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Abstract We study for the first time the pΣ− → K−d
and K−d → pΣ− reactions close to threshold and show that
they are driven by a triangle mechanism, with the Λ(1405), a
proton and a neutron as intermediate states, which develops a
triangle singularity close to the K̄ d threshold. We find that a
mechanism involving virtual pion exchange and the K− p →
π+Σ− amplitude dominates over another one involving kaon
exchange and the K− p → K− p amplitude. Moreover, of the
two Λ(1405) states, the one with higher mass around 1420
MeV, gives the largest contribution to the process. We show
that the cross section, well within measurable range, is very
sensitive to different models that, while reproducing K̄ N
observables above threshold, provide different extrapolations
of the K̄ N amplitudes below threshold. The observables of
this reaction will provide new constraints on the theoretical
models, leading to more reliable extrapolations of the K̄ N
amplitudes below threshold and to more accurate predictions
of the Λ(1405) state of lower mass.

1 Introduction

Introduced early in the 50’s [1,2], the triangle singularities
(TS) are getting a growing attention nowadays since they are
helping to understand many phenomena observed in hadron
physics. The singularity stems from a mechanism that can be
depicted by a triangle Feynman diagram, see Fig. 1, where a
particle A decays into 1 and 2, 1 decays into B and 3, and 2
and 3 merge to form particle C. If this mechanism can occur
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at the classical level, a singularity appears in the amplitude
(Coleman–Norton theorem [3]), which requires that 1 and B
move in the same direction in the A rest frame, and 3 moves
in the direction of 2 and faster, such that it catches up with 2
and fuses with it to give C. The subject has been reformulated
recently with a more intuitive and practical formalism in Ref.
[4] and a thorough review has been done in Ref. [5].

Recent examples of TS are found in the study of the
η(1405) → f0(980)π0 decay [6] performed in Refs. [7–10].
Another relevant case was the explanation of the “a1(1420)”
structure observed by the COMPASS collaboration [11],
which is explained in terms of a TS in Refs. [12–15]. Some
other recent examples can be seen in [16–18] and a rather
complete list of reactions studied along TS is given in Ref.
[5].

Another example of TS is given by the π+d → pp
reaction [19,20] which has been much studied in the past
[21–24]. Recently, this latter reaction got again attention in
[25] by looking at the time reversal reaction pp → π+d,
because it was shown to be driven by a triangle mechanism
with ΔNN ′ in the intermediate states and NN ′ fusing to
give the deuteron. This mechanism was found responsible
for the relatively large cross section of the fusion reaction.
The works of [21–25] share basically the same model. Parti-
cle A in Fig. 1 is the pp system, particle 1 is the Δ(1232), B
is a pion and 2, 3 are nucleons that merge to give C, which
is the deuteron. The pp → NΔ transition is mediated by π

and ρ exchange. The results are similar. Ref [25] uses the
same model but a different formalism, in momentum space,
which allows one to trace the triangle singularity of the pro-
cess. At the same time, different spin transitions and angular
distributions were evaluated and shown to be consistent with
the results obtained in [24], where they were also studied.
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Fig. 1 Feynman diagram from where a triangle singularity can emerge.
Particle A decays into 1 and 2, 1 decays into B and 3, and 2 and 3 merge
to form particle C
It was also shown in [25] that the dominant waves were in
agreement with the experimental findings in [26–28].

In the present case we shall study the related pΣ− →
K−d (K−d → pΣ−) reactions, showing that the mecha-
nism is similar to the one of the pp → π+d reaction, but
now the high energy pole of the Λ(1405) plays the role of
the Δ(1232) in the pp → π+d reaction. The TS places this
Λ(1405) and the nucleons of the triangle diagram on shell
and this leads to the interesting result that one can see the
effects of the Λ(1405), which lies below the K̄ N threshold,
in a reaction with physical kaons, in other words, we observe
effects of the K− p amplitudes below threshold in a reaction
with kaons above threshold. This is most welcome, since dif-
ferent theoretical models for the K̄ N interaction reproducing
well the data above the K̄ N threshold lead to quite different
results for the amplitudes below threshold.

The K̄ N interaction has been the subject of intense theo-
retical scrutiny [29–32] which has been reinforced with the
advent of the chiral unitary approach [33–38]. One surprise
from the use of this approach is the existence of two Λ(1405)

states [36,39] which have found their way into the PDG [40]
only recently. A large amount of papers have come to cor-
roborate this finding [41–52]. Reviews on this issue can be
seen in [53–56]. Yet, in spite of reproducing the K̄ N data
above threshold and some threshold observables, the differ-
ent models produce K̄ N amplitudes below threshold which
differ much from each other (see Fig. 1 of [57]). We will show
that because the reaction relies upon K̄ N amplitudes below
threshold, the results that we obtain with several models for
the K̄ N interaction lead to results for the K−d → pΣ−
reaction that differ appreciably among themselves. In other
words, the measurement of this cross section would provide
an extra valuable observable to put more constraints on the
theoretical models and make them more predictive below the
K̄ N threshold. This information would go in the same line
of the work presently done at DAFNE in the programs as
AMADEUS [58] and SIDDHARTA [59].

2 Formalism

We shall study the pΣ− → K−d reaction to be able to
exploit the analogies with the pp → π+d reaction. The
process proceeds via the diagrams of Fig. 2.

The process of pΣ− → K−d, involving the fusion of
the two nucleons in the final state, can be visualized from the
time reversed point of view as a mechanism of K− absorption
on two nucleons, with the mechanisms of K− absorption
described in [60–62].

The diagrams of Fig. 2 develop a triangle singularity. This
occurs when the Λ(1405), the p and n intermediate states are
placed on shell in the loop (the K+ and π− are off shell and
do not matter for the discussion of the TS) and the Λ(1405)

and K− are in the same direction. If the proton, which goes in
the same direction of the neutron in this case, goes faster than
the neutron, it can catch up with the neutron and fuse into
the deuteron, producing the TS according to the Coleman–
Norton theorem [3]. All these conditions are summarized in
Eq. (18) of Ref. [4] in the limit of zero width of the Λ(1405),
which states

qon = qa− (1)

where qon is the momentum of the neutron in the pΣ− rest
frame and qa− is one of the solutions of the momentum of
the neutron in the decay of the d into pn for the moving
d in the pΣ− rest frame. Easy analytical formulae for qon,
qa− are given in Ref. [4]. This condition requires that the p,
n and Λ∗ in the loop are on shell. Technically, the deuteron
bound does not decay to pn, and to test Eq. (1) one can take a
deuteron slightly unbound. The singularity becomes a broad
peak upon the consideration of the Λ(1405) width and, by
continuity, it shows up even if the deuteron is bound by 2.2
MeV. The test of Ref. [4] is done here taking the deuteron
mass of 1878 MeV, which is 0.2 MeV above np threshold,
and the Λ(1405) mass equal to 1434 MeV, just 2 MeV above
the K− p threshold. This mass is 8 MeV above the mass of the
upper Λ(1405) state found in Ref. [39] at 1426 MeV, which
has a width of 32 MeV. This guarantees a large overlap with
the TS condition. Under these assumptions, needed to pass
the test of Ref. [4], the TS is obtained at 2373.65 MeV where
qon = qa− = 10 MeV/c. Technically one would perform
the K−d → pΣ− measurement, which can be done for low
K− energies in DAFNE [63] and in other facilities, as JPARC
[64,65] or the planned kaon facility at Jefferson Lab [66,67].

