
Eur. Phys. J. C (2022) 82:1065
https://doi.org/10.1140/epjc/s10052-022-11016-2

Regular Article - Theoretical Physics

Superconformal invariants and spinning correlators in 3d N = 2
SCFTs

Aditya Jaina, Amin A. Nizamib

Department of Physics, Ashoka University, Rajiv Gandhi Education City, NCR 131029, India

Received: 11 October 2022 / Accepted: 7 November 2022 / Published online: 25 November 2022
© The Author(s) 2022

Abstract We construct superconformal invariants in super-
space which are used to build 3-point correlators of spinning
operators in general N = 2 superconformal field theories in
three dimensions. Our systematic analysis includes various
relations between these invariants and provides a minimal set
of parity-even and parity-odd invariants which is further used
to construct general 3-point functions in any 3dN = 2 SCFT.
For conserved (super)currents, we explicitly compute vari-
ous 3-point functions using Wick contractions in the free field
case, and express them in terms of the constructed parity-
even invariants. We give evidence through examples for the
claim that the 3-point function of conserved currents gen-
erally comprises of two parts – a parity-even piece coming
from the free theory, and a parity-odd piece.
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1 Introduction

Superconformal invariance is the largest spacetime symme-
try possible in a local relativistic quantum field theory. Con-
sequently, it is extremely constraining. Conformal algebras
exist in all space-time dimensions but the supersymmetry
algebra can be extended to a closed superconformal alge-
bra only for d ≤ 6 [1]. Also, as is well known, two and
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three point functions of operators are completely fixed by
(super)conformal symmetry alone [2,3]. For the case of 3-
point functions of spinning operators, the form is still exactly
fixed, but a number of tensor structures are possible [4,5],
each coming with an OPE coefficient encoding the dynamics
of the theory. Since the number of these tensor structures, as
well as the complexity in the form of each, increases rapidly
with increasing spin of the correlator, it is useful to have an
efficient and tractable way of keeping track of the tensorial
nature of such correlators. For non-supersymmetric theories,
one such approach was provided by [6] (see also [7] which
utilises the embedding space formalism).

In this paper, we will study the constraints of N = 2
superconformal invariance on 3-point correlators of spinning
primary operators in three dimensions. We will extensively
use the superspace formalism [8] and work throughout with
correlators of superfields. In particular, we will construct a
multitude of 3-point superconformal invariants and express
3-point correlators as multinomials in these invariants. Using
the polarisation spinor formalism [6] and these invariants, we
will find that the proliferating complexity of tensor structures
with increasing spin becomes tractable, and one only needs
to deal with multinomials built out of a handful of these
invariants to encode the tensor structure of general spinning
correlators. Furthermore, we will study the constraints that
arise when one or more operators are conserved currents.

Related studies of various aspects of 3-point correlators
in 3d SCFTs include [9–16]. For an overview of the general
constraints of superconformal invariance in various dimen-
sions, see [17,18].

This paper is structured as follows. We begin by reviewing
the essential details of 3d superspace in Sect. 2. Here we also
construct the superconformal covariant structures which are
used in later sections to build 3-point function invariants. In
Sects. 3, 4 we construct the primary 3-point invariants, both
parity-even and parity-odd, out of which all 3-point func-
tions of spinning operators are built. The relations that exist
between these invariants are also discussed in these sections.
In Sect. 5 we give examples of various 3-point correlators
expressed as a linear combination of linearly independent
structures built out of the invariants. We move on to dis-
cuss correlators of conserved currents in Sect. 6. We first fix
the form of the free-theory 3-point correlators in terms of
parity-even invariants. Subsequently, using the appropriate
conservation (multiplet shortening) condition we give evi-
dence through examples that the general 3-point conserved
current correlator in an N = 2 3d SCFT is the sum of a
parity-even (free theory) part and a parity odd part, with two
undetermined OPE coefficients. We conclude with a discus-
sion and future directions in Sect. 7.

Some technical details are relegated to the appendices.
Appendix A contains details of the various conventions used
and lists various useful relations. Appendix B lists various

relations where invariants constructed out of the covariant
structures are all expressed in terms of our minimal set of
invariants. Appendix C details, through two examples, the
computation of 3-point conserved current correlators in a
free theory.

2 Superconformal covariant structures in superspace

In this section, we provide an overview of the required basic
features of superspace and construct the various covariant
structures out of which 3-point functions are built. This will
help set the stage for constructing 3-point invariants and cor-
relators in the following sections.

A foundational work on 3d SCFTs in superspace is [9]
to which the reader is referred to for additional details. We
have included the necessary details in this section to make
the paper self-contained for the most part. Note however that
our conventions are different – they are those of [10] and
are summarised in Appendix A. We will also use polarisa-
tion spinors to encode spin, in a manner similar to [6], as
explained in more detail below.

Superspace is parametrised by coordinates (xμ
i , θaiα)

where x denotes the usual bosonic coordinate, θ denotes
the fermionic (grassmanian) coordinate, μ = 0, 1, 2 is a
Lorentz index, α = 1, 2 is a spinor index, a = 1, 2, . . . ,N
is the R-symmetry index and i = 1, 2, 3 will label a particu-
lar superspace point.1 We will work with Majorana spinors,
the R-symmetry group being SO(2) for the N = 2 case we
will be focus on. Since δab is the only invariant tensor for
SO(2), all R-symmetry singlets will be built by contracting
R-symmetry charged objects with δab’s.

Following [6] we will use spinor notation to write an
SO(2, 1) vector as a bi-spinor – X β

α = xμ(γμ)
β

α , where
γμ are the 3d ‘Pauli’ matrices. Their form along with various
other conventions used in the paper are given in Appendix
A.

The action of (super)inversion on the superspace coordi-
nates is given by

I (xμ) = xμ

x2 + (θaθa)2

16

, (1)

and

I (θaα ) = (X−1+ θa)α,

I (θaβ) = −(θa X−1− )β,
(2)

where we have defined

X± = X ± i

4
(θaθa)1, (3)

1 Throughout the paper, repeated spinor and R-symmetry indices (α, a)
will be summed over whereas repeated superspace point indices i, j etc.
will never be summed unless explicitly mentioned.
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which transforms under super-inversion as

I (X±) = X−1± .

Now the following two structures, constructed out of 2
superspace points, are annihilated by the supersymmetry gen-
erators:

x̃μ
12 = xμ

12 + i

2
θaα

1 (γ μ) β
α θa2β, (4)

(X̃12)
β

α = (X12)
β
α + iθa1αθ

aβ
2 + i

2
(θa1 θa2 )δ β

α . (5)

Super-Poincare invariant structure can thus be easily con-
structed out of these. However, as may easily be checked,
they do not transform covariantly under superconformal
transformations generated by Saα . The alternative definition
Saα = I Qa

α I will be useful for us.
In [9], the following structures were defined and deter-

mined to transform homogeneously under super-inversion

(Xi j+) β
α = (Xi+) β

α − (X j−) β
α + iθaiαθ

βa
j , (6)

(Xi j−) β
α = (Xi−) β

α − (X j+) β
α − iθajαθ

βa
i , (7)

with the transformation

I
(
Xi j−

) β

α
= −(X−1

j+) γ
α (Xi j−) δ

γ (X−1
i− )

β
δ , (8)

I
(
Xi j−

) β

α
= −(X−1

i+ ) γ
α (Xi j+) δ

γ (X−1
j−)

β
δ . (9)

These can be written in the alternative form

Xi j± = X̃i j ± i

4
θ2
i j1, (10)

which makes it clear that a particular combination of the
above two objects annihilated by the supersymmetry gener-
ators has good super-inversion properties.

