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Abstract We define thermodynamic pressure P by work
density W as the conjugate quantity of thermodynamic vol-
ume V from field equation. We derive the equations of state
P=P(V, T ) for the Friedmann–Robertson–Walker (FRW)
universe in Einstein gravity and a modified gravity respec-
tively. We find that the equation of state from Einstein gravity
shows no P-V phase transition, while the equation of state
from the modified gravity does, where the critical exponents
are the same as those in mean field theory.

1 Introduction

The Friedmann–Robertson–Walker (FRW) universe is a ther-
modynamic system similar to a black hole. In theory, a black
hole has many well-known properties, e.g. the existence
of a horizon, Hawking temperature and Hawking radiation
[1], Bekenstein–Hawking entropy, quasi-local energy, uni-
fied first law [2,3], etc. These mentioned properties are all
shared by the FRW universe [4–12].

On the other hand, some other properties of black holes
have not yet been known to exist for the FRW universe. Take
the asymptotically AdS black hole as an example, in both
Einstein gravity and modified gravity, it usually has a ther-
modynamic equation of state P = P(V, T ), where V is the
thermodynamic volume, T is the Hawking temperature, and
P is the thermodynamic pressure that is usually defined by
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the cosmological constant [13–18]1. In some situations such
an equation is characterized the P-V phase transition [22–
27] with a critical point in the P-V phase diagram. However,
for the FRW universe, so far there has been rarely any inves-
tigations on the equation of state, P-V phase transitions and
criticality. In a recent paper [28], the equation of state for
the FRW universe with a perfect fluid in Einstein gravity has
been constructed, but no P-V phase transition was found.2

Out of curiosity, in this paper we would like to find a rea-
sonable way to construct an equation of state that can describe
phase transitions of the FRW universe. The construction of
such an equation of state depends on: (i) the definition of
the thermodynamic quantities (P , V , T ); (ii) the choice of
the gravitational theory; and (iii) the properties of the matter
field or source. The basic setup for this paper is the following:
For (i), we follow the definitions of the thermodynamic vol-
ume V and the Hawking temperature T in [7,8], but very
importantly we change the definition of P . From the first
law of thermodynamics for the FRW universe in Einstein
gravity and many modified theories of gravity, we find that
the work density W of the matter field is the conjugate vari-
able of the thermodynamic volume, so it should be defined
as the thermodynamic pressure

1 However, it should be noted that from holography or AdS/CFT, the
cosmological constant � is related with the rank N of a gauge group
(or number of colors) [13], so treating the cosmological “constant” in
the bulk as a thermodynamical “variable” corresponds to treating the
number of colors in the dual boundary theory as a thermodynamical
variable [13,17,19,20], which changes the theory and does not belong
to the standard thermodynamical method [21].
2 Note that investigations have shown that the existence of an apparent
horizon is the main cause of having a self-consistent thermodynamics
[2,4,5,9]. Although the FRW thermodynamics was historically inspired
by that of black holes, the self-consistency of the former in principle
does not rely on the latter.
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P ≡ W = −1

2
habT

ab, (1.1)

where hab and T ab are the 0, 1-components of the metric
and the stress–tensor [7] with a, b = 0, 1, (x0 = t, x1 = r).
For (ii), after a brief discussion on Einstein gravity, we will
mainly focus on a modified theory of gravity that belongs to
the Horndeski class, because it gives interesting Friedmann’s
equations. For (iii) we treat the matter field as a perfect fluid
as is usually done in standard cosmology.

This paper is organized as follows. In Sect. 2, as a warmup
exercise, we construct the equation of state for the FRW uni-
verse in Einstein gravity, which does not show P-V phase
transition. In Sect. 3, we obtain the equation of state for the
FRW universe in a modified gravity that belongs to the Horn-
deski class. In Sect. 4, we show that P-V phase transition of
the FRW universe exists in the modified gravity. Section 5 is
for conclusions and discussions. In this paper, we use units
c = G = h̄ = kB = 1.