To evaluate the amplitudes for the diagrams of Fig. 2 one
needs the coupling of the two Λ(1405) to K− p and to π+Σ−
and the couplings of π− p → n and K+Σ− → n. The π− pn
coupling is given for an incoming π− of momentum q by

− i t = fπNN

mπ

σ · q√
2 , (2)

with fπNN = 1.002. Alternatively, this coupling and in gen-
eral the pseudoscalar-meson baryon vertex (PBB), can be
obtained from chiral Lagrangians [68,69] and the general
result is given by [70],

− i tK̄ NY =
[
α
D + F

2 f
+ β

D − F

2 f

]
σ · q (3)
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(a) (b)

Fig. 2 Feynman diagrams for the pΣ− → K−d reaction. The momenta of the lines are shown in brackets

for an incoming K̄ , with f = 93 MeV, D = 0.795, F =
0.465 [71]. In particular,

− i tK+Σ−→n = √
2
D − F

2 f
σ · q (4)

We note that in this formalism, fπNN
mπ

= D+F
2 f . The isospin

I = 0 function for the deuteron can be written as

|d〉 = 1√
2
(|pn〉 − |np〉). (5)

The coupling of the deuteron to NN is given by gd . In par-
ticular for the pn component

− i tdpn = −igd
1√
2
θ(qmax − |q|c.m.) (6)

where qc.m is the p momentum in the d rest frame. From the
study in Appendix A of [25], we find

gd = (2π)(3/2)2.67 × 10−3MeV−1/2,

qmax = 240 MeV. (7)

With these ingredients we can evaluate the amplitudes
corresponding to the two diagrams of Fig. 2 and find

− i t(a) = (−i)gΛ∗,K− p(−i)gΛ∗,K− p(−i)gd
D − F

2 f∫
d4q

(2π)4 σ 2 · q i

q2 − m2
K + iε

MΛ∗
EΛ∗

i

P0 − q0 − EΛ∗ (P − q) + i
ΓΛ∗

2

× MN

EN

i

P0 − q0 − k0 − EN (P − q − k) + iε

MN

E ′
N

i

P ′0 + q0 − E ′
N (−P + q) + iε

θ(qmax − |P − q − k
2

|),

− i t(b) = −gΛ∗,K− pgΛ∗,π+Σ−gd
fπNN

mπ
i

∫
d4q

(2π)4
1

q2 − m2
π + iε

MΛ∗
EΛ∗

1

P ′0 − q0 − EΛ∗ (−P − q) + i
ΓΛ∗

2

× σ 1 · q MN

EN

1

P ′0 − q0 − k0 − EN (−P − q − k) + iε

MN

E ′
N

1

P0 + q0 − E ′
N (P + q) + iε

θ(qmax − | − P − q − k
2

|), (8)

where E(P) = √
P2 + m2. We write the pseudoscalar prop-

agator as

1

q 2 − m2 + iε
= 1

2ω(q)

(
1

q0 − ω(q) + iε
− 1

q0 + ω(q) − iε

)
,

(9)

with ω(q) = √
m2 + q 2, and then perform the q0 inte-

gration analytically. However, it is practical to reduce the
number of denominators containing q0 and for this purpose
it is useful to write

1

P0 − q0 − k0 − EN (P − q − k) + iε
1

P ′0 + q0 − E ′
N (−P + q) + iε

= 1√
s − k0 − EN (−P + q) − EN (P − q − k) + iε

×
(

1

P0 + q0 − k0 − EN (P − q − k) + iε

+ 1

P ′0 + q0 − E ′
N (−P + q) + iε

)
. (10)

Then we easily find using Cauchy’s theorem that

− i t(a)
i j = gΛ∗,K− p gΛ∗,K− p gd

D − F

2 f∫
d3q

(2π)3 Vi j (q)F(P0, P
′0, q, ωK (q),P,k)F2(Λ,mK )

− i t(b)i j = −gΛ∗,K− p gΛ∗,π+Σ−gd
fπNN

mπ∫
d3q

(2π)3 Wi j (q)F(P
′0, P0,q, ωπ (q), −P, k)F2(Λ,mπ ),

(11)

where F(Λ,mi ) and F(P0, P ′0,q, ω,P,k) are given by

F(Λ,mi ) = Λ2 − m2
i

Λ2 + q2 , (12)

and

F(P0, P ′0,q, ω,P,k) = 1

2ω(q)

MN

EN (P − q − k)
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MN

EN (−P + q)

MΛ∗

EΛ∗(P − q)

× θ(qmax − |P − q − k
2 |)√

s − k0 − EN (−P + q) − EN (P − q − k) + iε

×
{

1

P0 − ω(q) − EΛ∗(P − q) + i ΓΛ∗
2

1

P0 − ω(q) − k0 − EN (P − q − k) + iε

+ 1

P0 − EΛ∗(P − q) − ω(q) + i ΓΛ∗
2

1√
s − EΛ∗(P − q) − EN (−P + q) + i ΓΛ∗

2

+ 1

P ′0 − EN (−P + q) − ω(q) + iε

1√
s − EΛ∗(P − q) − EN (−P + q) + i ΓΛ∗

2

}
. (13)

We have also introduced a form factor to account for the
pseudoscalar exchange with Λ = 1125 MeV as also used
in [25]. The functions Vi j (q), Wi j (q) are the matrix ele-
ments of σ 2 ·q and σ 1 ·q respectively for the spin transitions
i → j with i =↑↑,↑↓,↓↑,↓↓ for the pΣ− spins and
j =↑↑, 1√

2
(↑↓ + ↓↑), ↓↓ for the deuteron polarizations.

The explicit expressions of Vi j , Wi j are shown in Appendix
A.

