. Most bins are not
clearly dominated by one component. Moreover, the lowest
and highest bins at the tails of the distribution have a low den-
sity. It idealizes a problem in cosmic ray physics, in which
the distribution of the depth of shower maximum from many
cosmic-ray induced air showers is analysed to extract yields
of different elemental groups of primary cosmic rays (see
e.g. Ref. [11]).

In both scenarios, the expected signal yield in the data
sample is 250 and the expected background yield is 750.
The expected size of each component in the simulation
sample is Nmc; we run sets of experiments with Nmc ∈
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Table 1 Parameters of the
distributions used in the toy
simulation. The signal and
background distributions are
truncated to the interval
x ∈ [0, 2]

Signal Background

Case A Normal, μ = 1, σ = 0.1 Exponential, μ = 2

Case B Normal, μ = 1.2, σ = 0.4 Normal, μ = 0.9, σ = 0.4

Weights Uniform in the interval [0, 10]

{100, 1000, 10000}. When a new toy experiment is simu-
lated, the sample sizes are randomly drawn from a Poisson
distribution. Generated samples are sorted into histograms
with equidistant bins over the interval x ∈ [0, 2]; 15 bins in
case A and 8 bins in case B. The number of bins in case B is
reduced to increase the density in the lowest and highest bin.

An example for each case and each expected size Nmc

is shown in Fig. 1. In the examples with Nmc = 10000, the
uncertainty of the template is negligible compared to the data
sample. In the examples with Nmc = 1000, the uncertainties
in the simulated sample are comparable to the data sample,
and they dominate the total uncertainty per bin for Nmc =
100. The templates also show strong fluctuations then. We
expect all likelihoods to perform well for Nmc = 10000 and
expect the largest differences for Nmc = 100.

Template fits are performed based on these inputs. The
value 
Q = −2 ln(L/Lmax) as a function of the signal yield
is shown in Fig. 2 for the different likelihoods in one partic-
ular toy experiment, where L is the profile likelihood with
respect to all other parameters. The new likelihood has a pro-
file close to the Barlow–Beeston one, while the others differ.
Fits are also performed with a weighted simulation. In this
variation, a count k drawn from the Poisson-distribution as
previously described is replaced by a sum over k random
weights drawn from a uniform distribution in the interval
[0, 10]. This sum of weights has a variance that is larger than
the original Poisson distribution by a factor of 6 to 7.

Independent samples are generated and fitted 2000 times
for each combination. To judge the performance, the pull
distribution of the estimated signal yield is computed, where
the pull is defined as z = (ŝ − s)/V̂ 1/2

s , with true signal
yield s, estimate ŝ, and estimated variance V̂s (obtained by
the Hesse routine in Minuit2) for ŝ. The performance is
indicated by the degree of agreement of the mean of z with
the value 0 and the standard deviation of z with the value 1.

The results are shown in Figs. 3 and 4. As expected, all
likelihoods produce compatible results for Nmc = 10000,
since the uncertainty contributed by the finite size of the
simulation sample is negligible. At smaller values of Nmc,
we see that the Barlow–Beeston likelihood underestimates
the uncertainty of the signal yield if the simulated sample is
weighted; the width of the pull distribution is larger than one.
This was also expected. In the strongly mixed case B, some
outliers are produced for Nmc = 100, and signal amplitudes
are fairly biased. The bias and outliers originate from sam-

ples where the simulation has zero or only one entry in some
bins. A bin with zero simulated entries cannot be used by
the fit and is discarded. Bins which only contribute to the fit
when the simulation templates do not fluctuate downwards
introduce a selection effect that causes a bias over an ensem-
ble of toy experiments. This is more likely to happen in case
B, and even more so when the simulation is weighted, where
the tails of the normal distributions only have a few entries.
When bins in the simulation have only one entry, this some-
times causes a fit to converge to a result more than six standard
deviations away from the true value, as the fit attempts to rec-
oncile a tiny simulated expectation with a comparably large
data value. The Argüelles–Schneider–Yuan likelihood pro-
duces the smallest number of outliers among all compared
likelihoods. In practice, the bias and outliers can be avoided
by restricting the fit to bins which are sufficiently populated
in the simulation or by making bins wider. Apart from these
special cases, we generally observe a non-negligible bias for
the yield estimates obtained by the Argüelles–Schneider–
Yuan likelihood, while the bias for the other likelihoods is
small or negligible.

To evaluate the coverage of two-sided intervals produced
by likelihood profiling, we generate intervals for a fine grid
of confidence level values in each toy experiment. The cov-
erage probability is the fraction of intervals that contain the
true value for that confidence level. Ideally, coverage prob-
ability should be equal to the confidence level. The results
are shown in Fig. 5. Coverage is generally excellent except
for Nmc = 100, where the intervals for case A are too wide,
and too narrow for case B. Even then, the new likelihood is
competitive, with the coverage consistently being the clos-
est or among the closest to the expected confidence level.
Intervals generated from the Barlow–Beeston likelihood are
generally too narrow when the simulation is weighted, as
expected (Fig. 5).

