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Abstract We examine the modulus stabilization mecha-
nism of a warped geometry model with nested warping. Such
a model with multiple moduli is known to offer a possible
resolution of the fermion mass hierarchy problem in the Stan-
dard Model. A six dimensional doubly warped braneworld
model under consideration admits two distinct moduli, with
the associated warp factors dynamically generating different
physical mass scales on four 3-branes. In order to address the
hierarchy problem related to the Higgs mass, both moduli
need to be stabilized around their desired values without any
extreme fine tuning of parameters. We show that it is possible
to stabilize them simultaneously due to the appearence of an
effective 4D moduli potential, which is generated by a sin-
gle massive bulk scalar field having non-zero VEVs frozen
on the 3-branes. This gives rise to two scalar radions, one
of which has mass slightly below O(TeV) and couplings to
SM fields proportional to the inverse of its O(TeV) VEV, and
the other has nearly O(MPl) mass and interactions with SM
fields suppressed by the Planck scale. We also discuss how the
entire mechanism can possibly be understood from a purely
gravitational point of view, with higher curvature f (R) con-
tributions in the bulk automatically providing a scalar degree
of freedom that can serve as the stabilizing field in the Ein-
stein frame.
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1 Introduction

The genesis of extra dimensional theories in physics dates
back to the early 1920s, marked by Kaluza and Klein’s orig-
inal attempt to unify classical electrodynamics and Einstein
gravity. In recent decades, higher-dimensional braneworld
models have attracted fresh interest [1–14], arising as poten-
tial candidates for addressing the gauge hierarchy problem
which is inherently linked to the problem of the Higgs mass.
As the only fundamental scalar in the Standard Model (SM),
the Higgs should experience large radiative corrections to
its mass due to its self-coupling and couplings to other mat-
ter and gauge fields. These corrections are expected to flow
up to the ultraviolet cut-off scale of the underlying quantum
field theory. Protecting the Higgs mass from such Planck-
scale corrections and keeping it safely within the TeV scale
requires an extremely precise fine tuning of parameters,
which leads to a naturalness problem within the SM. In this
sense, the discovery of a Higgs boson as light as 125 GeV/c2

[15–17] has simultaneously validated the last major predic-
tion of the SM and exposed its central conundrum.

The warped braneworld model proposed by Randall and
Sundrum [9] offers an elegant explanation of the large mass
hierarchy, based on the premise of a non-factorizable warped
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five-dimensional spacetime geometry. The extra dimension
is taken to be an orbifold with topology S1/Z2. Two 3-branes
are located at the opposite boundaries of the bulk, which is a
slice of AdS5. One of these branes (the “TeV brane”) is iden-
tified with our visible universe, on which all the SM fields
are assumed to be confined to. Gravity alone is assumed to
permeate through the bulk. This places the apparent scale
of gravity (MPl) on the visible brane very close to the fun-
damental scale (M5). In contrast, the energy density in the
bulk induces an exponential warping along the extra dimen-
sion, which causes the physical mass m(ph)

H of the Higgs on
the TeV brane to be suppressed from its fundamental mass
mH ∼ O(M5) according to m(ph)

H = mHe−πkrc , where
k ∼ M5 and rc is the brane separation (which plays the
role of the extra dimensional modulus). For krc ∼ 11.54, the
electroweak scale is dynamically generated from the fun-
damental scale. But the original model contains no mech-
anism to stabilize the magnitude of krc around its desired
value. This problem was addressed by Goldberger and Wise
[18], who showed that krc can be stabilized appropriately by
introducing a massive scalar field φ in the bulk with quar-
tic interactions localized on the branes. Integrating out the
extra dimensions results in an effective potential Vef f (rc)
which stabilizes the modulus without any excessive fine tun-
ing. This mechanism further allows one to interpret the modu-
lus rc as the vacuum expectation value (VEV) of a dynamical
radion field ρ(xμ), i.e., rc = 〈ρ〉, with the effective potential
Vef f (ρ) driving ρ to settle at its minimum [19]. The mass of
the radion and its coupling to matter fields on the visible brane
are suggested to be O(TeV), rendering it detectable, in prin-
ciple, at present generation colliders. Notably, the radion is
expected to be lighter than the lowest-lying KK excitations
of generic bulk fields, which are typically above O(TeV).
This should make the radion the lightest detectable signature
of the warped higher dimensional world.

There exists a wealth of work on the dynamics of various
bulk fields and KK gravitons in warped spacetime, alongside
a variety of generalizations with their own phenomenologi-
cal and cosmological features (for a small body of examples,
see [20–36]). The original Goldberger–Wise analysis has also
been extended along several avenues, eg. by assuming finite
values of the brane coupling constants [37], incorporating
back reaction of the bulk scalar on the metric [38–40], and
dynamical stabilization schemes in cosmological backdrops
[41–43]. However, in spite of its theoretical appeal, the origi-
nal 5D RS model has been increasingly challenged by experi-
mental data in recent years. The mass of the first excitation of
the graviton KK tower in the 5D setting [23] is suggested to
be O(TeV). Moreover, the graviton KK modes are expected
to couple to visible brane matter with amplified strength, as
the lowest-lying excitations cluster close to the TeV brane.
These considerations subsequently inspired several unsuc-

cessful attempts to detect the signatures of the graviton modes
through various channels at the LHC [44–49]. The absence
of any such evidence till date has imposed serious constraints
on the parameter space of the model. In particular, a small
hierarchy mH/M5 ∼ 10−2 is required to explain the null
results, indicating the potential appearance of new physics at
least two orders of magnitude below the fundamental Planck
scale. This is particularly problematic since this hierarchy
requires r−1

c (which plays the role of the cut-off above which
new physics is expected to appear) to be lowered by two
orders of magnitude as well. But the sensitive dependence of
the exponential warp factor on rc severely restricts this pos-
sibility, thereby limiting the efficacy of the five-dimensional
setup in addressing the gauge hierarchy problem.

2 Review of doubly warped braneworld model

Several higher dimensional extensions of the original RS
model have been proposed [50–53], with most of them intro-
ducing additional orbifolds with topology S1/Z2 besides the
first one. Some of these models, generalized to six dimen-
sions, have interesting cosmological features stemming from
dynamical stabilization of the extra spacelike dimensions
[54,55]. A particularly interesting extension [56], capa-
ble of addressing the aforementioned issues, emerges in
the form of a doubly warped braneworld with topology[M(1, 3) × S1/Z2

]×S1/Z2. It results in a “brane-box” con-
figuration, with four 4-branes forming the “walls” of the box
and four 3-branes located at the “vertices” where adjacent
4-branes intersect. The bulk is a slice of AdS6 with cosmo-
logical constant �6 ∼ −M̃6, where M̃ is the fundamental
Planck scale. The complete bulk-brane action (S), comprised
of the bulk Einstein–Hilbert action (S6) and the brane tension
terms (S5), is

S = S6 + S5

S6 =
∫

d4xdydz
√−g6

(
1

2
M̃4R6 − �6

)

S5 =
∫

d4xdydz
√−g5 [V1(z)δ(y) + V2(z)δ(y − π)]

+
∫

d4xdydz
√−ḡ5 [V3(y)δ(z) + V4(y)δ(z − π)]

(1)

where R6 is the six dimensional Ricci scalar, and y and z
are angular coordinates charting the extra dimensions. For
the current purpose, the visible 3-brane has been assumed to
be devoid of any matter field, which would have otherwise
introduced a further (S4) term as the contribution of the matter
Lagrangian. In a multiply warped setting, the brane tensions
can, in general, be functions of the bulk coordinates. This
is a departure from the 5D case, where the presence of only
one extra dimension rules out any such dependence at the
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very outset. Using an RS-like ansatz to solve the resulting
Einstein equations, one obtains the doubly warped metric

ds2 = cosh2(kz)

cosh2(kπ)