The procedure we follow to do the fourfold integration is
rewarding. We first perform the q0 integration analytically
where the poles of the propagators of the four internal par-
ticles of the loop are considered, including the pion poles
of Eq. (9). After this is done, we are left with the three-
fold integration of Eq. (11) which we perform numerically.
The factors F of Eq. (11), (13) contain now the full ana-
lytical structure of the amplitude and we can see explicitly
which are the remaining poles by setting to zero the denom-
inators appearing in Eq. (13). Taking as example the ampli-
tude t (b) which contains the pion propagator and involves
F(P

′0, P0,q, ωπ(q),−P,k), we have the following cuts:

a)
√
s−k0 = EN (P+q)+EN (P+q+k). This pole places

the two nucleons of the loop on shell.
b) P ′0 = ωπ(q)+EΛ∗(P+q). This pole corresponds to the

impossible case of a Σ− producing a π and a Λ(1405).
Hence, the denominator of this propagator will never be
zero.

c) P ′0 = ωπ(q) + k0 + EN (P + q + k). Once again this
relationship will never be fulfilled and the inverse of the
propagator will never be zero.

d)
√
s = EΛ∗(P+ q) + EN (P+ q). This places the Λ∗ and

the upper nucleon of diagram (b) in Fig. 2 on shell and
can occur.

e) P0 = EN (P + q) + ωπ(q). This is again impossible
because a nucleon cannot go to a nucleon and a pion.

As we can see, only the propagators corresponding to
cases a) and d) can have zero denominators and give rise to
cuts in the amplitudes. However, in an ordinary case the d3q
integral gives the principal values and the imaginary parts
in the amplitude. The infinites of the denominator to the left
and right of the singular point have opposite sign and cancel
in the principal value of the dq ′ integral with q′ = P + q.
Yet, because of the Ei (P + q + k) terms in the denomina-
tors, one has two integrations, one in dq ′ and the other one
in dcosθ , with θ the angle between P + q and k. If we have
a singularity at cosθ = ±1 then in the dcosθ integration
we cannot benefit from the cancellations of the two infinite
branches, because we cannot integrate beyond cosθ = 1 or
below cosθ = −1 and then an infinite arises. Actually the cut
a) has two algebraic solutions for cosθ = −1, keeping the
iε of the denominators, q ′

a− − iε, q ′
a+ + iε, easily obtained

as

q ′
a− = γ (vE∗

2 − p∗
2); q ′

a+ = γ (vE∗
2 + p∗

2)

where v is the velocity of the deuteron in the pΣ− rest frame,
and p∗

2 , E∗
2 the momentum and energy of the upper nucleon

of the diagram in the d rest frame, with γ = (1−v2)− 1
2 . The

cut d) has as solutions q ′ = q ′
on + iε and q ′ = −q ′

on − iε, but
the second is irrelevant since we integrate over |q′| positive.
On the other hand, when cosθ = 1 for the cut a), the algebraic
solutions are q ′

b− − iε, q ′
b+ + iε with

q ′
b− = −γ (vE∗

2 + p∗
2); q ′

b+ = γ (−vE∗
2 + p∗

2)

and, again the q ′
b− solution is irrelevant since we integrate

over positive |q′|. We can see that for cosθ = 1 the singular
points are q ′

on + iε and q ′
b+ + iε, both of them in the upper

side of the complex plane and can be sorted out in the
∫ ∞

0 dq ′
integral by deforming the integration contour. However for
cosθ = −1 if we take q ′

a− − iε and q ′
on + iε with q ′

on = q ′
a−

we are forced to pass between the two poles in the
∫ ∞

0 dq ′
integration no matter how the integration contour is deformed
and this time one has an infinite in the amplitude in the case
that we neglect the with of the Λ∗ (illustrative figures of the
situation in the general case can be seen in Fig. 3 of Ref. [4]).
This is the triangle singularity situation [1,2] as explained
in detail in Ref. [4]. In the former discussion we have also
seen that the denominators involving the pion never become
zero, which is the technical way of expressing that the pion
is never on shell in that diagram.

The cross section for the K−d → pΣ−, which is what
would be measured, is given by

dσ

dcos θp
= 1

4π

1

s
MpMΣ−Md

p

k

∑̄∑
|t |2 (14)

123
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where

t = t (a) + t (b) (15)

and

∑̄ ∑
|t |2 = 1

3

∑
i, j

|t (a)
i j + t (b)i j |2, (16)

with i , j referring to the initial and final spin states.
For the evaluation of the pΣ− → K−d amplitudes

we take P = P(0, 0, 1), k = k(sin θK , 0, cos θK ) and
q ≡ q(sin θcos φ, sin θ sin φ, cos θ). Note that cos θp in
K−d → pΣ− is the same as cos θK in pΣ− → K−d.

The factor p/k of phase space in Eq. (14) makes the cross
section blow up as k → 0. For this reason we find appropriate

to plot k
p

(
dσ

dcosθp

)
, or k

pσ , after integration over angles.

Since we have two Λ(1405) poles, we must sum over them
in the t (a)

i j or t (b)i j amplitudes. We obtain these amplitudes
simply putting the couplings of the two resonances to the
K− p or π+Σ− in Eqs. (11) and the mass and width of the
Λ(1405) in Eq. (13). As a reference we will use the model
of Ref. [35] with the properties of these resonances given in
Table 1. In particular we have

gΛ∗,K− p = 1√
2
gΛ∗,K̄ N

gΛ∗,π+Σ− = − 1√
3
gΛ∗,πΣ (17)

2.1 Relation to the explicit deuteron wave function

Following [72] and Appendix A of Ref. [25] (see also Eq. (34)
of [25]), one can identify the deuteron wave function in
momentum space in our formalism and replace it by the one
of the Bonn model [72] (the results with the Paris wave func-
tion [73] are practically the same). The equivalence in the
present case is1

gd
MN

E(P − q − k)

MN

EN (−P + q)

θ(qmax − |P − q − k
2 |)√

s − k0 − EN (−P + q) − EN (P − q − k) + iε

−→ −(2π)3/2ψ(P − q − k
2
) (18)

with ψ(q) normalized as
∫
d3q|ψ(q)|2 = 1.

1 See Eqs. (114) and (118) of [74], and Eq. (19) of [25], which incor-
porates the M/E field theoretical factors. Note the erratum in Eq. (118)
of [74], which should be gi = ψ̂/Gα

i i ; giGα
i i = ψ̂ .

2.2 Amplitudes using the explicit K̄ N → K̄ N and
K̄ N → πΣ

Since formally we have the equivalences of

2∑
i=1

M(i)
Λ∗

E(i)
Λ∗(P − q)

g(i)
Λ∗,K− pg

(i)
Λ∗,K− p

√
s − EN (−P + q) − E(i)

Λ∗(P − q) + i
Γ

(i)
Λ∗
2

≡ tK− p,K− p(Minv) (19)

and

2∑
i=1

M(i)
Λ∗

E(i)
Λ∗(P − q)

g(i)
Λ∗,K− pg

(i)
Λ∗,π+Σ−

√
s − EN (P + q) − E(i)

Λ∗(−P − q) + i
Γ

(i)
Λ∗
2

≡ tK− p,π+Σ−(M ′
inv), (20)

with M2
inv = s + M2

N − 2
√
sEN (−P + q), and M ′2

inv =
s + M2

N − 2
√
sEN (P + q), respectively, we can write the

amplitudes t (a)
i j , t (b)i j as

− i t (a)
i j = gd

D − F

2 f∫
d3q

(2π)3 Vi j (q)F ′(P0, P ′0,q, ωK (q),P,k)F2(Λ,mK ),

− i t (b)i j = −gd
D + F

2 f∫
d3q

(2π)3 Wi j (q)G ′(P0, P ′0,q, ωπ (q),P,k)F2(Λ,mπ ),

(21)

where F ′ and G ′ are given in Appendix B.