2 Einstein gravity: no P-V phase transition

In this section, we first show that the thermodynamic pressure
P can be defined by the work densityW for the FRW universe
in Einstein gravity, and then construct the equation of state
P = P(V, T ), which shows no P-V phase transition.

In the co-moving coordinate system {t, r, θ, ϕ}, the line-
element of the FRW universe can be written as

ds2 = −dt2 + a2(t)

[
dr2

1 − kr2 + r2(dθ2 + sin2 θdϕ2)

]
,

(2.1)

where a(t) is the time-dependent scale factor,3 k is the spa-
tial curvature. The stress–tensor of a perfect fluid is usually
written as

Tμν = (ρm + pm)uμuν + pmgμν, (2.2)

where ρm is the energy density, pm is the pressure and uμ

is the 4-velocity of the perfect fluid. In Einstein gravity, the
line-element (2.1) and the stress–tensor (2.2) satisfy Einstein
field equations

Rμν − 1

2
gμνR = 8πTμν, (2.3)

which gives the Friedmann’s equations

3 It means that the FRW universe belongs to dynamical spacetimes, and
has no global timelike Killing vector field, which makes it difficult to
define conserved charges using the method for stationary spacetimes.
In the Appendix, we show how to define conserved quantities in the
FRW universe and why the FRW universe can be regarded as a quasi-
equilibrium system.

H2 + k

a2 = 8π

3
ρm, Ḣ − k

a2 = −4π(ρm + pm), (2.4)

where H := ȧ(t)/a(t) is the Hubble parameter.
For convenience in the following discussion, we introduce

another form of the line-element (2.1)

ds2 = habdxadxb + R2(dθ2 + sin2 θdϕ2), (2.5)

where a, b = 0, 1, x0 = t, x1 = r and R ≡ a(t)r is the
physical radius4 of the FRW universe. The apparent horizon
of the FRW universe is defined by the following condition
[5]

hab∂a R∂bR = 0, (2.6)

which can be easily solved

RA = 1√
H2 + k

a2

. (2.7)

From the above expression, one can get a useful relation

ṘA = −HR3
A

(
Ḣ − k

a2

)
. (2.8)

The surface gravity at the apparent horizon of the FRW
universe is given as [5]

κ = − 1

RA

(
1 − ṘA

2HRA

)
, (2.9)

and we treat ṘA as a small quantity, so that the surface gravity
κ is negative, i.e. the apparent horizon of the FRW universe
is an inner trapping horizon [2] . This surface gravity has a
simple relation with the Ricci scalar of the FRW universe

κ = − RAR

12
. (2.10)

The Kodama–Hayward temperature is defined from the
surface gravity (2.9)

T ≡ |κ|
2π

= 1

2πRA

(
1 − ṘA

2HRA

)
. (2.11)

Furthermore, in Einstein gravity we have Bekenstein–
Hawking entropy

S ≡ A

4
= πR2

A, (2.12)

and Misner–Sharp energy [29,30]

M ≡ RA

2
(2.13)

4 The metric of the FRW universe in physical coordinates are also given
in the Appendix.
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for the FRW universe.
From (2.4), (2.7) and (2.8), one can express ρm and pm in

terms of RA and ṘA, i.e.

ρm = 3

8πR2
A

, pm = ṘA

4πHR3
A

− 3

8πR2
A

. (2.14)

Thus one can get the work density [2] of the matter field in
the FRW universe

W := −1

2
habT

ab = 1

2
(ρm − pm) = 3

8πR2
A

− ṘA

8πHR3
A

,

(2.15)

and the thermodynamic volume is

V ≡ 4πR3
A

3
. (2.16)

With the above quantities defined, the following relation
can be easily checked:

dM = −T dS + WdV . (2.17)

Compared with the first law of thermodynamics5

dU = T dS − PdV, (2.18)

we see that the internal energy U and thermodynamic pres-
sure P can be identified with −M and W , i.e.