(
e−2c|y|ημνdx

μdxν + R2
ydy

2
)

+ r2
z dz

2

(2)

where Ry and rz are the radii of the orbifolds, and c and k
are constants interconnected through

c = Ryk

rzcosh(kπ)
; k = rz

√

− �6

10M̃4
(3)

This peculiar relation makes it clear that in absence of a
considerably large hierarchy between Ry and rz , both c and
k cannot be simultaneously large. Instead, any one of the
two distinct regimes c > k or c � k can emerge. It is not
entirely possible to get rid of a little hierarchy between Ry

and rz , but with suitable choice of c and k, it can be ensured
that Ry/rz does not exceed O(10). The physical mass scale

m(ph)
H on the 3-brane located at the vertex (yi , z j ) is related

to the fundamental scale mH by

m(ph)
H = mHe

−cyi
cosh(kz j )

cosh(kπ)
(4)

In the c > k regime, the choice of c ∼ 10 and k ∼ 0.1
yields warp factors which together generate the TeV scale on
the two 3-branes at (π, 0) and (π, π), one of which (prefer-
ably the maximally warped one) can be identified with the
visible brane. The other pair of 3-branes experiences negligi-
ble warping and remains at the Planck scale. This clustering
of multiple 3-branes around each of the scales is a salient
property of generalized RS models with nested warping, one
having important phenomenological implications.

Once the metric is fully solved, the brane tensions can be
derived using appropriate junction conditions at the orbifold
fixed points; V1 and V2 retain their z-dependence, whereas
V3 and V4 turn out to be independent of y.

V1(z) = −V2(z) = 8M̃2

√

−�6

10
sech(kz) (5)

V3(y) = 0; V4(y) = −8M̃2

√

−�6

10
sech(kπ) (6)

The coordinate dependence of the former pair can be shown
to emerge from suitable scalar fields confined to the corre-
sponding 4-branes. We summarize the key results here for
a quick recap. Considering a scalar field ϕ(z) localized on
each y = y0 brane with a corresponding scalar potential
V(ϕ(z)) ≡ ρ(z), one can extremize the following action
S[ϕ].

S[ϕ] =
∫

d4x

+π∫

−π

dz
√−g5

(
gαβ

5 ∂αϕ∂βϕ + V(ϕ)
)

(7)

The induced 5D metric gαβ

5 (y) is evaluated at y = y0. Iden-
tifying the energy density of this Lagrangian with the brane
tension, one obtains the kinetic term ϕ′2 and the potential
term ρ(z) explicitly using the equation of motion. For the
y = π brane, the solutions are

ρ(z) = v0

[
−7

6
sech(kz) + ξ sech4(kz)

]
,

ϕ′2

r2
z

= v0

[
1

6
sech(kz) − ξ sech4(kz)

]
(8)

where v0 = 8M̃2√−�6/10, and ξ is an arbitrary constant
of integration. Hence, positivity of the kinetic term over the
entire domain z ∈ [0, π ] requires ξ ≤ 1/6. On the other
hand, for the y = 0 brane, the analogous solutions are

ρ(z) = v0

[
7

6
sech(kz) + ξ̃ sech4(kz)

]
,

ϕ′2

r2
z

= v0

[
−1

6
sech(kz) + ξ̃ sech4(kz)

]
(9)

where ξ̃ is a different constant of integration. The posi-
tivity of ϕ′2 over the entirety of this brane requires ξ̃ ≥
(1/6)cosh3(kπ).

From this pair of constraints on ξ and ξ̃ , it is evident that if
the Planck-TeV scale hierarchy is generated predominantly
by warping along z with c � k ∼ 10, then the large value
of cosh(kπ) implies there must be a similarly large hierar-
chy between ξ and ξ̃ . Such a hierarchy between two fun-
damental parameters on neighbouring branes is unnatural.
A radical way out of this problem might be to replace ϕ

on the y = 0 brane with a phantom field having negative
kinetic energy, which would necessitate ξ̃ ≤ 1/6 just like
ξ . If the (0, 0) 3-brane is identified with the visible brane,
then the phantom could automatically furnish an interesting
dark energy candidate with a possibly non-trivial equation
of state. Otherwise, the existence of a phantom scalar on the
y = 0 brane does not necessarily have a discernible effect on
the SM 3-brane. However, as the energy density of phantom
fields is unbounded from below (i.e. violation of classical
energy conditions), such fields can cause quantum instabil-
ity of the vacuum in the ultraviolet regime. To overcome this
difficulty, phantom fields are generally deemed admissible
only in low energy effective field theories [57–64]. So the
emergence of a phantom field is particularly problematic in
the present scenario, since the theory is assumed to be valid
up to M̃ . But if one restricts attention to the c > k regime
with c ∼ 10 and k ∼ 0.1, then cosh(kπ) ∼ O(1) and there
is no unnatural hierarchy between ξ and ξ̃ at all. In that case,
the very need for introducing a phantom scalar disappears,
keeping the theory self-consistent.

The doubly warped model has numerous phenomenolog-
ical advantages over its singly warped progenitor model.
Firstly, owing to the presence of two extra dimensions, the
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first excited graviton KK mode turns out to be consider-
ably heavier than that of the 5D case. Moreover, coupling
between graviton KK modes and SM fields on the visi-
ble brane is largely suppressed compared to the 5D model.
Taken together, these features can satisfactorily explain the
non-detection of KK gravitons at the LHC so far, with-
out recourse to any small hierarchy between mH and M̃
[65]. At the same time, significant portions of the param-
eter space of the extended model remain accessible to the
LHC, allowing them to be explored in future runs [66]. Sec-
ondly, the doubly warped model can offer an explanation
of the mass hierarchy among the SM fermions [56]. In the
c > k regime, the O(TeV) 4-brane at y = π intersects
two other 4-branes at z = 0 and z = π . Assuming SM
fermions to be described by five dimensional fields confined
to the y = π brane implies natural O(TeV) masses for the
fermions. In addition to the z-dependent bulk wavefunction
on this 4-brane, the fermionic fields can have kinetic terms
on the 3-branes at the two intersection points. These bound-
ary terms can modify the fermion-scalar Yukawa coupling
on the (π, 0) and (π, π) 3-branes, thereby causing a split-
ting among the effective fermion masses. This splitting is
arguably small, as the natural mass scales of these 3-branes
are already clustered close to each other around the TeV
scale.

3 Modulus stabilization in doubly warped model

Like the 5D RS model, the action of the 6D scenario contains
no dynamics which can stabilize the extra dimensional mod-
uli around their desired values. In absence of such an under-
lying stabilizing mechanism, the braneworld model alone
cannot be considered adequate. Motivated by the success
of the 5D Goldberger–Wise mechanism, it becomes natu-
ral to seek a similar approach for the 6D model that might
stabilize both c and k (or equivalently, Ry and rz) simul-
taneously. While other phenomenological aspects of multi-
ply warped spacetimes are well-studied [67–70], there has
been little work in this direction so far, with the notable
exception of [71]. The latter study proposes disjoint stabi-
lization mechanisms for c and k with the help of two sep-
arate bulk and brane-localized fields in the c > k regime.
In the other regime, taking c � k makes the metric almost
conformally flat, wherefore only rz needs to be stabilized
satisfactorily, with Ry either left unstabilized (which is justi-
fied because of the negligibly small value of c) or stabilized
with the help of another brane-localized field. Whether sta-
bilization of both moduli can be achieved with the help of
a single bulk scalar field, has, however, been an open ques-
tion so far. In this paper, we attempt to address this very
question.