3 Results

In the first place, we study the contribution of the differ-
ent spin transitions. We use the model of Ref. [35] (called
Oset-Ramos later) taking the input of Table 1. In Fig. 11,
we shall present results for the cross sections using different
models. The cross sections are taken from Eq. (14) subse-
quently integrated over the angle θp. In Fig. 3 we plot k

pσ

for several spin transitions. One finds that the most impor-
tant is ↑↑→↑↑, or ↓↓→↓↓ which has the same strength.

Table 1 Pole positions and couplings from Ref. [39]

State gΛ∗,K̄ N gΛ∗,πΣ (Mass, Γ
2 )

Λ(1390) 1.2 + i 1.7 −2.5 − i 1.5 (1390, 66)

Λ(1426) −2.5 + i 0.94 0.42 − i 1.4 (1426, 16)

123
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Fig. 3 Contribution from several spin transitions in k
p σ

Fig. 4 Contribution from several spin transitions in k
p σ .

The transitions involving some spin flip are very small as
shown in Fig. 4. This spin dependence is different from the
one obtained in the pp → π+d reaction [25] and the reason
is that, unlike in [25], we have only a spin operator in one of
the baryonic lines.
Next, we look at the angular dependence. Figure 5 displays
the angular dependence of dσ/dcos(θp) for two given values
of

√
s, namely about 10 MeV and 30 MeV above threshold.

We observe a smooth angular dependence, a little stronger
as the energy increases, favoring backward angles. Even if
the lines look parallel, there are small differences in the slope
for different values of Λ. Indeed, in Fig. 5 (left), the ratio of
backward to forward cross section is a factor 1.24 for Λ =
1250 MeV, while it is 1.32 for 1000 MeV. The differences
are bigger in Fig. 5 (right), at higher energies, where these
ratios are 1.42 and 1.58 respectively. A precise measurement
of the angular distributions can tell us about the value of Λ

to be used. We should also note that a difference of 125 MeV
in the value of Λ induces a change in the cross section of
16 − 18% around threshold. We shall see that the deviations
in the cross sections predicted by different models are of
the order of a factor of two. Hence, even having a small

Fig. 5 Angular dependence of k
p

dσ
dcos θ

of the K−d → pΣ− reaction

as a function of cosθ (of the proton) for
√
s = √

sth + 10 MeV (left)
and

√
sth + 30 MeV (right)

Fig. 6 Contributions of the high and low mass poles to the diagrams a
and b in k

p σ

uncertainty in the value of Λ, the measured cross sections
can serve to discriminate among models.

In Fig. 6 (left), we show the contribution of each of the
Λ(1405) poles for the mechanism of Fig. 2a. As one might
expect from Eq. (1), we observe that the contribution of the
higher mass pole is much larger than that of the lower mass
pole. However, the destructive interference between the two
contributions is relevant enough to reduce the cross section
in about 30%.

An analogous study is performed for the mechanism dia-
grammatically represented in Fig. 2b. Figure 6 (right) shows
qualitatively similar features to the former case, but with
approximately a factor ten difference in the strength of the
cross section between both mechanisms. The reason for this
lies in the magnifying effect of the pseudoscalar propagator
produced by the fact of having a pion exchange instead of
a kaon exchange. We also note that now the interference is
more apparent and reduces the cross section by about 50%.

As mentioned above, the high Λ∗ pole dominates the
amplitudes. Part of the reason for the dominance of the high
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Fig. 7 Contributions of the high and low mass poles (left) and diagrams
a and b (right), compared to the total k

p σ

pole in Fig. 6 (left) is due to the fact that g2
Λ∗,K̄ N

has larger
strength for the high pole than the low pole (note that the
couplings are complex), but this factor is far from justifying
the large difference between the two contributions in Fig. 6
(left). More significant is the case of Fig. 6 (right), the dom-
inant term, where gΛ∗,K̄ N · gΛ∗,πΣ has a bigger strength for
the low pole, in spite of which the high pole dominates the
reaction.

In Fig. 7 (left), we show the results for each of the poles
once the contributions of the two mechanisms are included
in the cross section simultaneously. As before, we find the
dominance of the higher Λ(1405) pole, but the interference
reduces the cross section to one half its strength.

The role of each mechanism in the K−d → pΣ− process
is reflected in Fig. 7 (right) including the contribution of both
poles. The results when independently taking the contribu-
tions of the two mechanisms confirm that the mechanism of
Fig. 2b is the dominant one. As an interesting fact here, it
should be mentioned that the addition of the mechanism of
Fig. 2a to the one of Fig. 2b increases the cross section by
just 10%.

So far all the results shown have been obtained employing
the θ -function as prescription for the deuteron wave func-
tion. Next, using Eq. (18), we swap the former prescription
for the explicit wave functions derived from the Bonn and
Paris potentials [73,75]. The results are collected in Fig. 8.
We observe that the cross sections obtained with either wave
function are very similar, but with respect to the θ wave func-
tion they reduce the cross section by about 23%. An attempt
to reduce the previous difference was carried out by rescaling
the gd coupling by a factor 0.88. This works fairly well with
small values of

√
s but does not maintain such an accuracy

as the energy increases. Because of this, all the results pre-
sented are obtained using the Bonn wave function from now
on.

Fig. 8 Comparison of k
p σ using the θ function or the deuteron wave

functions

One can think of using other deuteron wave functions, like
those based on Effective Field Theory of [76]. If one looks at
Fig. 6 (left) of [76], one can see that the wave functions are
very similar to the one of the Bonn Model [72]. Concretely,
they are practically equivalent at distances bigger than 2 fm,
indicating that the wave functions are practically the same
for momentum of the deuteron smaller than 100 MeV/c, and
this is the region of momenta that gives more weight to the
process, since |Ψ (p)|2 at 100 MeV/c is already about 2% of
|Ψ (p)|2 at the origin. One does not expect differences from
using the Effective Field Theory wave functions bigger than
the tiny ones in Fig. 8 between the Bonn and the Paris wave
functions.