U := − M, (2.19)

P :=W. (2.20)

Note that this definition of P using the work density is more
natural than that in the literature using the cosmological con-
stant, in the sense that it is here a true variable rather than a
constant.

The equation of state for the thermodynamic pressure
defined in (2.20) can be easily obtained from (2.11) and (2.15)

P = T

2RA
+ 1

8πR2
A

. (2.21)

It is then natural to ask whether this system has a P-V phase
transition, whose necessary condition is that the equation

(
∂P

∂V

)
T

=
(

∂2P

∂V 2

)
T

= 0, (2.22)

5 Strictly speaking, it is the Gibbs equation [3,31].

or equivalently

(
∂P

∂RA

)
T

=
(

∂2P

∂R2
A

)
T

= 0 (2.23)

has a critical-point solution T = Tc, P = Pc, RA = Rc. By
substituting (2.21) into (2.23), one can easily check that no
such solution exists, and thus there is no P-V phase transition
for the FRW universe with a perfect fluid in Einstein gravity.

3 Modified gravity: equation of state

In this section, we derive the equation of state for the FRW
universe in modified gravity, and we take the gravity with
a generalized conformal scalar field as an example, which
belongs to the Horndeski class.

3.1 A brief introduction of the gravity with a generalized
conformal scalar field

The most generic scalar–tensor theory is Horndeski gravity
[26], which allows high order derivatives in the action. Its
equations of motion has at most second order derivatives, so
there are no Ostrogradsky instabilities [32], which is simi-
lar to Lovelock gravity. Horndeski gravity has been used to
study the thermodynamics of black holes, where P-V phase
transition has been found, and this arouses our interest that
whether P-V phase transition can be found for the FRW
universe in this gravity.

The general form of the Lagrangian in Horndeski gravity
is written as [33],6

L = G2(φ, X) − G3(φ, X)�φ + G4(φ, X)R + G4;X [(�φ)2

− ∇μ∇νφ∇μ∇νφ] + G5(φ, X)Gμν∇μ∇νφ

− G5;X
6

[(�φ)3 − 3�φ∇μ∇νφ∇μ∇νφ

+ 2∇μ∇νφ∇ν∇λφ∇λ∇μφ], (3.1)

where G2,G3,G4 and G5 are arbitrary functions of φ and
X := −∇μφ∇μφ/2 ≡ −(∇φ)2/2. In the following, we only
consider a special example of the Horndeski gravity, where
the scalar field is conformally invariant [32]. In this case, the
action is obtained as7

S = 1

16π

[∫
(R − 2�)

√−gd4x + Sα + Sβ + Sλ + Sm

]
,

(3.2)

6 It is also called generalized Galileon theory [34,35].
7 If β and λ are zero, it reduces to the action of the regularized 4d
Einstein-Gauss-Bonnet gravity [36].
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where

Sα = α

∫
[2(∇φ)4 + 4�φ(∇φ)2

+ 4Gμν∇μφ∇νφ − φG]√−gd4x, (3.3)

Sβ = − β

∫
[R + 6(∇φ)2]e2φ√−gd4x, (3.4)

Sλ = − 2λ

∫
e4φ√−gd4x, (3.5)

and Sm stands for the action of other matter fields, such as
the perfect fluid. The above action (3.2) is a special example
of Horndeski gravity (3.1) with

G2 = −2� − 2λe4φ + 12βe2φX + 8αX2, G3 = 8αX,

G4 = 1 − βe2φ + 4αX, G5 = 4α log X. (3.6)

3.2 The equation of state for the FRW universe

In this part, we apply this modified gravity to the FRW uni-
verse and get its equation of state. We start with the Fried-
mann’s equation, then get the first law of thermodynamics,
and obtain the equation of state in the end.