We also have the relations

Xi+Xi− = x̄2
i 1, (11)

Xi j+Xi j− = x̄2
i j1, (12)

where we have defined

x̄2
i = x2

i + 1

16
(θai θai )2, x̄2

i j = x̃2
i j + 1

16
(θai jθ

a
i j )

2, (13)

which will be used repeatedly below. We have the following
homogeneous transformation law under super-inversion:

x̄2
i j

is−→ x̄2
i j

x̄2
i x̄

2
j

(14)

With three superspace points, one can also construct

X1+ = X−1
12−X23+X−1

31−, (15)

with again a homogeneous transformation under super-
inversion,

X1+ = X−1
12−X23+X−1

31−
is−→ −X1−X1+X1+, (16)

and similarly for X2+,X3+.
Superspace also admits purely fermionic 3-point super-

conformal covariant structures [9] defined as

�a
1α =

(
(X−1

21+θa21)α − (X−1
31+θa31)α

)
, (17)

and transforming under super-inversion as

�a
iα

is−→ −(Xi−) β
α �b

iβV
a

ib �aα
i

is−→ V Ta
i b �

β b
i (Xi+) α

β ,

(18)

with �2, �3 defined similarly. Here Vj , j = 1, 2, 3 is a
matrix acting on the R-symmetry indices and has the form
[9]

V a
jb ≡ δab + iθ jb X

−1
j+θaj . (19)

It satisfies V T
j Vj = I . As we will see in the next section,

the existence of V makes it non-trivial to construct super-
inversion invariants which are also R-symmetry singlets.2

Xi j±,�a
iα are the primary building blocks, together with

the polarisation spinors that we discuss next, out of which 3-
point invariants for spinning correlators will be constructed.

2.1 Polarisation spinors

We will adopt the formalism of [6] to encode the tensor struc-
ture of the correlators and use polarisation spinors (λα) as
trackers of the spin of the operators. Our λ’s are 2-component,
real, bosonic objects that transform in the spinor representa-
tion of the 3d Lorentz group. We define

Oα1α2...α2s ≡(γ μ1)α1α2(γ
μ2)α3α4 . . . (γ μs )α2s−1α2s Oμ1μ2...μs ,

(20)

and

Os ≡ Oα1α2...α2sλ
α1λα2 . . . λα2s , (21)

as a scalar object (with the spin encoded in the λ’s) repre-
senting a spin s symmetric superconformal primary operator.
We will be interested in 3-point functions of the form

〈Os1(x1, θ1, λ1)Os2(x2, θ2, λ2)Os3(x3, θ3, λ3)〉 (22)

2 Note that V is trivial for N = 1 as there is no R-symmetry in this
case.
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with a homogeneity in λ of λ
2s1
1 λ

2s2
2 λ

2s3
3 . This correlator will

thus be a function of (xi , θi , λi ), (i = 1, 2, 3), which are
co-ordinates in (extended) superspace.3

Their transformation under super-inversions is the same
as that of θ ’s :

λα → (X−1+ λ)α, λβ → −(λX−1− )β . (23)

In higher dimensions, where we have mixed symmetry
tensor operators, one has to include fermionic polarisation
spinors as well.

2.2 Supercovariant derivative and chiral co-ordinates

In studying conservation constraints in Sect. 6 we will make
much use of the supercovariant derivative Da

α which as a
differential operator in superspace is defined as

Da
α ≡ ∂

∂θaα
+ i

2
θaβ∂βα, (24)

where ∂βα = (γ μ)βα∂μ.
As is well-known, the operator Da

α anti-commutes with
all the supersymmetry generators

{Da
α, Qb

β} = 0. (25)

Also,

{Da
α, Db

β} = −Pαβδab. (26)

where Pαβ = Pμ(γμ)αβ .

Chiral basis for N = 2

The R-symmetry group for N = 2 is SO(2), which is iso-
morphic to U (1). Thus, instead of working with real coor-
dinates θaα = (θ1α, θ2α), one can introduce the following
chiral basis,

θα ≡ 1√
2
(θ1α + iθ2α) , θ̄α ≡ 1√

2
(θ1α − iθ2α). (27)

The corresponding supercovariant derivatives can then be
written as

Dα = 1√
2
(D1

α − i D2
α) , D̄α = − 1√

2
(D1

α + i D2
α).

(28)

3 Note that Os(x, θ) represents a local operator superfield, i.e. it is an
operator super-multiplet with both bosonic and fermionic operators as
components.

Expanding, one gets

Dα = ∂

∂θα
+ i

2
θ̄ β∂βα , D̄α = ∂

∂θ̄α
+ i

2
θβ∂βα. (29)

Also, the (anti-)chiral supercovariant derivatives satisfy
the algebra

{Dα, D̄β} = −Pαβ, {Dα, Dβ} = {D̄α, D̄β} = 0. (30)

3 The parity-even invariants and relations

We will now determine 3-point invariant structures which
will be used for writing down expressions for spinning cor-
relators inN = 2 3d SCFTs. We will find new invariant struc-
tures, both parity-even and parity-odd. These new fermionic
structures do not, of course, exist in the non-supersymmetric
case [6], but they are also different from the N = 1 case
considered in [10], as we will discover4.

In this section, we will construct all the parity even 3-point
superconformal invariants using the covariant structures of
the previous section, and also the polarisation spinors encod-
ing spin information. The bosonic5 invariants are direct gen-
eralisations of the non-supersymmetric (N = 0) ones in [6]

P1 ≡ λ2X
−1
23−λ3, P2 ≡ λ3X

−1
31−λ1, P3 ≡ λ1X

−1
12−λ2(31)

Q1 ≡ λ1X1+λ1, Q2 ≡ λ2X2+λ2 Q3 ≡ λ3X3+λ3. (32)

whereXi+ is defined in Eq. (15). Using the transformations of
the covariant structures under superinversion listed in Sect. 2,
it is straightforward to check that these are parity-even super-
conformal invariants.

4 One may wonder how there are additional invariants for 3-point func-
tion structures given that N = 2 susy is more constraining than N = 1.
Firstly, with more grassmanian variables there can be a higher non-
vanishing degree of � in an invariant. Specifically, for N = 1, two
factors of � is the highest possible in a non-vanishing term, while for
N = 2, invariants with O(�4) (like R′ defined below, which do not
have a counterpart in N = 1) are also possible. Also, note that since
the size of the supermultiplet increases with N , the superspace 3-point
function will, with increasing N , contain more and more ‘elementary’
3-point functions in its component expansion. Since more elementary
correlators are contained within a single superspace correlator for larger
N , it is expected that a larger number of invariants is required to encap-
sulate the structure.
5 By bosonic we mean those invariants which are non-vanishing when
all the grassmanian coordinates are put to zero. Likewise, fermionic
invariants are defined as those that vanish identically when the grass-
manian coordinates are set to zero, and thus exist only in supersymmet-
ric theories. Note that one could have called “fermionic” the invariants
which are used to build up the 3-point function structures of free/critical
fermion CFTs (for example) with no susy – however this is not our usage.
For us, fermionic invariants exist only in superspace and vanish in ordi-
nary (non-supersymmetric) CFTs. We thank the referee for a comment
regarding this matter.
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The fermionic parity-even invariants in the N = 1 case
(with no R-symmetry) are [10] Ri = λi�i , i = 1, 2, 3.
For the N = 2 case these objects will be charged under R-
symmetry: Ra

i = λi�
a
i . However, in this case R-symmetry

singlets like R2
i are vanishing, whereas those like R1 · R2 =

δabRa
1 R

b
2 are not super-inversion invariant because of the

non-trivial V factors in the transformation of �’s. Thus we
can not straightforwardly build on the N = 1 fermionic
invariants to get the N = 2 ones and must undertake an
ab-initio construction.

3.1 Fermionic counterparts of the P, Q, S invariants

As a first step towards constructing the fermionic invariants,
we will first define a number of covariant fermionic coun-
terparts to the P, Q, S invariants above by replacing one or
more λ’s by �. The requisite definitions, together with the
transformation under super-inversion (is), are

πa
i j = λi Xi j+�a

j
is−→ − 1

x̄2
i

πb
i j (Vj )

a
b , (33)

�ab
i j = �a

i Xi j+�b
j

is−→ (V T
i )ac�

cd
i j (Vj )

b
d , (34)

ωa
i = λiXi+�a

i
is−→ −x̄2

i ω
b
i (Vi )

a
b , (35)

ab
i = �a

i Xi+�b
i

is−→ x̄4
i (V

T
i )ac

cd
i (Vi )

b
d , (36)

σ a
13 = λ1X12+X23+�a

3√
x̄2

12 x̄
2
23 x̄

2
31

is−→ x̄2
3σ b

13(V3)
a
b , (37)

�ab
13 = �a

1X12+X23+�b
3√

x̄2
12 x̄

2
23 x̄

2
31

is−→ −x̄2
1 x̄

2
3 (V T

1 )ac�
cd
13 (V3)

b
d .