In order to illustrate the effect of the triangle singularity
on the K−d → pΣ− reaction, we find very instructive to
show the corresponding amplitude. For simplicity, we have
chosen the dominant spin transition ↑↑→↑↑ and plot the
real and imaginary parts of its amplitude in the left panel of
Fig. 9. Both curves behave as one might expect for a typical
triangle singularity (see Fig. 5 of [17], Figs. 5, 6 of [77] and
Fig. 4 of [16]). On the one hand, we see that the imaginary
part (solid line) develops a smooth peak, with its highest
strength around

√
s = 2380 MeV, close to where Eq. (1)

predicts the peak of the TS. The shape of the imaginary part
translates information of the imaginary part of the tK− p,π+Σ−
amplitude below threshold to K− energies above threshold
in the K−d → pΣ− reaction. On the other hand, the real
part of the amplitude contributes largely to the strength of the
cross section close to threshold. The dashed line in the same
panel of Fig. 9 clearly evidences the presence of a cusp in the
vicinity of the K−d threshold. To aid the visualization of this
effect, we have explored a bit below threshold setting k = 0
in the formulas.2 These findings are in good agreement with

2 The K−d threshold is at 2369.3 MeV. We have extrapolated the ampli-
tude 10 MeV below threshold. To avoid having to use imaginary k
and mixing real momenta with k imaginary in the kinetic energies of
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Fig. 9 Energy dependence of the real (dashed line) and the imaginary
(solid line) parts of the K−d → pΣ− for the ↑↑→↑↑ spin transition
(left panel) and K− p → π+Σ− (right panel) amplitudes. The K− p →
π+Σ− amplitude is taken from the model Oset-Ramos [35]

Ref. [16,17,77], where it was shown that the imaginary part
of the amplitude is tied to the triangle singularity, while the
real part is tied to a threshold effect.

In the right panel of Fig. 9, we show the real and imaginary
parts of the tK− p,π+Σ− amplitude, the one that dominates
the reaction in the mechanism of Fig. 2b. As one can see in
Eqs. (21, B.5), the shape of the K−d → pΣ− amplitude is
not a mapping of the one from tK− p,π+Σ− . Actually, compar-
ing both panels, it can be appreciated that the TS has created
a structure of its own thereby making the amplitudes differ
significantly from each other. Nevertheless, by construction,
Eqs. (21, B.5) constrain the shape and strength of tK−d,pΣ− to
be strongly tied to that of K̄ N → πΣ amplitude. Moreover,
the terms in F ′ and G ′ of Eq. (B.5) (Appendix B) show-
ing explicitly the couplings of the Λ(1405) resonances to
the K̄ N and πΣ channels (those which are not factorized
in terms of the tK− p,K− p or tK− p,π+Σ− amplitudes) give a
small contribution of the order of 5% in the K−d → pΣ−
amplitudes. Therefore, this last magnitude is basically pro-
portional to the K− p → π+Σ− amplitude. The fact that the
two amplitudes tK−d,pΣ− and tK− p,π+Σ− are so different, in
spite of the approximate factorization of the latter amplitude
in tK−d,pΣ− , is due to the extra factors in the formula of G ′
in Eq. (B.5) which carry the information of the TS structure.

Finally, we analyze the impact of the K− p → K− p,
π+Σ− amplitudes from different models on the K−d →

Eqs. (13), since k is small compared to the integration variable, we
simply take k = 0.

pΣ− cross section. To this end, four models have been
considered whose nature could be representative of what
one can find in the literature: Oset-Ramos [35], Roca-Oset
[46], Cieplý-Smejkal [48] and Feijoo-Magas-Ramos [78].
All of them are derived from a chiral SU (3) Lagrangian and
implementing a unitarization scheme in coupled channels, as
well as limited to s-wave projection. Despite this common
approach, there are some peculiarities worth mentioning that
can be useful for a future understanding of potential exper-
imental data. We discuss the different models one by one
below.

Oset-Ramos [35]: This first model uses a Weinberg–
Tomozawa (WT) contribution as driving term in the interac-
tion kernel. The authors took into account, for the first time,
the full S = −1 meson-baryon basis for the regularization
of loop integral in coupled channels.

Roca-Oset [46]: This model takes as building block the
previous one, yet reducing the basis to πΛ,πΣ, K̄ N chan-
nels. It has special interest for the present study because,
apart from the ordinary K− p → πΛ,πΣ, K̄ N total cross
sections and threshold observables, the authors incorporated
the CLAS data for the Λ(1405) photoproduction [79] in the
fits to constrain the model parameters.

Cieplý-Smejkal: The third one is the model called NLO30
in Ref. [48]. This is a model based on a chirally motivated
potential, written in a separable form, whose central piece
is derived from the Lagrangian up to next-to-leading order
(NLO). The authors took into account in the fitting procedure
the very precise measurements of the shift and width of the
1S state in kaonic hydrogen carried out by SIDDHARTA
Collaboration [80].

Feijoo-Magas-Ramos: This model corresponds to the fit
called WT+Born+NLO carried out in [78]. It was constructed
by adding the interaction kernels derived from the Lagrangian
up to NLO, and including additional experimental data at
higher energies in the fits. This model is the natural extension
of Oset-Ramos.

In Fig. 10, we show the Real and Imaginary parts of the
amplitudes from the models that we discuss. We see that
above threshold all the models basically coincide, but below
threshold the different models give very different amplitudes.
This means that any difference that we find for the present
reaction between these models, that we discuss next, have
to be attributed to the different amplitudes below threshold,
indicating that the K−d → pΣ− reaction is indeed very
sensitive to this amplitude.

In Fig. 11 we plot the resulting K−d → pΣ− cross sec-
tions for the models discussed above. The most revealing
feature in the figure is the significant difference in the cross
section strength among them at small values of

√
s. The Oset-

Ramos (dashed line) and Feijoo-Magas-Ramos (dotted line)
produce almost identical results. The discrepancies become
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Fig. 10 K− p elastic
amplitudes for the considered
models, real part in the left
panel and imaginary part in the
right panel

Fig. 11 K−d → pΣ− cross sections ( kp σ ) for the considered models.
More details in the text

more evident when comparing the former models with Oset-
Roca (dash-dotted) and Cieplý-Smejkal (dash-dot-dot line)
being of the order of 40% and 100%, respectively. For low
values of

√
s in the K−d → pΣ− reaction, the contributions

of the K̄ N amplitudes in the loop integral come mostly from
K̄ N invariant masses in the subthreshold region where the
K̄ N models present the greatest disagreements. One expects
that, as the energy of the K− increases, the Λ(1405) invariant
mass, still restricted by the nucleon dynamics in the deuteron,
has more access to values where all models have a better
agreement among themselves because they have been fit-
ted to the same experimental data. This effect is somewhat
seen in Fig. 11 by the convergent trend shown by the models
at higher energies. Roughly speaking, the process proposed
in the present study acts as an indirect window to the sub-
threshold K̄ N amplitudes that cannot only be used as a tool

Fig. 12 Effects of the S- and D-wave contributions of the deuteron
wave function (WF) on the K−d → pΣ− cross section, for the domi-
nant spin transition (↑↑→↑↑) and taking into account the Oset-Ramos
Model for the S = −1 meson-baryon amplitudes

to discern which models are suitable to describe the physics
in such a region but also may shed some light on the location
of the lower mass pole of the Λ(1405) resonance.