For convenience, we apply this modified gravity (3.2) to
the spatially flat (k = 0) FRW universe with stress–tensor
(2.2) and � = 0. In this case, the modified Friedmann’s
equations [32] are very simple8

(1 + αH2)H2 =8π

3
ρm, (3.7)

(1 + 2αH2)Ḣ = − 4π(ρm + pm), (3.8)

and satisfy the continuity equation

ρ̇m + 3H(ρm + pm) = 0. (3.9)

Interestingly, the above equations have the same form as the
ones from holographic cosmology [37,38], quantum cor-
rected entropy-area relation [39], generalized uncertainty
principle [40], and the 4d EGB gravity [36].

For the spatially flat FRW universe, the relations (2.7) and
(2.8) are much simplified

RA = 1

H
, ṘA = −Ḣ R2

A, (3.10)

which can be used to rewrite the Friedmann’s equations (3.7)
and (3.8), and the results are

8 Remarkably, although there are three coupling constants α, β, λ in the
action (3.2), only α is present in the modified Friedmann’s equations,
see [32] for the derivations.

(
1 + α

R2
A

)
3

8πR2
A

=ρm, (3.11)

(
1 + 2α

R2
A

)
ṘA

4πR2
A

=ρm + pm . (3.12)

Therefore, the work density of the matter field is

W := −1

2
habT

ab = 1

2
(ρm − pm) =

(
1 + α

R2
A

)
3

8πR2
A

−
(

1 + 2α

R2
A

)
ṘA

8πR2
A

, (3.13)

and the thermodynamic volume can still take the form of
V = 4πR3

A/3.
The Kodama–Hayward temperature (2.11) for the spa-

tially flat FRW universe reduces to

T = 1

2πRA

(
1 − ṘA

2

)
, (3.14)

but its conjugate entropy may not take the Bekenstein–
Hawking form S = A/4, because it is known that this form
does not hold in many theories beyond Einstein gravity (see
e.g. [39]). Corresponding to the action (3.2) we make the
following ansatz for the entropy.9

S = A

4
+ α f (RA) + βg(RA) + λh(RA), (3.15)

which guarantees that the Bekenstein–Hawking entropy can
be recovered in the Einstein gravity limit α, β, λ → 0.

The energy for the FRW universe here can be easily
obtained from (3.11)

E = ρmV =
(

1 + α

R2
A

)
RA

2
, (3.16)

which could be regarded as the effective Misner–Sharp
energy, so it should also satisfy the relation (2.17)

dE = −T dS + WdV, (3.17)

except that W, T, S take the new forms in (3.13), (3.14), and
(3.15) respectively.

9 For stationary black holes, there are a number of approaches [41] to
calculate the entropy, such as the Euclidean method and Noether charge
method. For dynamical black holes, Wald [42] proposed that one can
use locally defined geometric quantities to get the entropy. Inspired by
Wald’s work, Hayward [43] proposed that one can use Kodama vector
instead of Killing vector in the Wald formula to give the definition of
dynamical black hole entropy. This method should be applicable to the
FRW universe in this modified gravity as well, but it is more complex
and will not be used in this paper.
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One immediate finding is that the expression of the entropy
(3.15) can be determined from (3.17)

S = A

4
+ 2πα ln

(
A

A0

)
, (3.18)

where A0 can take any constant with the dimensionality of
area to guarantee the logarithmic function is well defined. In
the above entropy, there is only one correction term to the
Bekenstein–Hawking entropy as expected, which is also the
same form as the static black hole entropy derived in the same
theory [32], the black hole entropy with quantum or thermal
correction [39,44–51] and the entropy of 4d Gauss-Bonnet
black hole in AdS space [52].

In the same way as we did for Einstein gravity, here again
we identify the internal energy U with −E and the thermo-
dynamic pressure P with W , i.e.

U ≡ −E, (3.19)

P ≡W, (3.20)

then the standard first law of thermodynamics (Gibbs equa-
tion) can be established

dU = T dS − PdV . (3.21)

Finally, from (3.13), (3.14) and (3.20), we obtain the equation
of state:

P = T

2RA
+ 1

8πR2
A

+ αT

R3
A

− α

8πR4
A

. (3.22)

4 Modified gravity: P-V phase transition

In this section, we show that the equation of state (3.22) for
FRW universe has a critical point and the critical exponents
are the same as the mean field theory, i.e. the FRW universe
has a P-V phase transition.