3.1 Dynamics of the bulk field

For our current purpose, we choose to work in the c > k
regime, which, as noted already, obviates the need to intro-
duce an unpleasant phantom scalar on the y = 0 brane to
explain the coordinate dependence of its tension, and remove
the unnatural hierarchy between the ξ and ξ̃ parameters.
Additionally, the relative smallness of k allows us to view the
entire setup as a not-too-large departure from the 5D model,
helping identify the key points of deviation from the latter
clearly. A study of the complementary c � k domain using
tools from supersymmetric quantum mechanics appears in
[71].

Analogous to the original Goldberger–Wise scenario, we
consider a bulk field propagating freely through the extra
dimensional y − z bulk, and interacting only at the locations
of the four 3-branes through quartic self-interaction terms.
The action (SGW ) of the bulk field is given by an immediate
generalization of the original 5D Goldberger–Wise action.

SGW = −1

2

∫
d4x

+π∫

−π

dy

+π∫

−π

dz
√−g6

(
gAB

6 ∂Aφ∂Bφ + m2φ2
)

−
4∑

i=1

∫
d4x

√
g̃(i)

4 λi
(
φ2 − u2

i

)2
(10)

Here, g̃(i)
4 is the induced metric on the i th 3-brane, with ui

being the VEV of the bulk field (with mass dimension [ui ] =
+2) and λi the corresponding coupling constant ([λi ] = −4).
With its dynamics confined to the higher dimensional space,
the bulk field is essentially “frozen” on the corner branes.
Defining a(y) = exp(−c|y|) and b(z) = sech(kπ)cosh(kz),
we extremize this action with respect to φ to obtain the fol-
lowing equation of motion.

− 1

R2
y
∂y

(
a4b3∂yφ

)
− 1

r2
z
∂z

(
a4b5∂zφ

)
+ m2a4b5φ

+ 4a4b4

Ryrz

[
λ1φ

(
φ2 − u2

1

)
δ(y)δ(z)

+λ2φ
(
φ2 − u2

2

)
δ(y − π)δ(z)

]

+ 4a4b4

Ryrz

[
λ3φ

(
φ2 − u2

3

)
δ(y)δ(z − π)

+λ4φ
(
φ2 − u2

4

)
δ(y − π)δ(z − π)

]
= 0

(11)

Away from the boundaries, the contributions of the inter-
action terms vanish. Assuming a separable solution of the
form φ(y, z) = φ1(y)φ2(z), the bulk equation of motion can
be reduced to the following pair of uncoupled ODEs, where
−4α2 is the separation constant.

− 1

R2
ya

4φ1

d

dy

(
a4 dφ1

dy

)
= 1

r2
z b

3φ2

d

dz

(
b5 dφ2

dz

)
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−m2b2 = −4α2 (12)

An interesting physical interpretation of α emerges immedi-
ately. From the equation for φ1, it is apparent that 2α plays
the role of the mass of the φ1 field. Also, as the k → 0
(and simultaneously rz → 0) limit implies b(z) → 1 and
mathematically reduces the 6D metric to the familiar singly
warped form, it must also enforce 2α → m in order to reduce
this equation to the 5D Goldberger–Wise bulk equation of
motion. As for the equation for φ2, it is satisfied trivially in
this limit, as φ2(z) → 1 leads merely tom2 = 4α2. However,
from a physical standpoint, one cannot of course allow k to
be arbitrarily small, as any effective field theory in the semi-
classical approach strictly remains valid only for rz ≥ M−1,
with quantum gravity effects dominating for rz < M−1. In
this sense, the k → 0 limit is not a physically tenable one,
but comes with a lower cut-off regulated by �6. The bottom
line is simply that for sufficiently small k, one can expect α

to be reasonably close to m, which is a fact that proves useful
in due course.

Equation (12) can be solved exactly for the component
fields φ1(y) and φ2(z), leading to the following general solu-
tion for the bulk field under the condition of Z2 orbifold
symmetry.

φ(y, z) = e2c|y| (Aeνc|y| + Be−νc|y|)

×
[
DPl

n(tanh(k|z|)) + EQl
n(tanh(k|z|))

]
sech

5
2 (kz)

(13)

where A, B, D and E are four arbitrary constants (arising
on account of each equation being a second order ODE), and
Pl
n and Ql

n are associated Legendre functions of the first and
second kind respectively. The quantities ν, n and l are defined
as

ν = 2

√

1 + R2
yα

2

c2 (14)

n = 2

√

1 + α2r2
z cosh2(kπ)

k2 − 1

2
(15)

l = 1

2

√

25 + 4m2r2
z

k2 (16)

Assuming the magnitudes of the brane coupling constants
to be large (i.e. λi → ∞) allows the identification of
simple energetically favourable configurations to serve as
boundary conditions. The very structure of the interaction
terms, given by λi (φ

2 −u2
i )

2δ(y− y0)δ(z− z0), necessitates
φ(y0, z0) → ui as such a configuration on the corner brane at
(y0, z0). This approach leads to the following four equations,
where the shorthand τz = tanh(k|z|) has been introduced for
convenience.

φ1(0)φ2(0) = (A + B)
[
DPl

n(0) + EQl
n(0)

]
≈ u1 (17)

φ1(π)φ2(0) = e2cπ (Aeνcπ + Be−νcπ )
[
DPl

n(0) + EQl
n(0)

]
≈ u2

(18)

φ1(0)φ2(π) = (A + B)
[
DPl

n(τπ ) + EQl
n(τπ )

]

×sech
5
2 (kπ) ≈ u3 (19)

φ1(π)φ2(π) = e2cπ (Aeνcπ + Be−νcπ )

×
[
DPl

n(τπ ) + EQl
n(τπ )

]
sech

5
2 (kπ) ≈ u4 (20)

Equations (17)–(20) are not all linearly independent, and
as such, only allow three of the constants to be solved in terms
of the remaining fourth. This poses no problem though, as
the forms of the solutions still allow φ(y, z) to be determined
uniquely. In the large c regime, the normalized solutions of
the individual component fields are

φ1(y) = √
u1e

2c|y|(c1e
νc|y| + c2e

−νc|y|) (21)

φ2(z) = √
u1

[
c3P

l
n(τz) + c4Q

l
n(τz)

]
sech

5
2 (kz) (22)

where c2 = 1, and the other three constants are given by

c1 = e−(ν+2)cπ
[
u2

u1
− e−(ν−2)cπ

]
(23)

c3 =
Ql

n(τπ ) −
(
u4
u2

)
Ql

n(0)cosh
5
2 (kπ)

Pl
n(0)Ql

n(τπ ) − Ql
n(0)Pl

n(τπ )
(24)

c4 =
(
u4
u2

)
Pl
n(0)cosh

5
2 (kπ) − Pl

n(τπ )

Pl
n(0)Ql

n(τπ ) − Ql
n(0)Pl

n(τπ )
(25)

It is interesting to note that, apart from the overall normaliza-
tion factor of u1, the dynamics of φ(y, z) is controlled not by
the absolute values of the VEVs but only by their ratios. This
feature is reminiscent of the 5D mechanism. Further, Eqs.
(21)–(25) dictateu4/u2 = u3/u1. So the two ratios appearing
explicitly in the solution are sufficient to completely specify
all the six possible ratios among the four VEVs, thus ruling
out any ambiguity.

3.2 The effective potential

Having obtained the solution of the bulk field, one needs
to substitute it back in Eq. (10) and integrate over y and
z in order to obtain the stabilizing potential Vef f (c, k), or
equivalently, Vef f (Ry, rz). From the resultant effective 4D
action Sef f , the definition Sef f = − ∫

d4xVef f (c, k) allows
the potential to be read off directly. In the large λi limit, this
amounts to evaluating only the bulk contribution. First, let us
define the following dimensionless parameters.