The calculations so far have been done using only the S-
wave part of the deuteron wave function, normalized to unity,
and neglecting the D-wave part, which normally provides
small corrections to different observables. We have checked
that this is the case here and have redone the calculations
using both waves from the Bonn potential [72] for the dom-
inant spin transition ↑↑ (of pΣ− system) → 1 1 ( JM of
the deuteron). The details on how to account for the D-wave
are given in Appendix C. In Fig. 12, we have evaluated the
role of the D-wave on the cross section for K−d → pΣ−
for the dominant ↑↑→↑↑ transition and we find effects that
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(a) (b) (c)

Fig. 13 Several alternative mechanisms that can produce the K−d → pΣ− (pΣ− → K−d) reaction: a impulse approximation, b impulse
approximation with rescattering, c Σ(1385) excitation

range from 9% at low energies to 3% at higher energies. This
effect falls well within uncertainties in our model and, most
important, it is very small compared to the differences found
for different models of a factor two or more.

4 Discussion

We have relied upon the mechanism for pΣ− → K−d
reaction that develops a TS, which in principle dominates
over other possible mechanism where no singularity devel-
ops. The mechanism is analogous to the one of pp → π+d
studied in [25] replacing pp by pΣ− and the π+ by K−. In
[25], it was shown that the mechanism analogous to Fig. 2
with the Λ(1405) replaced by the Δ(1232) also developed
a TS and reproduced very well the experimental data. Other
mechanisms, like the impulse approximation, were consid-
ered therein (Ref. [25]) and they were found negligible versus
the TS mechanism. This should be the case here too, but we
take the opportunity to discuss other possible mechanisms
which we plot in Fig. 13.
Figure 13a depicts the impulse approximation. The momen-
tum of the Σ− in this reaction for a K− at threshold is about
513 MeV/c. We have to pick up this momentum from the
deuteron wave function, and taking into account the Bonn
wave function [72] it has fallen by about four orders of
magnitude with respect to its maximum at zero momentum.
On the other hand, the K NΣ Yukawa vertex is of the type
σ · pK− which also vanishes when the K− goes to thresh-
old. The mechanism is completely negligible. The diagram
of Fig. 13b relies upon the same mechanism but involves final
state interaction. The off shellness can be split now between
the deuteron and the intermediate Λ, Σ states, softening
somewhat the drastic reduction found for the mechanism of
Fig. 13a. Yet, the Yukawa coupling for the near threshold
K− does not give room to any relevant contribution. Finally,
we show another potential mechanism depicted in Fig. 13c.
This mechanism involves the K−NΣ(1385) vertex, which
has also p-wave coupling of the type S+pK− (S+ being the
spin transition operator from spin 1/2 to spin 3/2). Once
again, this mechanism has no chance to provide any appre-
ciable contribution for the near threshold kaons that we have.

In order to further stress the role of the TS mechanism
for the reaction, we consider the diagram equivalent to
Fig. 2b (the one providing the largest contribution) but with
a Λ(1115) instead of the Λ(1405). We can take advantage
of the results obtained so far and start from the amplitude
of Eq. (11). We obtain the contribution of the Λ(1115) with
minor changes:

a) Replace

gΛ∗,K− p · gΛ∗,π+Σ− →
(

2√
3

D

2 f
σk + 1√

3

−D − 3F

2 f
σq

)

(22)

b) Replace

EΛ∗ − i
ΓΛ∗

2
→ EΛ (23)

The replacement in point a) naturally brings to re-express
Wi j → W

′
i j = 〈 j |σ (1)qσ (2)kσ (2)q|i〉. Again we evaluate

that for the most important transition, namely ↑↑→↑↑ where

W
′
11(q) = qz

[
k · q + i(kxqy − kyqx )

]
. (24)

The results for the cross sections are shown in Fig. 14. We
observe that in the region close to threshold where the TS
shows up the contribution is about four orders of magnitude
smaller. One of the reasons is that the Λ → K− p coupling
involves a p-wave which rapidly decreases close to threshold.
In fact, in the plot, we observe that the new contribution is
only about one fourth of the one coming from TS at larger
energies. One can completely ignore this mechanism in the
TS region and so can we say of other intermediate states like
the Σ(1197), Σ∗(1385) or Λ(1520) (d-wave).
One can also ask about the possible role of initial or final
state interaction of the K−d → pΣ− reaction. The ini-
tial state interaction with K− interacting with the nucleons
of the deuteron is dominated by the high Λ∗ resonance at
1426 MeV and has already been taken into account. The
final state interaction of the pΣ− deserves some comment.
This interaction is relevant when the kinetic energy of the
system is small compared with the pΣ− potential. Here the
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Fig. 14 Comparison between the contributions to the K−d → pΣ−
total cross section from the mechanism depicted in Fig. 2b and the
analogous one with Λ(1115) in the triangle topology instead for the
↑↑→↑↑ spin transition. See more details in the text

(a) (b)

Fig. 15 Mechanisms considered in Refs. [45,46,84]

kinetic energy is large, mK +md −mp −mΣ = 236.5 MeV,
much larger than the average pΣ− potential. One can get a
feeling of the situation by taking the pΣ− scattering length
most suited to our problem with I = 1/2 and spin triplet,
a = 2.61 − i2.89 fm [81]. This is small compared to the
np I = 0 spin triplet of the deuteron, a = 5.38 fm which
barely binds the deuteron by 2.2 MeV. Another indication
is given by the binding of Σ− in nuclei. The strong interac-
tion from fits to pionic atoms results in an attractive potential
Σ−-nucleus of about 30 MeV coming from the interaction of
the Σ− with all nucleons of the nucleus within the range of
the interaction [82,83]. Assuming a few nucleons contribut-
ing to this potential, the magnitude obtained for the pΣ−
potential is very small compared to the 236.5 MeV of kinetic
energy of the pΣ− system here, which allows us to ignore
the contribution of the final state interaction.

It is also interesting to put the new reaction in perspective
to see what can we gain from its observation. The point in
the conclusions is that one can learn about the K̄ N interac-
tion below threshold where the theoretical models still differ
significantly.

Ideally, it would be good to parametrize the amplitudes
in terms of subthreshold parameters such as pole positions
in the complex plane and residues at the poles, and use the
data to obtain those parameters. This is actually one of the
options that we have used in the present study (see solid line

in Fig. 11). Yet, this is not sufficient, as this parametrization
is valid only in the proximity of the poles, and the use of
the full amplitudes produces the differences that we observe
in Fig. 11, comparing the solid and the dashed line. On the
other hand, the information on these subthreshold parame-
ters requires, using only the K̄ N and πΣ channels, 2 com-
plex poles, 2 complex couplings for each resonance to each
of these channels, in total 12 parameters, as one can see in
Table 1. Conversely, one can see the amount of free parame-
ters in the different recent theories, which is around 15 (16 in
the model of Ref. [78]). It is clear from the shape of the pre-
dictions for the cross section in Fig. 11 that the data does not
contain enough information to determine all these parame-
ters, since it is easy to parametrize it in terms of about 3
parameters for a parabola shape, for example. In any case,
one is very far away from the 12 to 16 parameters that we
would need to determine the amplitudes below threshold. It
is thus clear that the information obtained from the present
reaction is partial and has to be added to other information
obtained from different reactions. Yet, we have proved that
the reaction is very sensitive to the subthreshold amplitudes
by comparing different models and, hence, should play a rel-
evant role in determining these amplitudes, when added to
the information from other reactions. In this sense, we dis-
cuss below the complementary reactions that globally could
help us to determine these amplitudes.