(38)

These objects are charged under R-symmetry and are super-
conformal covariant – they transform homogeneously under
super-inversion.6

We can now build the required invariants by suitable con-
traction of the various covariant fermionic structures con-
structed above. However, not all R-symmetry singlets con-
structed out of the above covariant structures will be invariant
under super-inversion. This subtlety is due to the existence of
theV matrix in R-symmetry space. Let us take a simple exam-
ple to explain this feature. A natural choice for a fermionic
parity-even invariant7 would be R1 · R2 ≡ Ra

1 R
b
2δab. How-

ever, under superinversion we get the V matrix at points 1 and
2 and thus superconformal invariance is not maintained. On
the other hand, consider the R-symmetry singlet 1

x̄2
12

πa
13π

a
23

6 Cyclic permutations of the last two structures above can be written
down straightforwardly.
7 Note that for N = 1, both R1, R2 are separately invariant and thus
so is R1 · R2.

which, like R1 · R2, is also of homogeneity λ1λ2. In this case,
one can check that super-inversion invariance is maintained.

We thus have the following set of parity-even fermionic
invariants

R̄1 ≡ 1

x̄2
23

πa
21π

a
31, R̄2 ≡ 1

x̄2
31

πa
32π

a
12, R̄3 ≡ 1

x̄2
12

πa
13π

a
23.

(39)

We also have a fermionic parity-even invariant without
any λ’s (such an object does not exist in the N = 1 case)

R′ ≡ �ab
i j �ab

i j (40)

Here we have a sum over a, b but no sum over i, j . It is
clearly neutral under R-symmetry and it can be checked that
it is super-inversion invariant as well.8 The choice of R̄i and
R′ may seem arbitrary. For example, we can also build the
following object by contracting the above covariant struc-

tures:
x̄2

23 x̄
2
31

x̄2
12

σ a
13σ

a
23 . This R-symmetry neutral object (or its

cyclic permutations) can be checked to be parity-even and
super-inversion invariant, and one may wonder if it defines
a new parity-even fermionic invariant. Likewise, one could
ask the same question for the parity-even, R-symmetry sin-

glet, superconformally invariant structure
x̄2

12 x̄
2
31

x̄2
23

aa
1 . How-

ever, one can show that

x̄2
12 x̄

2
31

x̄2
23

aa
1 = i

2
R′,

x̄2
23 x̄

2
31

x̄2
12

σ a
13σ

a
23 = R̄3 − i

2
R′P3, (41)

so that both these cases can be expressed in terms of the
existing set of parity-even invariants. There are many more
examples like these. A systematic analysis (see Appendix B)
shows that we can work with the set of invariants Pi , Qi , R̄i

and R′, and all the parity-even structures that are constructed
from the above covariant building blocks can be expressed
in terms of these.

3.2 Relations for even invariants

To summarise, the parity-even invariants are Pi , Qi , R̄i and
R′. With the action on three superspace points of the N = 2
superconformal group in 3d, with 19 generators (11 bosonic
and 8 fermionic), we expect to be able to construct 9 × 3 −
19 = 8 such independent invariants. Thus there should be
two relations between the 10 constructed invariants. Indeed

8 Note that i 	= j . It turns out that the three different pairs of (i, j) are
all equivalent and thus there is only one R′ invariant which needs to be
defined here.
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we find,9

3∑

i=1

P2
i Qi − 2P1P2P3 − Q1Q2Q3 + i

2

3∑

i=1

R̄i Pi Qi

+ 1

4
R′P1P2P3 = 0, (42)

at O(λ2
1λ

2
2λ

2
3), and the (cyclically related) triplet of relations

at O(λ2
i λ jλk):

P1 R̄2 + P2 R̄1 + Q3 R̄3 − i

2
R′P1P2 = 0,

P2 R̄3 + P3 R̄2 + Q1 R̄1 − i

2
R′P2P3 = 0,

P3 R̄1 + P1 R̄3 + Q2 R̄2 − i

2
R′P3P1 = 0 (43)

Together, these make the number of independent parity-even
invariants to be eight, as required.

Other relations between the parity-even invariants, which
are higher order in the λ’s, can be generated from the above
relations. Some of these are listed at the end of Appendix B.

4 The parity-odd invariants and relations

In this section we turn to the construction of 3-point function
invariants which are odd under parity. These pick up a minus
sign under a super-inversion transformation. As previously,
there are some of these which are direct extensions of the
N = 0 case [6] :

S1 = λ3X31+X12+λ2√
x̄2

12 x̄
2
23 x̄

2
31

, S2 = λ1X12+X23+λ3√
x̄2

12 x̄
2
23 x̄

2
31

,

S3 = λ2X23+X31+λ1√
x̄2

12 x̄
2
23 x̄

2
31

. (44)

Given the transformation laws of the building blocks in
Sect. 2, it is easy to check that these transform as Si → −Si
under super-inversion and hence are parity-odd.

Also, there now exists a unique parity-odd fermionic
invariant:

T ′ =
√
x̄2

12 x̄
2
31

x̄2
23

�a
1α�aα

1 (45)

Under super-inversion: T ′ → −T ′.10

9 These extend the corresponding relations in [6,10].
10 It can be checked that cyclic permutations of 1, 2, 3 give the same
invariant.

Like in the parity-even case, there are other parity-odd
invariant structures that can be built from the covariant build-
ing blocks of Sect. 2 but they can all be expressed in terms
of Si and T ′ (see Appendix B).

4.1 Relations for odd invariants

Since the product of two odd invariants is an even one, we
must be able to express it in terms of the minimal set of even
invariants. For example, we have

T ′Si = −2R̄i . (46)

We further have relations containing products of Si ’s
which is expected to be an even invariant. Indeed, we find

S2
1 = P2

1 − Q2Q3 + i R̄1P1, S1S2 = −P1P2 + P3Q3,

(47)

and cyclic permutations.
Similarly for T ′, we get

T ′2 = 2R′. (48)

We also have various linear relations between products of
even and odd invariants.

• O(λ1λ2):

R̄i T
′ = −Si R

′ (49)

• O(λ2
1λ

2
2):

P2
3 T

′ − Q1Q2T
′ + 2S3 R̄3 − i P3S3R

′ = 0, (50)

and cyclic permutations.
• O(λ2

1λ2λ3):

Q1S1 + P2S3 + P3S2 + i

2
T ′P2P3 = 0, (51)

S2 R̄3 − S3 R̄2 = 0, (52)

S2 R̄3 + S3 R̄2 + T ′(P1Q1 − P2P3) = 0, (53)

and cyclic permutations.
• O(λ2

1λ
2
2λ

2
3):

P1Q1S1 + P2Q2S2 − P3Q3S3 + 2P1P2S3

+ i

2
T ′P1P2P3 = 0, (54)

R̄1

(
S2P3 + 1

2
Q1S1

)
+ R̄2

(
S3P1 + 1

2
Q2S2

)

+ R̄3

(
S1P2 + 1

2
Q3S3

)
+ i

4
R′S1S2S3 = 0, (55)
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and cyclic permutations.
• O(λ3

1λ
3
2λ

2
3):

(P2
1 Q1 − P2

2 Q2)P3S3 + (P2
3 − Q1Q2

+ i P3 R̄3)(P1Q1S1 − P2Q2S2) = 0, (56)

and cyclic permutations.

Like in the parity-even case, these relations between the vari-
ous parity-odd structures have to be taken into account when
enumerating all the independent structures for the 3-point
correlators in terms of our minimal set of invariants.

5 Three-point function examples

The purpose of constructing the parity even and odd invari-
ants is to make simpler the enumeration of tensor structures
for particular 3-point correlators, a task we turn to in this sec-
tion. Before turning to specific examples of 3-point functions
of spinning operators, let us make some general observations.