μ1 = mrz
k

; μ2 = αrz
k

(26)

These quantities roughly estimate the ratios between the mass
parameters of the bulk field and the fundamental Planck
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scale. From the semiclassical standpoint, the admissible
range of each ratio should be 0 < μi < 1. In terms
of these ratios, the parameters from (14)-(16) can be re-

expressed as ν = 2
√

1 + μ2
2cosh2(kπ), n = ν − 0.5, and

l = (5/2)

√
1 + 4μ2

1/25. Upon substituting the solution from
(13) in the action, the integral over y can be readily evaluated,
but the presence of the special functions makes the z-integral
analytically intractable. Defining the dimensionless potential
Ṽe f f = Vef f /u2

1, and making use of (3) to eliminate Ry and
rz in favour of c and k, the following form emerges for the
potential at leading order:

Ṽe f f (c, k) = 1

2
F(k) +

[
c2

1(ν + 2)2

2ν
e2νcπ − 2πc1(ν

2 − 4)c

]

×F1(k) +
(
c2

1

2ν
e2νcπ + 2πc1c

)

× F2(k) (27)

where the k-dependent functions, arising out of the z-integral,
are given explicitly by

F1(k) = ksech4(kπ)

+π∫

−π

dz
(
c3P

l
n(τz)

+c4Q
l
n(τz)

)2
sech2(kz) (28)

F2(k) = 1

4
ksech4(kπ)

+π∫

−π

dz
[
2(l − n − 1)(c3P

l
n+1(τz)

+c4Q
l
n+1(τz)) + (2n − 3)τz(c3P

l
n(τz) + c4Q

l
n(τz))

]2

+ksech4(kπ)

+π∫

−π

dz μ2
1(c3P

l
n(τz) + c4Q

l
n(τz))

2 (29)

F(k) = 1

2
√

1 + μ2
2cosh2(kπ)

×
[

4

(√
1 + μ2

2cosh2(kπ) − 1

)2

F1(k) + F2(k)

]

(30)

There is little choice but to evaluate F1(k) and F2(k) numer-
ically for different values of μ1, μ2, and u4/u2, which, by
this point, serve as three of the fundamental parameters of the
model. The fourth parameter u2/u1, contained in the coeffi-
cient c1, contributes chiefly to the c-dependence of the poten-
tial. Equipped with the potential given by (27)–(29), we are
in a position to demonstrate the existence of a simultane-
ous minimum of Ṽe f f in c and k over some region of the
parameter space that doesn’t require excessive fine tuning.

3.3 Stabilizing k

Owing to the explicit form of c1 from (23), both the linear and
quadratic terms in c1 appearing in the coefficients of F1(k)
and F2(k) in (27) are suppressed at least by O(e−4cπ ). For
c ∼ 10, this suppression factor is nearly of order 10−68. The
F(k) term, on the other hand, suffers no such suppression.
In order to study the k-dependence of the potential, it thus
suffices to approximate Ṽe f f by taking only the dominant
contributions offered by F(k), and establishing the stabiliza-
tion of k is tantamount to locating a suitable minimum of
F(k). The plots in Fig. 1 show the behaviour of F(k) for
various combinations of the parameters.

For all the choices of parameters, F(k) admits a broad
minimum at some k < 0.5. The location of this minimum
is physically important, as the range 0.1 ≤ k ≤ 0.6 is of
particular interest to scenarios attempting to explain the non-
detectability of graviton KK modes at the LHC [65,66], or
exploring the phenomenology of off-brane SM fields that
extend into the bulk [69,70]. As special cases, it can be
checked that μ2 → 0 produces an asymptotically decay-
ing F(k) with no finite minimum, whereas u4 = u2 admits
only k = 0 as the global minimum. As expected, the most
pronounced dependence of the minimum is on the VEV ratio
u4/u2, which governs the potential at the leading order.

3.4 Stabilizing c

The previous plots reveal the existence of a fairly large param-
eter space which can stabilize k around its desired value. But
Ṽe f f (c, k) also needs to stabilize c, which plays the lead-
ing role in determining the degree of warping. To this end,
we need to reinstate the previously neglected c-dependence
in Ṽe f f (c, k) in order to locate a suitable minimum along
c. Owing to the form of c1 in (23), one might expect such
a minimum to occur at c1 = 0, which would be close in
spirit to the 5D Goldberger–Wise result. Upon closer inspec-
tion though, it becomes clear that the existence of such a
minimum depends crucially on the value of μ2. For consid-
erably small values of μ2 which render ν ≈ 2 + εk , where
εk = μ2

2cosh2(kπ) is small enough so that O(ε2
k ) and higher

are negligible compared to unity, the deviation δṼe f f for any
arbitrarily small deviation c = c0 − δ from the alleged min-
imum c0 can be estimated as

δṼe f f |c0 ∼ e−4π(c0−δ)−2εk c0π
[
25

(
eεkδπ − 1

)2 − 8π(c0 − δ)eεkδπ

× (
eεkδπ − 1

)
(1 − 6εk)

]
(31)

For excessively small εk and vanishingly small δ, this
quantity is negative. This clearly rules out a minimum at
c0. The trouble can be traced to the existence of the O(c1)

terms in Ṽe f f (c, k). While the 5D stabilization mechanism
ensured automatic cancellation of the pair of O(c1) terms
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Fig. 1 Profiles of F(k) vs k for VEV ratios u4/u2 = 1.3 (solid blue), u4/u2 = 1.5 (dotted green), and u4/u2 = 1.7 (dashed red), and a few
representative values of μ1 and μ2 for each case

in the potential, the current model offers no such way out
by default. However, if some particular combination of
parameters can result in such cancellation (without exces-
sive fine tuning of course), the issue would be resolved.
Once k has been stabilized at some specific kmin , the con-
dition for the O(c1) terms to cancel each other translates
to
[
ν(kmin)

2 − 4
]
F1(kmin) − F2(kmin) � 0 (32)

As F1(k) and F2(k) themselves depend on all three param-
eters in a rather complicated manner, this equation is tran-
scendental and cannot be solved analytically. However, it
can be checked numerically that for every choice of μ1, the
allowed parameter space contains approximate solutions to
(32), some of which are presented in Table 1.

Each of the combinations ensures that the non-negative
O(c2

1) terms dominate over the O(c1) terms by nearly two

orders of magnitude, leading to a proper minimum cmin (sat-
isfying c1 = 0) with the following approximate form

cmin ≈ 1

π [ν(kmin) − 2]
ln

(
u1

u2

)
(33)

One can immediately estimate the corresponding u1/u2 ratio
which produces the desired value of cmin ∼ 11.54. As given
in Table 1, its magnitude depends strongly on μ1. In order
to stabilize k between 0.1 and 0.6, the minimum admissible
magnitude of u1/u2 is O(10), which is slightly larger than
the requirement in 5D. For larger values of μ1, a minor hier-
archy between u1 and u2 becomes increasingly prominent.
This hierarchy has its physical origin in the fact that we have
essentially made the component fields φ1(y) and φ2(z) yield
two distinct warping scales k ∼ 0.1 and c ∼ 10 in spite
of having chosen their mass parameters (m and α) to be of
comparable magnitudes! The somewhat large u1/u2 ratio is
precisely the price we need to pay for that. As a reality check,
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Table 1 A few examples of critical parameter values approximately satisfying (32), i.e., cancelling the linear c1 terms in (27) at least up to O(10−2)

compared to the non-negative c2
1 terms, allowing simultaneous stabilization of both moduli around kmin ∼ 0.1 and cmin ∼ 10

μ1 μ2 u4/u2 kmin ν(kmin) F ′′(kmin) F1(kmin) F2(kmin) u1/u2

0.40 0.24 1.122 0.119 2.065 1.558 0.697 0.185 20

0.50 0.30 1.160 0.123 2.102 2.410 0.741 0.307 40

0.60 0.36 1.200 0.124 2.145 3.802 0.777 0.469 ∼ 102

0.70 0.42 1.248 0.128 2.197 5.426 0.833 0.689 ∼ 103

0.80 0.48 1.303 0.132 2.256 7.642 0.899 0.980 ∼ 104

it is instructive to check that choosing u1 ∼ u2 in (33) would
have resulted in cmin ∼ 0.1, just as this argument suggests.
Due to the huge difference in magnitude between the lead-
ing order k-dependent term and the c-dependent terms in
the expression of Ṽe f f (c, k), it is not feasible to demon-
strate the minimization directly with a 3D plot. So it might
be instructive to convince ourselves analytically one final
time that (cmin, kmin) indeed gives us a proper minimum.
To drive home the point, we consider cmin → cmin + δc
and kmin → kmin + δk, where δc and δk are small deviations
which can be either positive or negative. Let us check how the
value of Ṽe f f (cmin, kmin) given by (27) changes under these
deviations.