The runtime of a fit is dominated by the time required
to evaluate the likelihood. This work was also motivated by
the desire to have a likelihood that can be evaluated with-
out solving non-linear equations numerically, to speed up
the calculation. It is therefore interesting to compare likeli-
hood evaluation times. These times are specific to the prob-
lem, computing platform, and the implementation (Fig. 6).
The Barlow–Beeston likelihood that we use is implemented
in C++, while the approximate likelihoods discussed in this
work are implemented in Python. Code execution in Python
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Fig. 1 Examples from the toy simulations. The examples from case A
(B) are shown on the left (right). From top to bottom, the expected size
of the simulated samples Nmc decreases by a factor of 10, starting at

10 000. The data sample is shown with data points and error bars, the
simulated sample is shown with a solid line and an error band. Dashed
(signal) and dotted (background) lines show the two components

is orders of magnitude slower than in C++, but the use of
the Numpy library [12] can make the performance of Python
implementations competitive with C++. We measure the like-
lihood evaluation time for the toy experiment A, while vary-
ing the number of bins (Fig. 6). The Barlow–Beeston likeli-
hood falls behind the other likelihoods when the number of
bins exceeds about 200. This is not a large number, when the
working distributions are multidimensional. The evaluation
time for the new likelihood is among the best, only Conway’s
likelihood is a little faster when the number of bins exceeds
2000.

4 Conclusions

A new approximate likelihood was derived for a template fit
from the exact likelihood described by Barlow and Beeston.
The new likelihood treats data and simulation symmetrically
as Poisson or SPD distributed. It was generalized to describe
weighted data and/or weighted templates, and to correctly
take into account the increased fluctuations that weighted his-
tograms have when the weights vary in size. This goes beyond
the capabilities of the Barlow–Beeston likelihood. Argüelles,
Schneider, and Yuan previously derived a marginalized like-
lihood using a Bayesian approach for weighted simulated
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Fig. 2 Profiled 
Q values (the minimum value of each profile is subtracted) as a function of the signal yield for the likelihoods from Barlow–
Beeston (BB), Argüelles–Schneider–Yuan (ASY), Conway, and the one derived in this work. Data and templates samples are those from Fig. 1

samples, while a frequentist approach was used here. The new
likelihood can treat both weighted data and weighted simu-
lated samples. The new likelihood was transformed such that
the minimum value is asymptotically chi-square distributed
following the approach described by Baker and Cousins;
enabling the minimum value to serve as a goodness-of-fit
test statistic. This cannot be replicated for the marginalized
Argüelles–Schneider–Yuan likelihood.

The Barlow–Beeston likelihood, the Argüelles–Schneider–
Yuan likelihood, Conway’s likelihood, and the new likeli-
hood were compared in an ensemble study based on two toy
examples. The bias of point estimates and uncertainty esti-
mates was studied by analysing pull distributions. The cov-

erage of two-sided intervals obtained from likelihood pro-
filing was measured. Normal and weighted simulation sam-
ples were tested. The new likelihood performs well in all
tested scenarios. Performance is comparable to the Barlow–
Beeston likelihood when the simulation is not weighted. The
signal yield in the tested examples is less biased compared
to the Argüelles–Schneider–Yuan likelihood. Fits with the
Argüelles–Schneider–Yuan likelihood are more stable and
produced the fewest outliers. The new likelihood produces
some outliers, because it is sensitive to bins with few simu-
lation entries. To avoid outliers, bins should be made wide
enough so that the template bins are sufficiently populated.
The coverage of intervals extracted from the new likelihood
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Fig. 3 Pull distributions for toy example A for the estimates
obtained from maximizing the likelihoods from Barlow–Beeston (BB),
Argüelles–Schneider–Yuan (ASY), Conway, and the one derived in this
work. Shown on the left-hand side are fits with Poisson-distributed tem-

plates, shown on the right-hand side are fits with weighted templates
as described in the text. Outliers with |z| > 6 are not included in the
calculation of mean and standard deviation in the legend. The fraction
of outliers is included in the legend if it is larger than zero

is accurate or close to the best performers in challenging
scenarios.

The new likelihood has a significantly smaller computa-
tional cost than the Barlow–Beeston one when the number
of bins in the distributions is large. This benefits the runtime
of a fit, which is usually dominated by the evaluation time of
the likelihood.

In summary, the new likelihood can accommodate weighted
data and weighted simulation sample. It shows excellent per-
formance in all tests we made, is fast to evaluate, and has no
particular weaknesses, apart from a sensitivity to bins with
low simulation samples, which can be overcome. Its theoreti-
cal derivation suggests that it should perform well in general.

The new likelihood developed in this paper, Conway’s
likelihood (the generalized form that can handle weighted
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Fig. 4 Plots for toy example B analogous to the ones in Fig. 3
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Fig. 5 Coverage probability as a function of the expected confidence level for the two toy ensembles with unweighted and weighted simulation
samples. Outliers are included when the coverage probability is calculated

Fig. 6 Time required to evaluate the likelihoods described in the text;
smaller is better. The likelihoods were evaluated on the toy example A.
The number of bins in the data and template histograms was varied

samples), and the Argüelles–Schneider–Yuan likelihood are
available in the iminuit library [9].
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