The general 3-point function of spinning operators has the
following form in terms of the invariants constructed in the
previous sections:

〈Os1(x1, θ1, λ1)Os2(x2, θ2, λ2)Os3(x3, θ3, λ3)〉
= 1

x̄m123
12 x̄m231

23 x̄m312
31

∑

n

Gn(Pi , Qi , R̄i , R
′, Si , T ′), (57)

with mi jk ≡ (�i − si ) + (� j − s j ) − (�k − sk),11 the sum
being over all the linearly independent invariant structures
Gn , each with homogeneity λ

2s1
1 λ

2s2
2 λ

2s3
3 . Now the 3-point

function has to be linear in the parity-odd invariants and in
R′ or R̄i ’s. We thus have the following general structure for
Gn :

Gn = G(0)
n (Pi , Qi ) + a(1)

n G(0)
n (Pi , Qi )R

′

+ a(2)
n G(1)

n (Pi , Qi )R̄ j + b(1)
n G(0)

n (Pi , Qi )T
′

+ b(2)
n G(1)

n (Pi , Qi )Sk + b(3)
n G(1)

n (Pi , Qi )R
′Sk

+ b(4)
n G(2)

n (Pi , Qi )R̄ j Sk,

where G(a)
n (Pi , Qi ) is a monomial in P’s and Q’s with every

term in the r.h.s above having homogeneity λ
2s1
1 λ

2s2
2 λ

2s3
3 .

The coefficients of the monomials can be further con-
strained when one or more operators are conserved currents,
as we will see in a later section. Besides this, constraints also
arise when two or more operators are identical, giving rise
to permutation invariance in the correlator. Our invariants

11 �i and si denote, respectively, the scaling dimension and spin of the
operator Os

have the following transformation under a swap of super-
space points 2 and 3:

A1 → −A1 A2 → −A3, A3 → −A2,

R′ → R′, T ′ → T ′,

where Ai stands for any of Pi , Qi , R̄i , Si . This will be useful
when enumerating correlator structures below.

5.1 Examples

〈OsO0O0〉

This correlator of one spin-s and two scalar operators has
homogeneity λ2s

1 and thus the possible structures are

Qs
1, Qs

1R
′, Qs

1T
′. (58)

In this case all the 3 structures are independent, so the general
form of this correlator is

〈OsO0O0〉 = 1

x̄m123
12 x̄m231

23 x̄m312
31(

a1Q
s
1 + a2Q

s
1R

′ + b1Q
s
1T

′),

s = 0, 2, 4, . . . . (59)

Further we note that when s is an odd integer, each of the 3
structures above pick up a minus sign under 2 ↔ 3 whereas
the correlator is symmetric under this swap. Thus, we can
conclude that 〈OsO0O0〉 vanishes for s odd.

〈O1O1O0〉

The possible structures for the correlator of two identical spin
one operators and one scalar operator (homogeneity λ2

1λ
2
2)

are:

P2
3 , Q1Q2, P2

3 R
′, Q1Q2R

′, P3 R̄3 (parity even)

Q1Q2T
′, P3S3, P3S3R

′, R̄3S3 (parity odd)
(60)

The structure P2
3 T

′ is also possible but can be eliminated
using Eq. (50).

〈OsO1O0〉

The possible structures for this correlator are:

Qs
1Q2, Qs

1Q2R
′, Qs−1

1 P2
3 , Qs−1

1 P2
3 R

′, Qs−1
1 P3 R̄3

(parity even)

Qs
1Q2T

′, Qs−1
1 P3S3, Qs−1

1 P3S3R
′, Qs−1

1 R̄3S3

(parity odd)

(61)
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We thus note that the possible structures for 〈OsO1O0〉 are
just Qs−1

1 times the possible structures for 〈O1O1O0〉.

〈OsO 1
2
O0〉

Only half-integral values of s are allowed, since there is no
invariant in the N = 2 theory with homogeneity O(λ).The
allowed structures are:

Q
s− 1

2
1 P3, Q

s− 1
2

1 P3R
′, Q

s− 1
2

1 R̄3 (parity even)

Q
s− 1

2
1 P3T

′, Qs− 1
2

1 S3, Q
s− 1

2
1 S3R

′, (parity odd)
(62)

〈O2O2O0〉

The possible independent structures for this correlator are:

Q2
1Q

2
2, Q2

1Q
2
2R

′, Q1Q2P
2
3 , Q1Q2P

2
3 R

′, Q1Q2P3 R̄3,

P4
3 , P4

3 R
′, P3

3 R̄3 (parity even)

Q2
1Q

2
2T

′, Q1Q2P
2
3 T

′, Q1Q2S3P3,

Q1Q2S3P3R
′, Q1Q2S3 R̄3

P3
3 S3, P3

3 S3R
′, P2

3 S3 R̄3 (parity odd) (63)

Again, some possible structures have been eliminated using
the relations.

〈OsO2O0〉

Once again, the possible structures for 〈OsO2O0〉 are just
Qs−2

1 times the above possible structures for 〈O2O2O0〉.

〈O1O1/2O1/2〉

The only possible structures with the required symmetry
under 2 ↔ 3 are parity odd

P2S3 − P3S2 (64)

The structure R̄2S3 − R̄3S2 is also possible but vanishes by
Eq. (52).

〈O2O1/2O1/2〉

The independent structures are

Q1P2P3, Q1P2P3R
′, Q2

1P1, Q1P
2
1 R

′, Q2
1 R̄1

(parity even)

Q1P2P3T
′, Q2

1P1T
′, Q2

1S1, Q2
1S1R

′ (parity odd)
(65)

Under 2 ↔ 3 this correlator picks up a minus sign
because of the anti-commuting fermionic operators. Other

possible structures include Q1(P2 R̄3 + P3 R̄2), Q1(P2S3 +
P3S2), Q1(P2S3 + P3S2)R′ but can be expressed in terms
of the above structures by using the relations in Sects. 3 and
4.

〈OsO1/2O1/2〉

The possible structures for this correlator, for s even, are
Qs−2

1 times the allowed structures for 〈O2O1/2O1/2〉. For s
odd, they are Qs−1

1 (P2S3 − P3S2).

〈O2O1O1〉

The independent structures are

Q2
1Q2Q3, Q2

1Q2Q3R
′, Q2

1P
2
1 , Q2

1P
2
1 R

′, Q1P1P2P3,

Q1P1P2P3R
′, P2

2 P
2
3 , P2

2 P2
3 R

′,
Q2

1P1 R̄1, Q1P2P3 R̄1 (parity even)

Q2
1Q2Q3T

′, Q1P1P2P3T
′, Q2

1P1S1, Q2
1P1S1R

′,
Q1P2P3S1, Q1P2P3S1R

′, Q2
1S1 R̄1,

P2
2 S3 R̄3 + P2

3 S2 R̄2 (parity odd)
(66)

These have the requisite symmetry under a 2 ↔ 3 swap.
Other structures, which are possible on grounds of homo-
geneity and symmetry can be expressed in terms of the above
list by using the relations in Sects. 3 and 4 .

〈OsO1O1〉

The possible independent structures for this correlator are
simply Qs−2

1 times the structures for 〈O2O1O1〉 above, for
s = 2, 3, . . ..

〈O2O2O2〉

This correlator is fully symmetric under 1 ↔ 2 ↔ 3, and
the independent structures are

Q2
1Q

2
2Q

2
3, Q2

1Q
2
2Q

2
3R

′, P2
1 P

2
2 P

2
3 , P2

1 P
2
2 P

2
3 R

′,
Q1Q2Q3P1P2P3, Q1Q2Q3P1P2P3R

′
∑

i

P4
i Q

2
i , R′ ∑

i

P4
i Q

2
i , P1P2P3

∑

cyc

P1P2 R̄3, Q1Q2Q3

∑

cyc

P1P2 R̄3 (parity even)

Q2
1Q

2
2Q

2
3T

′, P2
1 P

2
2 P

2
3 T

′, Q1Q2Q3P1P2P3T
′,

T ′ ∑

i

P4
i Q

2
i ,

∑

i

P3
i Q

2
i Si ,
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R′ ∑

i

P3
i Q

2
i Si , P1P2P3

∑

cyc

P1P2S3,

R′P1P2P3

∑

cyc

P1P2S3 (parity odd) (67)

Several other linearly dependent structures that are possi-
ble have been removed using various relations between the
invariants.