• As F(kmin) is the minimum value of F(k), any such δk
gives a slightly larger value of F(k). Whatever be the cor-
responding changes of F1(k) and F2(k), the increment of
F(k) always dominates over them as F1(k) and F2(k) are
of similar magnitudes to F(k) over their entire domain
but appear with suppression factors of order e−4cπ . On
top of that, for the parameter values chosen in Table 1,
theO(c1) terms in the coefficients of F1(k) and F2(k) are
negligibly small (which has been ensured). So, keeping
c = cmin fixed, the coefficients of F1(k) and F2(k) are
practically zero anyway (this condition essentially gives
us the location of cmin in the first place), which makes
the increment of F(k) dominate even more effectively.
So kmin indeed gives a minimum of Ṽe f f (c, k) along
k.

• Next, keeping k = kmin fixed, let us deviate slightly
from cmin in either direction. For the parameter values
in Table 1, (32) holds independently of the value of
c and ensures cancellation of the O(c1) terms. So the
coefficients of F1(kmin) and F2(kmin) contain only the
quadratic non-negative O(c2

1) term, which now assumes
a positive value for any δc. On the other hand, F1(k) and
F2(k) are strictly positive over their entire domain. Over-
all, this again gives a slightly positive departure from the
value of Ṽe f f (cmin, kmin), which affirms that cmin indeed
gives a minimum along c.

The mutual cancellation of theO(c1) terms involves a certain
degree of fine tuning among the three parameters which con-
trol F1(k) and F2(k). While the situation is clearly more del-
icate than the 5D case, this tuning need not be very extreme.
The O(c2

1) terms can dominate and provide c with a stable
minimum if the cancellation of the O(c1) terms in (32) is
accurate roughly up to O(10−2), which is sufficient to sup-
press the latters’ contribution by O(10−2). For c ∼ 10, the
critical values of the parameters need to be accurate at most
up to O(10−3), while larger values of c are somewhat more
likely to ameliorate the situation due to increased suppres-
sion. This is no worse than the fine tuning associated with
the choice of m/M for a given VEV ratio, that is required to
generate the TeV scale accurately in the 5D case. Moreover,
for some fixed ν(k), the tuning associated with u2/u1 can be
even more lenient due to the logarithmic dependence of cmin

on u2/u1. So simultaneous stabilization of c and k depends
on a small degree of fine tuning among the parameters μ1, μ2,
and u4/u2, which constitutes a crucial aspect of the extended
Goldberger–Wise mechanism in the doubly warped scenario.
This feature is not surprising since one should physically
expect a two-level tuning for the stabilization of two distinct
moduli in a spacetime with nested warping. As the stabiliza-
tion of k alone requires negligible tuning (as evident from
Fig. 1), the stabilization of c justifiably involves both levels.
It might be interesting to investigate if incorporating back
reaction or quartic self-interaction terms within the bulk can
lead to improvements for this tuning requirement.

The minor hierarchy between u1 and u2 (or equivalently
between u3 and u4) can be better interpreted if we arrange the
magnitudes of the four VEVs in proper order. As the bound-
ary conditions require u1/u2 = u3/u4, the VEVs obtained
in each case satisfy

u3 > u1 > u4 > u2 (34)

The first two values are very close to each other, as are the
last two, with the aforesaid hierarchy pushing the pairs apart.
Interestingly, Eq. (34) reflects the order of physical mass
scales on the corresponding corner branes (on which these
classical values ofφ are defined) for large c and small k, as can
be checked using (4) . This can be understood physically as
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the massive bulk scalar, once frozen on the boundary branes,
naturally tends to act against the warping induced by the bulk
energy density. Consequently, the resulting mass scales on
corner branes associated with larger VEVs can be generally
expected to be higher than those with smaller VEVs. This
feature is visible in the 5D Goldberger–Wise mechanism as
well, albeit in a greatly tempered form. In the present case,
it is more pronounced as it also incorporates the clustering
effect observed among the physical mass scales.

4 Phenomenology of the stabilized moduli

Due to the presence of two distinct moduli in the model,
one should physically expect the appearance of two radions
with distinct masses. In the c > k regime, phenomenological
features associated with c should be sufficiently similar to
those of the 5D model. Owing to the smallness of k, the
mass of the second radion should not suffer any significant
suppression down from the Planck scale M̃ . This is hinted
at by the form of the stabilizing potential Ṽe f f (c, k) from
(27), where the leading order function F(k) and its second
derivative are both typically O(1) around the minimum. The
individual coupling strengths of the two radions to visible
sector matter fields are also of fundamental interest, as they
should directly affect radion production mechanisms which
can be studied experimentally at the LHC. In the following
sections, we estimate these parameters quantitatively based
on the stabilizing formalism explored so far.

4.1 Masses of the radions

The starting point is to introduce two scalar modulus fields
T1(x) and T2(x), whose VEVs determine the extra dimen-
sional radii Ry and rz respectively, i.e., 〈T1〉 = Ry and
〈T2〉 = rz . Analogous to the 5D case studied in [19], these
fields incorporate small fluctuations about the background
that are independent of the bulk field φ. Under this modifi-
cation, the general form of the metric from (2) becomes

ds2 = b(z, x)2
[
a(y, x)2ημνdx

μdxν + T1(x)
2dy2

]

+T2(x)
2dz2 (35)

where we can make use of (3) and express the warp factors
in terms of the modulus fields as

a(y, x) = exp

[
− k′T1|y|

cosh (k′T2π)

]
, b(z, x) = cosh

(
k′T2z

)

cosh (k′T2π)
,

where k′ =
√

− �6

10M̃4
(36)

We substitute this metric in the following six-dimensional
Einstein–Hilbert action

S6 ≡ −2M̃4
∫

d4x

+π∫

−π

dy

+π∫

−π

dz
√−g̃ R̃ (37)

Noting
√−g̃ = a4b5T1T2

√−g (where
√−g = 1 in our

presently assumed flat brane scenario), a subsequent Kaluza-
Klein reduction of this action leads to the kinetic part

Skin = −2M̃4
∫

d4x
√−g

+π∫

−π

dy

+π∫

−π

dz [6b3T1T2∂μa∂μa

+18ab2T1T2∂μa∂μb + 12a2bT1T2∂μb∂
μb

+6ab3∂μa(T2∂
μT1 + T1∂

μT2) + 2a2b2∂μb(3T2∂
μT1

+4T1∂
μT2) + 2a2b3∂μT1∂

μT2] (38)