One source of information comes from the study of pho-
tonuclear γ p → K+πΣ reactions [79], which were stud-
ied theoretically in Refs. [45,46,84] and allowed to obtain
important information concerning the two Λ(1405) states.
The mechanisms considered in this latter papers are depicted
in Fig. 15. As can be seen from this figure, one can test the
πΣ → πΣ and the K̄ N → πΣ amplitudes below the
K̄ N threshold in the region of the two Λ(1405) states. If we
compare, these mechanisms with those of Fig. 2, we see that
in addition we have here the mechanism of Fig. 2a which
involves the K− p → K− p amplitude, which, depending
on the model, can give different contributions, although we
found here that the contribution of this diagram is relatively
small. On the other hand, in the photonuclear reaction (see
Fig. 15) one has three particles in the final state, and the
mass distribution of the πΣ system spreads around in a long
range since it depends on the K+ momentum. By contrary,
the mechanisms of Fig. 2, due to the TS, are more selective to
the configuration that places the Λ on shell. It was also found
in [45,46] that both Λ∗ resonances contributed to the reac-
tion, with different weight depending on the photon energy,
while here our process is dominated by the high Λ∗ pole.
In summary, one collects complementary information from
both reactions.

Related to this reaction we can also mention the K− p →
π0π0Σ0 reaction measured in [85] and studied theoretically
in [41] by means of the mechanism depicted in Fig. 16, where
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Fig. 16 Mechanism for the K− p → π0π0Σ0 reaction

Fig. 17 Feynman diagram for the process ν̄l p → l+φB

the Λ(1405) is excited in spite of using kaon beams with
K− p (initial) above threshold.

Similarly, the ν̄ induced Λ(1405) production, studied the-
oretically in [86] and schematically represented in Fig. 17,
will also bring information on the Λ(1405), and hence on
K̄ N subthreshold amplitude below threshold. This latter
reaction is one of the possible output of the MicroBooNE
collaboration, where Λ, Σ and related hyperons production
is presently under analysis.3 In addition, it is expected that
SBND will be able to measure such processes with huge
statistics.

A different source of information comes from the K−d →
πΣN reaction [87,88] studied theoretically in Refs. [89–92].
The basic mechanism for this reaction is depicted in Fig. 18.
The reaction starts from a fast K− (around 1 GeV/c) which
loses its energy upon collision with a neutron of the deuteron,
and the resulting K− interacts with a proton to give πΣ .4

We only have the K− p → πΣ amplitude at low energies
and not the K− p → K− p and, similarly to what happens
in the photoproduction case, we have three particles in the
final state and the same πΣ invariant mass can be obtained
from different configurations of the n. Once again we see
that the reaction studied here and the K−d → πΣN one
provide complementary information to our knowledge of the
K̄ N → πΣ and K̄ N → K̄ N amplitudes below threshold.

3 Luís Álvarez-Ruso, private communication.
4 The study for low energy kaons was done in [93] and proved not to
be as good as with energetic kaons.

Fig. 18 Mechanism for the K−d → πΣN reaction

5 Conclusions

We have investigated the pΣ− → K−d and its time rever-
sal K−d → pΣ− reactions, which are driven by a triangle
mechanism with the Λ(1405), a proton and a neutron in the
intermediate states. We show that the triangle mechanism
develops a triangle singularity which magnifies the cross
section and produces a particular shape in the cross section.
We show analytically that in the case of a narrow Λ(1405)

width, a TS appears a few MeV above threshold, and this peak
becomes broader upon consideration of the Λ(1405) width.
We could show that of the mechanisms involving a π or K
exchange, the one involving the π exchange is the dominant
one, and of the two Λ(1405) resonances, the one of higher
mass gives also the largest contribution. We showed, from the
analytical expression of the transition amplitude, that it was
weighting the K− p → π+Σ− amplitude below threshold
with a particular configuration tied to the TS which produced
a shape quite distinct from the one of the K− p → π+Σ−
amplitude. This dependence on the K̄ N and πΣ amplitude
below threshold makes this reaction quite sensitive to differ-
ent models that, giving similar cross sections for K̄ N reac-
tions above threshold, produce rather different extrapolations
of the K̄ N amplitudes below threshold. This information is
relevant in the issue of K̄ bound states in nuclei [94–96].
Thus, the measurement of this reaction will provide new and
valuable information concerning this problem. On the other
hand, with regard to the two poles of the Λ(1405), one around
1420 MeV and the other one around 1385 MeV, while prac-
tically all theoretical models coincide on the features of the
Λ(1420), they differ substantially in the position and width
of the lower mass one. The new information provided by
this reaction will help to narrow the predictions around the
second state.
Concerning the feasibility of the experiment, two lines
emerge as good candidates. The Kaon beam of JPARC can be
used, and even counting the low rates of low energy kaons, the
experiment can be carried out.5 Another possibility is to pho-
toproduce the Σ− at Jefferson Lab and do the Σ− p → K−d
reaction. The Λp → Λp reaction with this technique has

5 We appreciate fruitful discussions with M. Iwasaki and collaborators.
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been successfully tested [97], but higher statistic samples
than the present one would be needed.6
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Appendix A: Spin matrix elements Vi j and Wi j .

The σ · q product is expressed as:

σ · q = σ+q− + σ−q+ + σzqz (A.1)

with

q+ = qx + i qy

q− = qx − i qy

σ+ = 1

2
(σx + i σy)

σ− = 1

2
(σx − i σy). (A.2)

Then, the elements of the spin-transition matrix for a cou-
ple of incoming 1

2 -baryons (p and Σ−, in this case) going
to the constituent pair of nucleons merged in the deuteron
(S=1) can be written in the following form.