6 Correlators of conserved currents

Our analysis so far has been general and the only constraint
on the operators/correlators has beenN = 2 superconformal
symmetry. In this section we specialise to the case when one
or more operators Os in the 3-point function is a conserved
current. We will denote a conserved current by Js which
will obey the shortening condition Da

α1
Jα1α2...α2s = 0 or

equivalently,

Daα ∂

∂λα
Js = 0 (68)

This is of interest because the stress-energy tensor is always
an exactly conserved current in any SCFT, one can have
(one or more) conserved spin one currents in the presence of
global symmetries, and furthermore Chern–Simons-Matter
theories have higher-spin currents for weakly broken higher-
spin symmetries (when these symmetries are exact, the CFT
is free [19]).The presence of conserved currents imposes fur-
ther constraints on the structure correlators when the above
conservation/shortening condition is imposed – some of the
coefficients in the 3-point function are determined in terms of
others as we will see below. For non-supersymmetric CFTs
in various dimensions, [5] had shown the existence of a fixed
number (two in 3 dimensions) of (parity-even) tensor struc-
tures for the 3-point correlator of conserved currents. In [6]
it was shown that for 3d CFTs, conserved current correlators
also admit a third structure which is parity-odd. For N = 1
SCFTs, evidence was provided in [10] (see also [11,15,16])
that 3-point conserved current correlators have one parity-
even and one parity-odd structure.

6.1 Free field computation of conserved current correlators

We will first focus on the special case of 3-point correlators
in a free field N = 2 SCFT. Such a theory possesses an
infinite number of exactly conserved higher spin currents.
The form of the currents in terms of the elementary (anti-)
chiral superfield is [10]

Js =
s∑

r=0

{
(−1)r(2r+1)

(
2s
2r

)
∂r �̄ ∂s−r� + (−1)(r+1)(2r+1)

×
(

2s
2r + 1

)
∂r D̄�̄ ∂s−r−1D�

}
(69)

where ∂ = iλα(γ μ)αβλβ∂μ, D = λαDα , and s =
0, 1, 2 . . ..

It is straightforward to directly compute 3-point correla-
tors of such conserved currents by using Wick’s theorem.
The basic non-zero Wick contractions are between the chiral
superfield and its conjugate, and given by

〈�̄1�2〉 = 1

y12
(70)

where �i denotes the superfield at superspace point xi and
y12 is defined [9,11] as

y2
12 = x̄2

12v12, v12 = 1

2

(
(V12)

aa + iεab(V12)
ab

)
(71)

where V ab
12 = δab + iθaα

12 (X−1
12+)

β
α θb12β .

The computational procedure is explained in more detail
through examples in Appendix C. Below we simply quote
the final results.12 As expected, we find that the result of the
calculation can be expressed in terms of only the parity-even
invariants,

〈J0 J0 J0〉 f = 1

x̄12 x̄23 x̄31

(
1 + 1

16
R′

)
(72)

〈J2 J0 J0〉 f = Q2
1

x̄12 x̄23 x̄31

(
1 + 5

16
R′

)
(73)

〈J4 J0 J0〉 f = Q4
1

x̄12 x̄23 x̄31

(
1 + 9

16
R′

)
(74)

〈J1 J1 J0〉 f = 1

x̄12 x̄23 x̄31

[
Q1Q2

(
1 + 9

16
R′

)

+P2
3

(
2 + 3

8
R′

)
+ 2i P3 R̄3

]
(75)

6.2 General constraints of conservation for 3-point
correlators

We will now directly use the results of Sect. 5 and impose
conservation (Eq. (68)) on the correlator to obtain additional
constraints. The general procedure is as follows. Since the
3-point correlator is a multinomial in the invariants,13

〈Js1 Js2 Js3〉 = 1

x̄12 x̄23 x̄31

∑

n

anGn, (76)

12 The f subscript denotes a free theory correlator. We have removed
constant multiplicative overall factors.
13 Note that the exponents mi jk here are all unity for the case of con-
served currents because the unitarity bound is saturated in this case.
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the imposition of the conservation constraints

Daα
i

∂

∂λα
i
〈Js1 Js2 Js3〉 = 0, i = 1, 2, 3 (77)

(no sum over i) will lead to linear relations between various
coefficients of the multinomial. The computation gets rather
messy. We set some superspace coordinates to special values,
and worked through a number of examples on Mathematica.
The results are tabulated in Table 1. Overall x̄i j factors (see
Eq. (76)) are suppressed. On setting all fermions to zero, our
results match with the non-supersymmetric case of [6].

This analysis is independent of the free theory computa-
tion in the previous subsection but corroborates the parity-
even results obtained there, since the parity-even part of the
various correlators obtained by applying the conservation
constraint is the same as the result of the free theory compu-
tation.

The table of results shows clearly that for N = 2 3d
SCFTs the 3-point correlator of conserved currents of various
spins always has only two undetermined constant coefficients
that come with the two parts – a parity-even part arising
from the free theory, and a parity-odd part which comes from
interactions:

〈Js1 Js2 Js3〉 = 1

x̄12 x̄23 x̄31(
a〈Js1 Js2 Js3〉even + b〈Js1 Js2 Js3〉odd

)
. (78)

Furthermore, we also note from the examples, that the
coefficient of the parity-odd structure vanishes when the 3-
point correlator is ‘outside the triangle’.14

7 Discussion

In this paper we studied 3-point correlators of spinning oper-
ators in N = 2 3d SCFTs in terms of superconformal invari-
ants. Our main results include:

• Construction of the parity-even invariants and determi-
nation of relations between them.

• Construction of the parity-odd invariants and determina-
tion of relations between them.

• Expressions for several 3-point functions of spinning
operators in terms of a linearly independent basis made
up of the minimal set of invariants.

14 This means that the inequality between the spins si + s j ≥ sk is
violated for some spins, see [6,19]. Inside the triangle, conservation
constraints allow a parity-odd structure, as our table shows. However,
for a correlator involving an exactly conserved higher spin (s > 2)
current, we would expect the theory to be free along the lines of [19]
and hence the parity-odd structure would not arise, although this can’t
be inferred from conservation constraints alone. We would like thank
Sachin Jain for discussions regarding this point.

• Computing the 3-point conserved current correlators in
the free field case and expressing them in terms of the
invariants.

• Studying the constraints of conservation – and verifying
through several examples that conserved current 3-point
correlators contain 2 OPE coefficients comprising of the
parity-even and odd parts of the correlator.

We would like to emphasise again that the construction
of the invariants in the N = 2 case is more involved and
subtle compared to the N = 1, 0 cases due to the presence
of R-symmetry. Although the P, Q, S invariants for N =
0 have a relatively straightforward extension in superspace,
the fermionic invariants for N = 2 are completely different
from the N = 1 case, although built out of similar building
blocks which are now charged under R-symmetry. To build
our minimal set ofN = 2 invariants, we had to deal with two
layers of complexity. Firstly, as discussed in Sect. 3, not all R-
symmetry singlets built by suitably contracting the covariant
building blocks will be super-inversion invariant. Secondly,
even when they are, they will not be independent and we
found (in Sects. 3, 4 and Appendix B) relations which give
our final minimal set of invariants: Pi , Qi , R̄i , R′, Si , T ′.

It would be interesting to take forward this work in various
directions:

• Higher dimensions – The same methods should work
for correlators in SCFTs in higher than 3 dimensions.
The supercovariant structures in this case are known from
the work of Park and Osborn [20–23]. One new feature
would be the existence of mixed symmetry tensors not
present in the 3d case, which would engender the use of
grassmanian polarisation spinors.

• More supersymmetry – It should be straightforward,
though cumbersome, to extend this analysis to higher
supersymmetry. Off-shell superspace formulations for
SCFTs in three dimensions exist for N = 1, 2, 3, 4
[24]. For N > 2, there will be other invariant tensors
of SO(N ) which may also be used to build R-symmetry
singlets. For example, for N = 3 we can have δab as well
as the anti-symmetric εabc.

• Generating functions –Building on the various examples,
it would be interesting to work out the form of the gener-
ating function for 3-point correlators in theN = 1, 2 free
theory. The form of this generating function is known for
the non-supersymmetric case [6] in terms of the parity-
even invariants P and Q, but not known for the SCFT
case.