It is clear that in the effective 5D limit T2 → M̃−1 and
b(z, x) → 1 this action indeed reduces to the familiar
Goldberger–Wise result from [19]. Substituting (36) in (38)
now and integrating over y and z explicitly allows us to obtain
Skin entirely in terms of the modulus fields T1 and T2. As an
exact treatment of the integrals becomes cumbersome at this
point, we reinstate the c > k condition and consider only
small fluctuations T1 = 〈T1〉 + δT1 and T2 = 〈T2〉 + δT2
about the VEVs, which we have earlier shown to satisfy
〈c〉 = k′ 〈T1〉 sech

(
k′ 〈T2〉π

) ∼ 10 and 〈k〉 = k′ 〈T2〉 ∼ 0.1.
Under this approximation, the 4D effective Lagrangian for
(38) simplifies considerably up to leading order and reduces
to

Lkin � 24M̃4π2 (
k′T2π

)
e−2k′T1π∂μT1∂

μT1 − 2M̃4π

k′T1

×
[
−2 + e−2k′T1π

(
k′T1π

)2
]
∂μT1∂

μT2

−12M̃4π2
[
1 − 2e−2k′T1π

(
k′πT1

)]
∂μT2∂

μT2 (39)

In order to bringLkin to the canonically normalized form, we
need to define two physical fields ρ1(T1, T2) and ρ2(T1, T2)

such that

Lkin = 1

2
∂μρ1∂

μρ1 + 1

2
∂μρ2∂

μρ2 (40)

It would then be necessary to solve a system of coupled non-
linear PDEs in order to obtain ρ1 and ρ2 exactly. Even with
the leading order approximation of (39) in place, it is evident
that obtaining such a set of exact solutions is quite difficult.
However, if one assumes ∂μT1/T1 ∼ ∂μT2/T2 based on natu-
ralness arguments (which we shall refer to as the naturalness
assumption), then one can arrive at the following approx-
imate solutions, where once again only small fluctuations
around 〈T1〉 and 〈T2〉 have been considered.

ρ1(x) � f1
√
k′πT2(x)e

−kπT1(x), ρ2(x) � f2
√
k′πT2(x) (41)
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The constant factors are given by f1 ∼
√

48M̃4/k′2 and f2 ∼
√

8εM̃4/k′2, with ε being a small dimensionless parameter
of order O(δT2/ 〈T2〉).

A few comments about this parameter and its origin are
in order. The precise value of ε is modulated by the natural-
ness assumption, or more precisely, the extent of cancella-
tion between the two unsuppressed terms of (39) ensured by
the aforesaid assumption, which leaves behind a sufficiently
small (∂μT2)

2 term in (39) consistent with ρ2 from (41). As
such, it is essentially a tuning parameter connecting the first
derivatives of T1 and T2 that allows the following relation to
hold.

4M̃4π

k′T1
∂μT1∂

μT2 − 12M̃4π2∂μT2∂
μT2

� εM̃4π

k′T2
∂μT2∂

μT2 = 1

2
∂μρ2∂

μρ2 (42)

To arrive at this equality, we have also assumed small fluc-
tuations about k′ 〈T1〉 ∼ 10 and k′ 〈T2〉 ∼ 0.1, whose values
are already fixed from the stabilization mechanism. From a
physical standpoint, the importance of ε lies in ensuring 〈ρ2〉
remains bounded by M̃ from above. Indeed, it can be read-
ily checked that for k′ → M̃ and T2 → M̃−1, one requires
ε � (8π)−1 to ensure 〈ρ2〉 � M̃ . On the other hand, it
cannot be significantly smaller than this threshold value if
we wish to avoid a fine tuning problem involving ∂μT1 and
∂μT2. Based on these considerations, it is important to note
that ε is essentially not a new fundamental parameter which
has been put in by hand, but merely a by-product of the nat-
uralness assumption. As a final remark, let us also note that
mathematically it would be possible to have a tuning which
instead resulted in an overall negative unsuppressed term in
(39). This would imply ρ2 is a phantom field with a negative
kinetic term, a seemingly unphysical mathematical artifact
which we discard on physical grounds as we assume both
the radions to be real.

It is straightforward to check that (∂μρ1)
2 then roughly

generates the exponentially suppressed terms present in (39),
while the remaining unsuppressed portion is generated by
(∂μρ2)

2. It must be emphasized that the validity of (41) rests
crucially upon both the naturalness assumption (which can be
used to estimate the relative magnitudes of the exponentially
suppressed terms in (39)) and the consideration of only small
oscillations about the field VEVs. Violating either of these
assumptions quickly results in a very complicated situation
which is analytically intractable and appears to offer no addi-
tional physical insight. Upon deeper inspection, it becomes
clear that even the precise functional forms of (41) are not
of paramount importance. The key takeaway is the fact that
in the current scenario, the VEV of one radion suffers very
little suppression from the Planck scale, while the other one

experiences large exponential suppression. This latter feature
is what is of real physical interest.

With the definition of the physical radion fields ρ1 and ρ2,
we are now in a position to estimate the corresponding radion
masses m1 and m2 from the modulus potential Vef f (ρ1, ρ2)

in (27). First, let us estimate m2, which is given by

m2
2 ≡ ∂2Vef f

∂ρ2
2

∣∣
∣∣
ρ1=〈ρ1〉
ρ2=〈ρ2〉

�
(

k′2u2
1

2πεM̃4

)

kmin
∂2Ṽe f f

∂k2

∣∣
∣∣c=cmin
k=kmin

(43)

Let us analyze the various quantities appearing here. For the
first two sets of values from Table 1 that yield a conservative
u1/u2 ratio, one has kmin ∼ 0.1 and F ′′(kmin) ∼ O(1).
As for the VEV, we have u1 ∼ M̃2. Recalling � ∼ −M̃6

in the definition of k′ from (36), and assuming a moderate
ε ∼ (8π)−1 as argued earlier, one ends up roughly with
m2 ∼ M̃ . In other words, the mass of ρ2 suffers very little
suppression from the fundamental scale, which is a result
consistent with our prior intuition based on small warping
along the z direction.

Next for the mass of ρ1, we proceed similarly by taking
c � k′T1 from (36) for simplicity without significant loss of
accuracy. Making use of f2ρ1 ≈ f1ρ2 e−cπ from (41) and
invoking the chain rule, the mass m1 is given by

m2
1 ≡ ∂2Vef f

∂ρ2
1

∣∣∣
∣
ρ1=〈ρ1〉
ρ2=〈ρ2〉

� u2
1

π2ρ1(c, k)2

∂2Ṽe f f
∂c2

∣∣∣
∣c=cmin
k=kmin

(44)

Computing the derivative explicitly and evaluating it at the
minimum yields

m2
1 �

(
u2

f1

)2

e−2cminπ

[
(ν2 − 4)2

νkπ
F1(k) + (ν − 2)2

νkπ
F2(k)

]

k=kmin

(45)

where we have made use of (32) to discard the remain-
ing terms of sub-leading magnitude. Let us again study
individually the various quantities appearing in (45). For
cmin ∼ 10, the exponential term offers large suppression
of order 10−34. For each set of representative values of the
parameters from Table 1, the k-dependent term is O(10−2).