For the equation of state (3.22), the critical condition
(2.22) can be written as

2πTcR
3
c + R2

c + 12παRcTc − 2α = 0, (4.1)

4πTcR
3
c + 3R2

c + 48παRcTc − 10α = 0. (4.2)

If α > 0, the critical radius and temperature can not be both
positive, so there is not any physical solution in this case. If
α < 0, there is a critical point

Rc =
√

(6 − 4
√

3)α, Tc =
√

6 + 4
√

3

12π
√−α

,

Pc = −15 + 8
√

3

288πα
. (4.3)

A dimensionless constant can be acquired from the above
three values:

ρ = 2PcRc

Tc
= 6 + √

3

12
. (4.4)

Near the critical point, there are four critical exponents
(α̃, β, γ, δ) defined in the following way [26,52]:

CV =T

(
∂S

∂T

)
V

∝ |t |−α̃, (4.5)

η =Vl − Vs
Vc

∝ |t |β, (4.6)

κT = − 1

V

(
∂V

∂P

)
T

∝ |t |−γ , (4.7)

p ∝ vδ, (4.8)

where

t = T − Tc
Tc

, p = P − Pc
Pc

, v = V − Vc
Vc

. (4.9)

In most cases, the four critical exponents satisfy the following
four scaling laws

α̃ + 2β + γ = 2, α̃ + β(1 + δ) = 2,

γ (1 + δ) = (2 − α̃)(δ − 1), γ = β(δ − 1), (4.10)

in which there are actually two independent relations. In the
following, we will calculate the four critical exponents and
check whether they satisfy the scaling laws.

The entropy (3.18) of the FRW universe in this modified
gravity is also a function of the thermodynamic volume V ,
so CV is zero, which means the first critical exponent α̃ is
zero. To get the other three critical exponents conveniently,
one can expand the thermodynamic pressure or the equation
of state (3.22) around the critical point

p = a10t + a11tv + a03v
3 + O(tv2, v4), (4.11)

where the coefficients are

a10 =
(

∂p

∂t

)
c

= Tc
Pc

(
∂P

∂T

)
c

= Tc(R2
c + 2α)

2PcR3
c

< 0, (4.12)

a11 =
(

∂2 p

∂t∂v

)
c

= RcTc
3Pc

(
∂2P

∂T ∂RA

)
c

= − Tc(R2
c + 6α)

6PcR3
c

> 0, (4.13)

a03 = 1

3!

(
∂3 p

∂v3

)
c

= R3
c

162Pc

(
∂3P

∂R3
A

)
c

= R2
c + 6α

648π PcR4
c

< 0.

(4.14)
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The Gibbs free energy is defined as usual

G := U + PV − T S, (4.15)

so we have

dG = −SdT + V dP, (4.16)

and thus the Maxwell’s equal area law still holds. The values
of P at the two endpoints of the coexistence line are the same

p∗ = a10t + a11tvs + a03v
3
s = a10t + a11tvl + a03v

3
l ,

(4.17)

or

a11(vl − vs)t + a03(v
3
l − v3

s ) = 0, (4.18)

where the labels ‘s’ and ‘l’ stand for ‘small’ and ‘large’
respectively. Another relation is

∫
vdp =

∫ vl

vs

v

(
∂p

∂v

)
t
dv = 0, (4.19)

so we have

2a11(v
2
l − v2

s )t + 3a03(v
4
l − v4

s ) = 0. (4.20)

From the above two relations (4.18) and (4.20), one can get
a nontrivial solution

vl =
√

−a11

a03
t, vs = −

√
−a11

a03
t, (4.21)

and

η = vl − vs = 2

√
−a11

a03
t ∝ |t |1/2, (4.22)

which shows that the second critical exponent β is 1/2. Inter-
estingly, because a11 > 0, a03 < 0, we have t > 0, which
means that the coexistence phases in the P-V diagram appear
above the critical temperature T > Tc. This behavior is dif-
ferent from that of an AdS black hole, where coexistence
phases appear below the critical temperature T < Tc.