• Bootstrap – Since 4-point superconformal blocks can be
built from the product of 3-point functions of spinning
operators, our analysis should aid in implementations of
the superconformal bootstrap for 4-point functions in 3d
N = 2 SCFTs. Bootstrap studies of 3d SCFTs include
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〈J 0
J 0
J 0

〉
1

+
1 16
R

′
T

′

〈J s
J 0
J 0

〉(
s

≥
2)

Q
s 1

( 1
+

2s
+1 16

R
′)

0

〈J 1
J 1
J 0

〉
Q

1
Q

2
( 1

+
9 16
R

′)
+

P
2 3

( 2
+

3 8
R

′)
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iP
3
R̄

3
Q

1
Q

2
T

′ −
S 3

R̄
3
−
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S 3
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J 0
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s

≥
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Q
s 1
Q
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+
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)

16
R
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s−
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1
P

2 3
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+

s(
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+1
)

8
R
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+2

is
Q

s−
1

1
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J 0

〉
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2 1
Q
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+

25 16
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+
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1
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iQ

1
Q

2
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3
+

P
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−

1 2
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′)
+16

i
3
P

3 3
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3

Q
2 1
Q

2 2
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Q

1
Q

2
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S 3
( −2i 3

+
i 6
R

′)

−5 3
Q

1
Q

2
S 3

R̄
3
+

P
3 3
S 3

( −4i 3
−

i 6
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′)
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J 0
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>
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s 1
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2 2
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+
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)
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+

s(
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)

4
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1
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12
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+
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〉
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+
21 16
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+
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−

3 8
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R̄
1
+

Q
1
P 1

P 2
P 3

( −8 5
−

3 2
R

′)

+P
2 2
P

2 3

( 8 5
+

1 2
R

′)
−

4i
Q

1
P 2

P 3
R̄

1

Q
2 1
Q

2
Q

3
T

′ −
Q

2 1
P 1

S 1
( 2i

+
2i
R

′)

−Q
1
P 1

P 2
P 3

T
′ +

Q
1
P 2

P 3
S 1

( 4i
+

2i
R

′)

+2
Q

2 1
S 1

R̄
1
−

(
P

2 2
S 3

R̄
3
+

P
2 3
S 2

R̄
2
)

〈J s
J 1
J 1

〉(
s

>
2)

Q
s 1
Q

2
Q

3

( 1
+

3(
2s

+3
)

16
R

′)
+Q

s 1
P

2 1

( −2(
s−

1)
2s

+1
−

3(
s−

1)
8

R
′)

+Q
s−

1
1

P 1
P 2

P 3
( −

4s
2s

+1
−

3s 4
R

′)

+Q
s−

2
1

P
2 2
P

2 3

(
4s

(s
−1

)
2s

+1
+

s(
s−

1)
4

R
′)

+2
iQ

s 2
P 1

R̄
1
−

2i
sQ

s−
1

1
P 2

P 3
R̄

1

0

〈J 2
J 2
J 2

〉
Q

2 1
Q

2 2
Q

2 3

( 3
+

10
3

16
R

′)
+P

2 1
P

2 2
P

2 3

( 12
8

25
+

72 5
R

′)

+P
1
P 2

P 3
Q

1
Q

2
Q

3
( −16 5

−
11

R
′)

+
∑

i
P

4 i
Q

2 i

( −8 5
−

5 2
R

′)

+
∑

cy
c
P 1

P 2
R̄

3
( 64

i
5
P 1

P 2
P 3

−
8i
Q

1
Q

2
Q

3
)

9
Q

2 1
Q

2 2
Q

2 3
T

′ +
38

P
2 1
P

2 2
P

2 3
T

′
−8

Q
1
Q

2
Q

3
P 1

P 2
P 3

T
′ −

5T
′∑

i
P

4 i
Q

2 i
+

∑
i
P

3 i
Q

2 i
S i

( −8
i
−

6i
R

′)

+P
1
P 2

P 3
∑

cy
c
P 1

P 2
S 3

( −4
0i

−
46
iR

′)
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[25,26] for N = 2 and [27–29] for N = 1 (see also
[30,31] for higher N ).

• Momentum space – It would be instructive to carry out
our general analysis in momentum space. Firstly, this is
useful because most perturbative computations of cor-
relators in specific theories are carried out directly in
momentum space. Secondly, the structure of momen-
tum space correlators in (non-supersymmetric) CFTs has
been actively investigated in the last decade, starting with
the works [32–34], with a number of interesting concep-
tual and technical results and it would be natural to study
this also for SCFTs. In particular, conserved current cor-
relators with spin have a simple form in momentum space
(and more so in terms of spinor-helicity variables) for 3d
CFTs [32,35–37] and it would be interesting to investi-
gate the same for SCFT correlators.

• N = 2 Chern–Simons-Matter theories – A prime exam-
ple of 3d Lagrangian CFTs are the Chern–Simons theo-
ries coupled to matter. Such theories are exactly confor-
mal and have a well-controlled weakly broken higher-
spin symmetry [38]. Our analysis should be of use in
computations of correlators inN = 2 3d Chern–Simons-
Matter theories [39].
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Appendices

A Conventions and useful relations

We use the mostly plus {−1, 1, 1} metric convention. Spinors
– which can be taken to be Majorana – transform under the

(double cover of the) 3d Lorentz group, which is SL(2, R).
We thus use the fundamental representation and impose the
Majorana condition on the 2-component spinors which is the
following reality condition ψα = ψ∗

α . In this representation,
superconformal theories with N extended supersymmetry
possess an SO(N ) R-symmetry group which is a subgroup
of the full superconformal group. For 3 dimensions, we can
make a choice of a real basis for the γ matrices

(γμ) β
α ≡ (iσ 2, σ 1, σ 3) =

((
0 1

−1 0

)
,

(
0 1
1 0

)
,

(
1 0
0 −1

))
(79)

These matrices when both indices are up (or down) are sym-
metric

(γμ)αβ ≡ (1, σ 3,−σ 1) (γμ)αβ ≡ (1,−σ 3, σ 1) (80)

The anti-symmetric ε symbol is defined as ε12 = −1 = ε21.

εγ με−1 = −(γ μ)T

ε�μνε−1 = −(�μν)T
(81)

with �μν = − i
4 [γ μ, γ ν] as the Lorentz group generators.

The γ matrices satisfy

(γμγν)
β
α = ημνδ

β
α + εμνρ(γ ρ) β

α (82)

with εμνρ as the Levi-Civita symbol, and we use ε012 = 1
(ε012 = −1).

The spinor Lorentz transformation is

ψ ′
α → −(�μν)

β
α ψβ.

The conventions for raising and lowering with ε are

ψβ = εβαψα

ψα = εαβψβ
(83)

and we denote ψχ ≡ ψαχα .

A.1 Superconformal generators and algebra

The generators of the 3d superconformal algebra in differen-
tial operator form are:

Pμ = −i∂μ,

Mμν = −i

(
xμ∂ν − xν∂μ − 1

2
εμνρ(γ ρ) β

α θaβ
∂

∂θaα

)
+ Mμν,

D = −i

(
xν∂ν + 1

2
θαa ∂

∂θα
a

)
+ �,

Kμ = −i

((
x2 + (θaθa)2

16

)
∂μ − 2xμ

(
x · ∂ + θαa ∂

∂θα
a

)

+(θa X+γμ)β
∂

∂θ
β
a

)
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= xνMνμ − xμD + i

2
(θaγμX)α

∂

∂θα
a

− i

16
(θaθa)2∂μ

+ (θaθa)

4
(θbγμ)α

∂

∂θα
b

,

I ab = −i

(
θa

∂

∂θb
− θb

∂

∂θa

)
+ Iab,

Qa
α = ∂

∂θα
a

− i

2
θβa(γ μ)βα∂μ,

Saα = −(X+) β
α Qa

β − iθaθb
∂

∂θα
b

− iθaαθbβ
∂

∂θ
β
b

+ i

2
(θbθb)

∂

∂θα
a

= −(X−) β
α

∂

∂θ
β
a

+ θaα

2
D + 1

4
εμνρ(γ ρθa)αM

μν

− (θbθb)

8
θaβ∂βα − 3i

4

(
θaαθ

∂

∂θ
+ θaθb

∂

∂θα
b

)
. (84)

where M, I arise due to the tensor structure of the operators
on which these generators act.