At this point, let us also recall that f1 ∼
√

48M̃4/k′2 with

k′ ∼ M̃ . Further, from Table 1, we have u1/u2 � O(10) in
each case for simultaneous stabilization of the moduli, with
u1 ∼ M̃2. Putting everything together, for parameter values
which allow u1/u2 ∼ O(10), the RHS of (45) is essentially
M̃2 suppressed primarily by e−2cminπ , and additionally by a
minor factor of order O(10−6). The mass of the radion thus
becomes

m1 ∼ δ e−cminπ M̃ (46)
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where the factor δ ∼ 10−3 brings the mass somewhat
down below the TeV scale. Due to dominant warping along
the y-direction, this result is precisely what one physically
expects. It strongly resembles the case of the 5D radion,
but with δ apparently being one order of magnitude smaller
here. However, it should be noted that we have considered
cmin ≈ k′ 〈T1〉 for simplicity instead of its exact form
cmin = k′ 〈T1〉 sech(k′ 〈T2〉π). While the former is a rea-
sonable leading order approximation due to the smallness
of k′ 〈T2〉 and leads to no significant change throughout the
rest of the analysis, its only noticeable effect lies in rendering
the exponential factor in (45) one order of magnitude smaller
than what it should really be. Thus, considering the corrected
value of cmin in (45),m1 can be safely expected to be close to
the 5D radion mass obtained by Goldberger and Wise in [19].
This indicates that the exponentially warped radion should be
lighter than the lowest-lying KK excitations of bulk fields in
the doubly warped model [68] – which is a result analogous
to its 5D counterpart.

4.2 Couplings of the radions to visible sector fields

The induced metric on the maximally warped (π, 0) visible
brane is given by g(ind)

μν = a(π)2b(0)2ημν . As the warp fac-
tors are explicit functions of T1 and T2, the radions ρ1 and
ρ2 should directly couple to SM fields on the visible brane.
As a generic example, we consider a free massive scalar field
h(x) on this brane with mass μ0 ∼ MPl . Owing to 4D gen-
eral covariance, its action is

Sh = 1

2

∫
d4x

√
−g(ind)

(
gμν

(ind)∂μh∂νh + μ2
0h

2
)

(47)

Keeping the small k assumption and writing the metric
explicitly in terms of the radion fields, the scalar-radion inter-
action terms emerge as follows.

Sh � 1

2

∫
d4x

[(
f2ρ1

f1ρ2

)2

∂μh∂μh − 3

2

(
ρ1ρ2

f1 f2

)2

∂μh∂μh

+
(

f2ρ1

f1ρ2

)4

μ2
0h

2 − 5

2

(
ρ1

f1

)4

μ2
0h

2

]

(48)

Rescaling h(x) →
(

f1 〈ρ2〉
f2 〈ρ1〉

)
h(x) and defining μ =

μ0

( 〈ρ1〉
f1

) ( 〈ρ2〉
f2

)−1

, the action becomes

Sh � 1

2

∫
d4x

[(
ρ1

〈ρ1〉
)2 (

ρ2

〈ρ2〉
)−2

∂μh ∂μh

+
(

ρ1

〈ρ1〉
)4 (

ρ2

〈ρ2〉
)−4

μ2h2

−3

2

(
ρ1

〈ρ1〉
)2 (

ρ2

〈ρ2〉
)2 ( 〈ρ2〉

f2

)4

∂μh ∂μh

−5

2

(
ρ1

〈ρ1〉
)4 ( 〈ρ2〉

f2

)4

μ2h2
]

(49)

In this canonically normalized action, the physical mass μ

is close to the electroweak scale as expected. The coupling
strengths of the radion fluctuations to ordinary matter are
determined by the VEV magnitudes 〈ρ1〉 and 〈ρ2〉. To see
it clearly, we expand the fields about their VEVs as ρ1 =
〈ρ1〉 + δρ1 and ρ2 = 〈ρ2〉 + δρ2.

Sh � 1

2

∫
d4x

[ (
∂μh ∂μh + μ2h2

)

+
(

2 − 3
〈ρ2〉4

f 4
2

)
δρ1

〈ρ1〉∂μh ∂μh

−
(

2 + 3
〈ρ2〉4

f 4
2

)
δρ2

〈ρ2〉∂μh ∂μh

+
(

4 − 10
〈ρ2〉4

f 4
2

)
δρ1

〈ρ1〉μ
2h2

−
(

4 + 6
〈ρ2〉4

f 4
2

)
δρ1

〈ρ1〉
δρ2

〈ρ2〉∂μh ∂μh

−16
δρ1

〈ρ1〉
δρ2

〈ρ2〉μ
2h2 − 5

2

〈ρ2〉4

f 4
2

μ2h2
]

(50)

From (41), we recall 〈ρ2〉 = f2
√
k′ 〈T2〉 π , which for

k′ 〈T2〉 ∼ 0.1 makes 〈ρ2〉4 / f 4
2 ∼ 0.1. In other words, all

the terms proportional to 〈ρ2〉4 / f 4
2 in (50) are sub-leading

by roughly one order of magnitude, and the numerical coef-
ficients in parentheses are all O(1). Hence, the coupling
strength of δρ1 to h is set by 〈ρ1〉−1, and that of δρ2 by
〈ρ2〉−1. From (41), it is obvious that the former is a TeV-
scale coupling, whereas the latter is of gravitational strength.
Further, the cross-coupling of δρ1δρ2 to h is suppressed by a
factor of 〈ρ2〉−1.

This result can be generalized for any parameter with arbi-
trary mass dimension d appearing in the matter Lagrangian.
Such a parameter needs to be rescaled with ( f1 〈ρ2〉 / f2 〈ρ1〉)d .
On the other hand, operators having n powers of gμν

(ind) carry

a factor of (ρ1 〈ρ2〉 /ρ2 〈ρ2〉)(4−2n), where inverse vierbeins
for fermionic fields further contribute with n = 1/2. It thus
becomes clear that δρ1 and δρ2 couple to visible brane matter
through the trace of the energy-momentum tensor Tμν of the
Standard Model, but with very distinct coupling strengths.

L(ρ1)
int � δρ1

〈ρ1〉T
μ
μ , L(ρ2)

int � δρ2

〈ρ2〉T
μ
μ ,

L(ρ1ρ2)
int � δρ1

〈ρ1〉
δρ2

〈ρ2〉T
μ
μ (51)

It is only the radion ρ1 which is of direct experimental inter-
est, as it has both O(TeV) mass and inverse TeV-scale cou-
plings to SM fields. Its phenomenological features are thus
very close in spirit to the single radion phenomenology of
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the singly warped model studied in [19]. Tracelessness of the
tree-level QCD energy-momentum tensor at high energies is
expected to suppress certain mechanisms of ρ1 generation.
Also, the Higgs-like coupling of the radion to SM fields can
be used to derive constraints on radion production relative
to Higgs production processes via analogous interactions, as
shown in [19]. The other radion ρ2, with its nearly Planck
scale mass and inverse Planck strength interactions with visi-
ble matter, lies beyond the reach of collider experiments. The
cross-couplings among the two radions and visible matter are
not of much interest here either, as they are also suppressed
by the Planck scale. Although not quite relevant for ground-
based colliders, these interactions should, in principle, leave
fine detectable signatures in sufficiently high energy events
such as extreme astrophysical phenomena (e.g. gamma-ray
bursts and compact merger events) and early cosmological
features (e.g. next generation CMB observations). Finally, as
we have only been interested in estimating the orders of the
radion masses and couplings, the precise value of the param-
eter ε has not been relevant to our leading order analysis.
The validity of the underlying tuning assumption connecting
∂μT1 and ∂μT2 can also be probed by constraining ε from
such observations, if any. We plan to address these interest-
ing possibilities in future works.

Before concluding this section, it needs to be highlighted
that throughout the leading order analysis done so far, we
have neglected the back reaction of the bulk field on the back-
ground metric. Under certain conditions, this might result in
underestimation of the radion mass by a couple of orders of
magnitude as shown in [38] and [39]. Furthermore, unlike the
5D model, one can exploit the 6D setup immensely by allow-
ing SM fields to extend into the bulk. This possibility, which
constitutes an interesting feature of the doubly warped model,
might imply corrections to the radion mass due to interac-
tions of φ with these fields. There can also be non-negligible
mixing between φ and the scalar degrees of freedom which
give rise to coordinate dependent 4-brane tensions in this sce-
nario. However, they are all expected to supply sub-leading
corrections to the results derived here. Due to the extremely
complicated nature of such a study which can incorporate all
these features accurately, we do not consider these prospects
here and defer that treatment to a future work.