6 We thank K. Hicks for fruitful discussions and useful information.

Accounting for mechanism (a) in Eq. (11)), Vi j :

↑↑→↑↑: V11 = qz

↑↑→ 1√
2
(↑↓ + ↓↑) : V12 = 1√

2
q+

↑↑→↓↓: V13 = 0

↑↓→↑↑: V21 = q−

↑↓→ 1√
2
(↑↓ + ↓↑) : V22 = − 1√

2
qz

↑↓→↓↓: V23 = 0

↓↑→↑↑: V31 = 0

↓↑→ 1√
2
(↑↓ + ↓↑) : V32 = 1√

2
qz

↓↑→↓↓: V33 = q+
↓↓→↑↑: V41 = 0

↓↓→ 1√
2
(↑↓ + ↓↑) : V42 = 1√

2
q−

↓↓→↓↓: V43 = −qz

(A.3)

Accounting for mechanism (b) in Eq. (11)), Wi j :

↑↑→↑↑: W11 = qz

↑↑→ 1√
2
(↑↓ + ↓↑) : W12 = 1√

2
q+

↑↑→↓↓: W13 = 0

↑↓→↑↑: W21 = 0

↑↓→ 1√
2
(↑↓ + ↓↑) : W22 = 1√

2
qz

↑↓→↓↓: W23 = q+
↓↑→↑↑: W31 = q−

↓↑→ 1√
2
(↑↓ + ↓↑) : W32 = − 1√

2
qz

↓↑→↓↓: W33 = 0

↓↓→↑↑: W41 = 0

↓↓→ 1√
2
(↑↓ + ↓↑) : W42 = 1√

2
q−

↓↓→↓↓: W43 = −qz

(A.4)

Appendix B: F′ and G′ functions.

As shown below, in order to factorize the tl,m amplitudes, the
mass and width of the heavier resonance at 1426 MeV are
taken in the terms (P0 − EΛ∗(P−q)−ωK (q)+ i ΓΛ∗

2 )−1 of

F ′ and (P ′0 − EΛ∗(−P−q)−ωπ(q)+ i ΓΛ∗
2 )−1 of G ′. This

can be done because these terms are very small compared to
the other terms in the same bracket and this resonance is the
one giving the largest contribution.
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The F ′ and G ′ functions in Eq. (21) are defined as:

F ′(P0, P ′0,q, ωK ,P, k) = 1

2ωK (q)

MN

EN (P − q − k)

MN

EN (−P + q)

1√
s − k0 − EN (−P + q) − EN (P − q − k) + iε

×

⎧⎪⎨
⎪⎩

∑
i=1,2

M(i)
Λ∗

E(i)
Λ∗ (P − q)

(g(i)
Λ∗,K− p

)2

P0 − ωK (q) − E(i)
Λ∗ (P − q) + i

Γ
(i)
Λ∗
2

1

P0 − ωK (q) − k0 − EN (P − q − k) + iε

+
⎛
⎝ 1

P0 − EΛ∗ (P − q) − ωK (q) + i
ΓΛ∗

2

+ 1

P ′0 − EN (−P + q) − ωK (q) + iε

)
tK− p,K− p(Minv)

}
,

G′(P0, P ′0,q, ωπ ,P, k) = 1

2ωπ (q)

MN

EN (−P − q − k)

MN

EN (P + q)

1√
s − k0 − EN (P + q) − EN (−P − q − k) + iε

×

⎧⎪⎨
⎪⎩

∑
i=1,2

M(i)
Λ∗

E(i)
Λ∗ (−P − q)

g(i)
Λ∗,K− p

g(i)
Λ∗,π+Σ−

P0 − ωπ (q) − E(i)
Λ∗ (−P − q) + i

Γ
(i)
Λ∗
2

1

P ′0 − ωπ (q) − k0 − EN (−P − q − k) + iε

+
⎛
⎝ 1

P ′0 − EΛ∗ (−P − q) − ωπ (q) + i
ΓΛ∗

2

+ 1

P0 − EN (P + q) − ωπ (q) + iε

)
tK− p,π+Σ− (M ′

inv)

}
,

(B.5)

with M2
inv = s + M2

N − 2
√
sEN (−P + q) and M ′2

inv =
s + M2

N − 2
√
sEN (P + q).

Appendix C: D-wave contribution.

We show here how to evaluate the contribution of the
deuteron D-wave function. Following Appendix C of Ref.
[72], we have for the deuteron wave function

ϕM
d (p) =

[
ψ0(p)Y1M

01 ( p̂) + ψ2(p)Y1M
21 ( p̂)

]
(C.6)

where Y JM
LS ( p̂) are the angular-spin wave functions of the

two nucleons with orbital angular momentum L , spin S, and
total angular momentum J with projection M .

Y JM
LS ( p̂) =

∑
m

C(LSJ ;m, M − m)YLm( p̂)|S, M − m〉

(C.7)

we evaluate the matrix element for the transition ↑↑→ 1 1
(JM) which is the dominant one. We have

ψ2(p)Y11
21 ( p̂) = ψ2(p)

{√
3

5
Y22( p̂)|1,−1〉 −

√
3

10
Y21( p̂)|1, 0〉

+
√

1

10
Y20( p̂)|1, 1〉

}

= ψ2(p)

{√
3

5
Y22( p̂) ↓↓ −

√
3

10
Y21( p̂)

√
1

2
(↑↓ + ↓↑) +

√
1

10
Y20( p̂) ↑↑

}
, (C.8)

where in the first part of the equation the |S, MS〉 spin states
are written and in the second part they are expressed in terms
of |s1, s2〉 of the nucleon spin projections. The transition from
the initial state ↑↑ to the final 1 1 (JM) in D-wave for the
mechanism (a) is readily evaluated using Eqs. (A3), and the
Vi j magnitude is replaced by

Ṽ =
√

1

10
Y20( p̂)qz −

√
3

10
Y21( p̂)

√
1

2
q+ (C.9)

where

p = P − q − k
2

(C.10)

with the momenta P,q,k defined after Eq. (16).
We find

Y21( p̂) =
√

15

8π

sin θ̃ cos θ̃

|p|
{
(q + k

2
)x + i(q + k

2
)y

}

Y20( p̂) =
√

5

4π

(
3

2
cos2 θ̃ − 1

2

)
(C.11)

where

cos θ̃ = P − q cos θ − k
2 cos θk

|p| . (C.12)

Hence, to include the ↑↑→ 11 D-wave contribution, we
must do the replacement

− (2π)3/2ψ(p)qz → −(2π)3/2

{
wsψ(p)qz + ψ2(p)

[√
1

10
Y20( p̂)qz −

√
3

10
Y21( p̂)

√
1

2
q+

]}
,

(C.13)

where ψ(p) is the wave function of Eq. (18), which
already includes the Y00 spherical harmonic, and where w2

s
stands for the S-wave probability with ws = 0.9752. The
same holds for the ↑↑→ 11 transition of the mechanism (b),
since for the ↑↑ initial state the three Wi j matrix elements
are the same as Vi j , but now p = −P − q − k

2 .
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We take advantage to mention that in Ref. [72] the
deuteron wave functions in coordinate space and momen-
tum space given by Eqs. (C19) and (C21) respectively for
s-wave are correct, the one of the d-wave of Eq. (20) corre-
sponds indeed to the results of Table XIX, but the formula of
Eq. (22) for d-wave in momentum space, should be changed
of sign.7 We have followed this latter prescription.
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