The superconformal algebra generated by these is:

[Mμν, Mρλ] = i
(
ημρMνλ − ηνρMμλ − ημλMνρ

+ηνλMμρ

)
,

[Mμν, Pλ] = i(ημλPν − ηνλPμ),

[Mμν, Kλ] = i(ημλKν − ηνλKμ),

[D, Pμ] = i Pμ , [D, Kμ] = −i Kμ,

[Pμ, Kν] = 2i(ημνD − Mμν),

[Iab, Icd ] = i (δac Ibd − δbc Iad − δad Ibc + δbd Iac) ,

{Qa
α, Qb

β} = (γ μ)αβ Pμδab,

[Iab, Qα
c ] = i(δacQ

α
b − δbcQ

α
a ),

{Saα, Sbβ} = (γ μ)αβKμδab,

[Iab, Sα
c ] = i(δacS

α
b − δbcS

α
a ),

[Kμ, Qa
α] = i(γμ) β

α Saβ,

[Pμ, Saα] = i(γμ) β
α Qa

β,

[D, Qa
α] = i

2
Qa

α , [D, Saα] = − i

2
Saα,

[Mμν, Q
a
α] = −(�μν)

β
α Qa

β,

[Mμν, S
a
α] = −(�μν)

β
α Saβ,

{Qa
α, Sbβ} =

(
εβαD − 1

2
εμνρ(γ ρ)αβM

μν

)
δab

+εβα I
ab. (85)

The rest of the (anti)-commutators are zero.

B More relations between invariants

We had the following set of superconformal invariants which
were used to construct various 3-point correlators:

parity even: Pi , Qi , R̄i , R′ (86)

parity odd: Si , T ′ (87)

We noted earlier that using the covariant structures we seem
to be able to build other invariants as well. However, all such
additional invariants can be expressed in terms of the above
minimal set of invariants. We show this explicitly below
by listing manifold relations where an invariant structure is
expressed in terms of our minimal set. We have classified the
relations according to the degree in λ and �, an O(λm�n)

relation will have terms, each of which has m λ’s and n �’s.

B.1 Parity even relations

In this subsection we enumerate parity-even invariant struc-
tures built from the covariant building blocks. These will all
be expressed in terms of our claimed minimal set of parity-
even invariants: Pi , Qi , R̄i , R′.

1. O(�2):

(a)
x̄2

12 x̄
2
31

x̄2
23

aa
1 = i

2
R′

2. O(�4):

(a) x̄4
12�

ab
12 �ab

12 = −R′, x̄4
12

ab
1 ab

2 = R′

3. O(λ2�2):

(a) Ra
1 R

a
1 = x̄2

23

x̄2
12 x̄

2
31

πa
12π

a
12 = x̄2

23 x̄
2
12

x̄2
31

σ a
12σ

a
12 =

x̄2
12 x̄

2
31

x̄2
23

ωa
1ωa

1 = 0

(b)

√
x̄2

12 x̄
2
31

x̄2
23

Ra
1σ a

21 = −R̄3,
x̄2

23 x̄
2
31

x̄2
12

σ a
13σ

a
23 = R̄3 −

i

2
R′P3,

x̄2
23

x̄2
13

πa
12ω

a
2 = R̄3

4. O(λ2�4):

(a) Ra
1�ab

23 R
b
2 = −1

2
R′P3,

x̄2
12 x̄

2
31

x̄2
23

Ra
1ab

1 Rb
1

= −1

2
R′Q1
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(b)
1

x̄2
12

πa
12�

ab
23πb

23 = 1

2
R′P3, x̄2

23σ
a
12�

ab
23σ b

23

= −1

2
R′P3, x̄2

12ω
a
1�ab

12ωb
2 = −1

2
R′P3, π

a
12�

ab
21ωb

1

= −1

2
R′Q1

(c) x̄2
12π

a
12�

ab
21 σ b

31

= −1

2
R′P2, x̄4

23σ
a
12�

ab
23 ωb

3

= 1

2
R′P2

(d)
x̄2

12 x̄
2
23

x̄4
13

πa
12

ab
2 πb

32

= −1

2
R′P2,

x̄4
23 x̄

2
12

x̄4
13

πa
12

ab
2 ωb

2

= 1

2
R′P3,

x̄4
12 x̄

4
31

x̄4
23

ωa
1ab

1 ωb
1 = 1

2
R′Q1,

x̄4
12 x̄

4
31

x̄4
23

σ a
21

ab
1 σ b

31 = −1

2
R′P1

5. O(λ4�4):

(a) (Ra
1 R

a
2 )2 = −1

2
R′(Q1Q2 − P2

3 )

(b)
1

x̄4
12

(πa
12π

a
23)

2 = −1

2
R′(Q1Q2 − P2

3 ),

1

x̄4
12

(πa
12π

a
21)

2 = −1

2
R′(Q1Q2−P2

3 ),
1

x̄4
13

(πa
12π

a
31)

2

= −1

2
R′(Q1Q3 − P2

2 )

(c) x̄4
23(σ

a
12σ

a
23)

2 = −1

2
R′(Q1Q2−P2

3 ), x̄4
12(σ

a
12σ

a
21)

2

= −1

2
R′(Q1Q2 − P2

3 ), x̄4
12(σ

a
12σ

a
31)

2

= −1

2
R′(Q1Q3 − P2

2 )

(d) x̄4
12(ω

a
1ωa

2)3 = −1

2
R′(Q1Q2 − P2

3 )

(e)
x̄2

31

x̄2
23 x̄

2
12

(Ra
1πa

21)
2 = 1

2
R′P2

3 ,
x̄2

31

x̄2
23 x̄

2
12

(Ra
1πa

23)
2 =

1

2
R′P2

3 ,
x̄2

23

x̄2
12 x̄

2
31

(Ra
1πa

12)
2 = 1

2
R′Q2

1,

1

x̄2
13

Ra
1πa

12R
b
1πb

32 = −1

2
Q1P2,

1

x̄2
23

Ra
1πa

21R
b
1πb

31

= −1

2
R′P2P3,

1

x̄2
12

Ra
1πa

23R
b
1πb

13 = −1

2
R′Q1P3

(f)
x̄2

13 x̄
2
12

x̄2
23

(Ra
1σ a

21)
2 = −1

2
R′(Q1Q2 − P2

3 ),
x̄2

23 x̄
2
13

x̄2
12

(Ra
1σ a

23)
2 = −1

2
R′(Q1Q2−P2

3 ),
x̄2

23 x̄
2
12

x̄2
31

(Ra
1σ a

12)
2

= 0

(g)
x̄2

13 x̄
2
12

x̄2
23

(Ra
1ωa

1)2 = 1

2
R′Q2

1,
x̄2

12 x̄
2
23

x̄2
13

(Ra
1ωa

2)2 =
1

2
R′P2

3

(h) (πa
12σ

a
21)

2 = 1

2
R′P2

3 , (πa
12σ

a
31)

2 = 1

2
R′P2

2 ,

x̄4
23

x̄4
13

(πa
12σ

a
21)

2 = 1

2
R′P2

2 ,
x̄4

23

x̄4
12

(πa
12σ

a
21)

2 = 1

2
R′P2

3

Note that other relations can be generated by cyclic permu-
tation of 1, 2, 3 in the above list.

B.2 Parity odd relations

In this subsection we list the various parity-odd invariant
structures built from the covariant building blocks. These will
all be expressed in terms of our minimal set of invariants.

1. O(�4):

(a) x̄2
12�

ab
12�ab

12 = 0

1. O(λ2�2):

(a)

√
x̄2

12 x̄
2
31

x̄2
23

Ra
1ωa

1 = 1

2
T ′Q1,

√
x̄2

13

x̄2
12 x̄

2
23

Ra
1πa

21 =
1

2
T ′P3

(b)
x̄2

23

x̄2
13

πa
12σ

a
12 = 1

2
T ′Q1,

x̄2
23

x̄2
13

πa
12σ

a
32 = 1

2
T ′P2,

x̄2
13

x̄2
23 x̄

2
23

σ a
12ω

a
2 = 1

2
T ′P3 − i

2
R′S3

2. O(λ2�4):

(a) x̄2
12R

a
1�ab

12 R
b
2 = −1

2
R′S3, x̄4

12ω
a
1�ab

12 ωb
2 = −1

2
R′S3,

πa
21�

ab
12 πb

12 = 1

2
R′S3,

x̄2
23 x̄

2
13

x̄4
12

πa
31�

ab
12 πb

32 = 0,

x̄2
12

x̄4
23

πa
21�

ab
12 πb

32 = −1

2
R′S1,

x̄2
12

x̄4
13

πa
31�

ab
12 πb

12 =

−1

2
R′S2

(b)