The third critical exponent is from the isothermal com-
pressibility near the critical point

κT = − 1

Vc

(
∂V

∂P

)
T

|c ∝ −
(

∂p

∂v

)−1

= − 1

a11t
∝ t−1,

(4.23)

which shows γ = 1.

The shape of the isothermal line of the critical temperature
t = 0 is

p ∝ v3, (4.24)

which provides the fourth critical exponent δ = 3.
In summary, the four critical exponents are:

α̃ = 0, β = 1

2
, γ = 1, δ = 3, (4.25)

which are the same as those in the mean field theory and
satisfy the scaling laws (4.10).

5 Conclusions and discussions

In this paper, we have studied the thermodynamic properties,
especially the equation of state and P-V phase transitions of
the FRW universe with a perfect fluid in Einstein gravity and
a modified theory of gravity that belongs to the Horndeski
class. The thermodynamic pressure P of the FRW universe is
defined as the work density W , which is a natural definition
directly read out from the first law of thermodynamics. We
have derived the equations of state, and impressively in the
modified gravity case, it exhibits P-V phase transitions. To
our best knowledge of the literature, this is the first time that
such phase transitions are found in a spacetime that is not
asymptotically AdS black holes. The phase transitions occur
above the critical temperature, which is different from the
AdS black holes. In the end, we have calculated the four
critical exponents, which are the same as those in the mean
field theory and thus satisfy the scaling laws.

We would like to discuss a few more open questions
related to our work. The first natural question is whether P-
V phase transitions can be found for FRW universe in other
modified theories of gravity and/or filled with other fields.
The second question is whether P-V phase transitions can
be found in black holes inside the FRW universe10 and other
dynamical black holes. We will carry these investigations in
the future.
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Appendix A: The quasi-equilibrium properties of the
FRW universe

One can use the physical radius R := a(t)r instead of the
comoving coordinate r and get a new line element for the
FRW universe [10]

ds2 = − 1 − R2/R2
A

1 − kR2/a2 dt2 − 2HR

1 − kR2/a2 dtdR

+ 1

1 − kR2/a2 dR2 + R2(dθ2 + sin2 θdϕ2), (A1)

which is quite similar to the Painlevé-de Sitter metric [54]
in the case k = 0. If one demands the Hubble parameter H
to be a constant as well as k = 0, it is just the Painlevé-de
Sitter metric. If H changes very slowly, the FRW universe is
a quasi-de Sitter space.

For the FRW universe as well as other dynamical space-
times, there exists a counterpart of the Killing vector field,
which is the Kodama vector field. For spacetimes with spher-
ical symmetry, the Kodama vector is defined as [10,29,30,
55,56]

Ka := −εab∇bR. (A2)

For the above line element (A1), the Kodama vector can be
obtained as

Ka =
√

1 − k
R2

a2

(
∂

∂t

)a

, (A3)

which is very similar to the Killing vector (∂/∂t)a in de Sitter
space.

With the Kodama vector field, one can define conserved
quantities such as the Misner–Sharp energy for the FRW
universe. At first, one can define the energy current

Jμ := −Tμ
νK

ν, (A4)

which is divergence free

∇μ J
μ = 0 (A5)

in Einstein gravity, and many modified theories of gravity.
Then, one can define the associated conserved charge (gen-
eralized Misner–Sharp energy)

QJ := 1

8π

∫
�

Jμd�μ, (A6)

where � is a hypersurface and d�μ is its directed surface
element. The Misner–Sharp energy satisfies the unified first
law [3,8], which after being projected onto the apparent hori-
zon leads to the first law of thermodynamics. One can find
that, for the FRW universe in Einstein gravity and some mod-
ified theories of gravity, the Clausius relation holds, which
also suggests that the FRW universe is an (quasi-)equilibrium
thermodynamic system [31,57].
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