√
x̄2

23

x̄2
13 x̄

2
12

Ra
1�ab

12πb
12 = 0,

√
x̄2

12

x̄2
13 x̄

2
32

Ra
1�ab

12πb
32 =

1

2
R′S2,

√
x̄2

12 x̄
2
23

x̄2
13

Ra
1�ab

12ωb
2 = −1

2
R′S3, π

a
21�

ab
12σ b

12

= 1

2
R′S3, πa

21�
ab
12σ b

32 = −1

2
R′S1,

x̄2
12

x̄2
13

πa
31�

ab
12σ b

12 =
1

2
R′S3, x̄2

12ω
a
1�ab

12σ a
12 = 0

(c)
x̄2

12 x̄
4
13

x̄4
23

πa
21

ab
1 σ21 = 0,

x̄2
13 x̄

4
12

x̄4
23

πa
31

ab
1 σ21 =

−1

2
R′S1,

x̄4
12 x̄

4
13

x̄4
23

ωa
1ab

1 σ a
21 = 1

2
R′S3

3. O(λ4�4):
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(a)

√
x̄2

23

x̄2
12 x̄

2
31

Ra
1 R

a
2 R

b
1πb

12 = 1

2
R′S3Q1,

√
x̄2

12

x̄2
23 x̄

2
31

Ra
1 R

a
2 R

b
1πb

32

= −1

2
R′S3P2,

√
x̄2

12 x̄
2
23

x̄2
31

Ra
1 R

a
2 R

b
1ωb

2 = 1

2
R′S3P3

(b)
1

x̄2
12

πa
21π

a
12π

b
21σ

b
12 = −1

2
R′S3P3,

x̄4
ik

x̄4
23

πa
21σ

a
21π

b
21ω

b
1

= −1

2
R′Q2S3

Again, we can obtain other relations by cyclically permuting
1, 2, 3 above.

B.3 A few more relations

Using the two relations (42) and (43), other relations with
higher homogeneity in λ′s can be generated. For example,
using Eq. (43), one gets the O(λ2

1λ
2
2λ

2
3) fermionic relation

P1P2 R̄3 + P2P3 R̄1 + P3P1 R̄2 + 1

2

∑

i

Qi Pi R̄i

−3i

4
R′P1P2P3 = 0. (88)

More combinations of the relations yield

i

2

∑

i

P3
i Q

2
i R̄i + i

2

∑

cyc

P2
1 Q1(P2Q2 R̄2 + P3Q3 R̄3)

+ 2
∑

cyc

P2
1 P

2
2 Q1Q2 +

∑

i

P4
i Q

2
i

− Q1Q2Q3

∑

i

P2
i Qi + 1

4
R′P1P2P3

∑

i

P2
i Qi

− 2P1P2P3

∑

i

P2
i Qi = 0 (89)

− i

4

∑
P3
i Q

2
i R̄i − 1

2

∑

cyc

P2
1 P

2
2 Q1Q2

+ 1

4
Q1Q2Q3

∑

i

P2
i Qi

−
∑

i

P4
i Q

2
i + P2

1 P
2
2 P

2
3

+ 1

2
Q1Q2Q3P1P2P3 − 1

8
P2

1 P
2
2 P

2
3 R

′ = 0 (90)

Also, we can have purely fermionic relations, since the
product of R′ with any other fermionic invariant vanishes,

(

2P1P2P3 −
∑

i

P2
i Qi + Q1Q2Q3

)

R′ = 0 (91)

⎛

⎝2
∑

cyc

P2
1 P

2
2 Q1Q2 − Q1Q2Q3

∑

i

P2
i Qi

−2P1P2P3

∑

i

P2
i Qi +

∑

i

P4
i Q

2
i

)

R′ = 0 (92)

and so on.
Higher order parity-odd relations can also be generated.

For example, at O(λ4
1λ

4
2λ

4
3) we have:

⎛

⎝1

2

∑

cyc

Q1P
2
1 (P2Q2S2 + P3Q3S3) − 1

2

∑

i

P3
i Q

2
i Si

+P1P2P3

∑

i

Pi Qi Si

)

R′ = 0 (93)

These relations are utilised in Sect. 5 where we write
the linearly independent parity-even structures for various
3-point functions.

C Calculational details for free theory correlators

In this appendix we provide some calculation details for
results quoted in Sect. 6. In particular, we will explain through
two examples how one computes current correlators in the
free-field theory using Wick contractions of the chiral scalar
superfield. For N = 2, the basic superfields are (anti-)chiral,

D̄α� = Dα�̄ = 0 (94)

and obey the following free field equations of motion,

DαDα� = D̄α D̄α�̄ = 0. (95)

Solving the above, we get the super-multiplet for the (anti-
)chiral superfields to have the form

� = φ + θψ − i

2
θγ μθ̄∂μφ (96)

�̄ = φ̄ + θ̄ψ∗ + i

2
θγ μθ̄∂μφ. (97)

Here φ and ψ satisfy, respectively, the free Klein-Gordon
and Dirac equations, (θγ μθ̄ ≡ θα(γ μ)

β
α θ̄β ).

Next, one can construct the 2-point function

〈�̄1�2〉 = 1

y12
(98)

123
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where �i is the superfield at superspace location (xi , θi ),
while y12 is built from x̄12 [11],

y2
12 = x̄2

12v12, v12 = 1

2

(
(V12)

aa + iεab(V12)
ab

)
(99)

where we’ve used the 2-point structure Vab
12 = δab +

iθaα
12 (X−1

12+)
β
α θb12β .

This form of the 2-point correlator can be explicitly
checked by expanding the superfields and using the expres-
sions

〈φ̄1φ2〉 = 〈φ1φ̄2〉 = 1

x12
(100)

〈ψ∗
1αψ2β〉 = −〈ψ2αψ∗

1β〉 = i
(X12)αβ

x3
12

(101)

C.1 Computation of 〈J0 J0 J0〉

The spin-0 conserved supercurrent is

J0 = �̄� (102)

The correlator 〈J0 J0 J0〉 can be written as

〈J0 J0 J0〉 = 〈
(�̄1�1)(�̄2�2)(�̄3�3)

〉
(103)

Since this is a free theory correlator it can be computed
by Wick contractions on the the right hand side,

〈
(�̄1�1)(�̄2�2)(�̄3�3)

〉 = 〈�̄1�1 �̄2�2 �̄3�3〉

+ 〈�̄1�1 �̄2�2 �̄3�3〉
=

(
1

y13

) (
1

y21

)(
1

y32

)
+

(
1

y12

) (
1

y31

) (
1

y23

)

(104)

We find that the result of this computation is equal to a
linear combination of the parity even invariant structures.
Since there is no spin in this example, the only one allowed
is R′,

〈J0 J0 J0〉 = −2

x̄12 x̄23 x̄31

(
1 + 1

16
R′

)
(105)

C.2 Computation of 〈J1 J1 J0〉

The spin-0 and spin-1 conserved supercurrents are,

J0 = �̄� , J1 = �̄(∂�) − 2D̄�̄D� − (∂�̄)� (106)

Thus, the 3-point correlator

〈J1 J1 J0〉 = 〈(
�̄1(∂1�1) − 2D̄1�̄1D1�1 − (∂1�̄1)�1

)

× (
�̄2(∂2�2) − 2D̄2�̄2D2�2

−(∂2�̄2)�2
) (

�̄3�3
)〉

(107)

can be calculated by expanding and performing all possible
Wick contractions.

As an example, one of the nine Wick contraction terms in
the above expansion is

〈
�̄1(∂1�1)�̄2(∂2�2)�̄3�3

〉 =
〈
�̄1(∂1�1)�̄2(∂2�2)�̄3�3

〉

+
〈
�̄1(∂1�1)�̄2(∂2�2)�̄3�3

〉

=
(

1

y13

) (
∂1

1

y21

) (
∂2

1

y32

)

+
(

∂2
1

y12

)(
∂1

1

y31

) (
1

y23

)

(108)

Computing and collecting all the terms, the Wick contrac-
tions give as expected, a linear combination of all the linearly
independent parity-even invariants with homogeneity λ2

1λ
2
2,

〈J1 J1 J0〉 = −2

x̄12 x̄23 x̄31

[
Q1Q2

(
1 + 9

16
R′

)

+P2
3

(
2 + 3

8
R′

)
+ 2i P3 R̄3

]
(109)
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