5 Insight from higher curvature gravity

One of the most compelling advantages of having the size of
the extra dimensions set by a single bulk field (as opposed
to separate bulk and brane localized fields) is that it allows a
purely gravitational interpretation of the stabilizing mech-
anism. Conventional wisdom suggests that the Einstein–
Hilbert action, which provides an effective low energy
description of gravity, needs to be amended with additional

higher curvature terms respecting diffeomorphism invari-
ance at sufficiently high energy scales. The warped geom-
etry model which is being considered here has a large cos-
mological constant ( ∼ MP ) in the bulk and as a result the
inclusion of higher curvature terms is a natural choice. Two
broad classes of such higher curvature theories are the quasi-
linear Lanczos–Lovelock models and f (R) models. While
Lanczos–Lovelock models enjoy the benefit of being natu-
rally ghost-free [72–74], the mathematically simpler f (R)

models, equipped with specific conditions to ensure freedom
from ghosts, pass some of the cosmological tests [75–80].
Furthermore, any given f (R) action typically admits a dual
scalar-tensor representation [81–92]. In the so-called Ein-
stein frame (related to the Jordan frame through a conformal
transformation), the situation is equivalent to that of a scalar
field φ̃ coupled minimally to gravity, alongside a potential
U (φ̃) whose form is determined by the functional form of
f (R). For singularity-free metrics which are not experienc-
ing rapid evolution, this equivalence holds physically [93–
97].

5.1 Origin of the scalar mode

In recent works [98] and [99], it has been shown how such
a scalar degree of freedom, arising solely from gravity in
the 5D RS model, can play the role of the bulk field in the
Goldberger–Wise scheme, thus obviating the need to intro-
duce the latter by hand. By choosing f (R) = R + γ2R2 −
|γ4|R4 (where γ2 and γ4 are coupling constants with respec-
tive mass dimensions −2 and −6, and satisfying γ2 > 0 and
γ2 > |γ4| to ensure freedom from ghosts), the potential can
be arranged to contain both quadratic and quartic terms, with
the latter encapsulating the effects of back reaction. Although
the technique can be readily extended to spacetimes of arbi-
trary dimensionality, the inclusion of back reaction quickly
renders multiply warped settings intractable in their full gen-
erality. In the following analysis, we first discuss an extension
of the idea to the doubly warped model by retaining only the
lowest-order correction term in f (R). To that end, we choose
f (R) = R + γ2R2 (akin to the familiar Starobinsky model
of inflation [100–102]), which provides the action

A =
∫

d6x
√−g

[
f (R)

2κ2
6

− �6

]

=
∫

d6x
√−g

[
1

2κ2
6

(
R + γ2R

2
)

− �6

]

(52)

where κ6 is the six-dimensional gravitational constant. In
order to arrive at the Einstein frame, one conventionally
makes a detour [85] through the intermediate Jordan frame
representation
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A =
∫

d6x
√−g

[
1

2κ2
6

{ψR − V (ψ)} − �6

]

,

V (ψ) = χ(ψ)ψ − f (χ(ψ)) (53)

where one introduces the auxiliary field χ and defines ψ =
f ′(χ). For f ′′(χ) �= 0, the equation of motion for χ from
(53), i.e. the on-shell condition, imposes χ = R. This makes
(53) equivalent to the original f (R) action in (52). In order
to reduce this to the minimally coupled Einstein frame rep-
resentation, we apply the conformal transformation

gAB → g̃AB = √
ψgAB , κ6φ̃ =

√
5

2
ln ψ =

√
5

2
ln f ′(R) (54)

where the last equality follows from the on-shell condition.
The action then transforms to

A =
∫

d6x
√−g̃

[(
R̃

2κ2
6

− �6

)

− 1

2
∂Aφ̃∂ Aφ̃ −U (φ̃)

]

,

U (φ̃) = R f ′(R) − f (R)

2κ2
6 ( f ′(R))

3
2

(55)

Substituting f (R) = R + γ2R2 in (54) and inverting the
relation yields R(φ̃), which can be plugged immediately in
(55) to obtain U (φ̃) as follows.

R = 1

2γ2

(
e

2√
5
κ6φ̃ − 1

)

�⇒ U (φ̃) = 1

8γ2κ
2
6

(
e

1√
5
κ6φ̃ − 2e

− 1√
5
κ6φ̃ + e

− 3√
5
κ6φ̃

)

(56)

The minimum of U (φ̃) occurs at φ̃ = 0, as evident from
U ′(0) = 0 and U ′′(0) > 0. Expanding U (φ̃) about this min-
imum, the leading order non-vanishing contribution comes
from the quadratic term, with all subsequent terms increas-
ingly suppressed by higher powers of κ6.

U (φ̃) ≈ 1

8γ2κ
2
6

[(

1 + κ6φ̃√
5

+ κ2
6 φ̃2

10

)

−2

(

1 − κ6φ̃√
5

+ κ2
6 φ̃2

10

)

+
(

1 − 3κ6φ̃√
5

+ 9κ2
6 φ̃2

10

)]

= φ̃2

10γ2
(57)

Having identified (5γ2)
−1 with the mass squared of the scalar

mode φ̃, the action from (55) reduces precisely to the sum of
the Einstein–Hilbert action and the Goldberger–Wise action
in the 6D bulk, with φ̃ in the Einstein frame remarkably play-
ing the role of the bulk field. Although the higher curvature
coupling γ2 appears explicitly in the denominator of U (φ̃),
it is easy to show that U (φ̃) → 0 in the limit γ2 → 0 as
physically expected. One simply needs to re-express φ̃ in

terms of R using (54), which shows that for small γ2 we
have U (R) ≈ (1/2)γ2R2, hence the expected result.

In order to justify stopping at the R2 term, let us take a
look at the effect of subsequent higher curvature terms on the
Einstein frame potential. Starting with f (R) = R + γ2R2 −
|γ4|R4 (where |γ4| � γ2) and proceeding similarly from
(54), we obtain, up to the leading order, R ≈ (1/

√
5γ2)κ6φ̃,

for which the potentialU (φ̃) from (55) takes the approximate
form:

U (φ̃) ≈ γ2R2 − 3|γ4|R4

2κ2
6

= 1

2

(
1

5γ2

)
φ̃2 − 1

2

(
3|γ4|κ2

6

25γ 4
2

)

φ̃4

(58)

which is the quadratic result alongside a quartic correction
proportional to the higher order coupling |b|. The latter term
corresponds to the nonlinear back-reaction of the bulk field
on the background spacetime. Fortunately, for |γ4| � γ2,
suppression by κ2

6 renders it negligibly small compared to
the leading term. In the same vein, it can be shown that any
monomial correction term γn Rn (with integer n ≥ 2) in f (R)

will roughly contribute to U (φ̃) a corresponding φ̃n term,
proportional to γn and suppressed by kn−2

6 . For the purpose
of demonstration, let us consider a generic polynomial form
of f (R) as follows:

f (R) = R +
N∑

n=2

γn R
n �⇒ R(φ̃)

≈ 1√
5γ2

κ6φ̃ (up to leading order) (59)

where we have assumed |γn| � γ2 for all n > 2, which is
reasonable on physical grounds. The potential from (55) is
then given approximately by

U (φ̃) ≈ 1

2κ2
6

N∑

n=2

γn(n − 1)R(φ̃)n ≈ 1

2

N∑

n=2

×
[
γn(n − 1)κn−2

6

(
√

5γ2)n

]
φ̃n (60)

As shown in [98] and [99], such terms beyond n = 2 usually
result in non-trivial modifications of the warp factors them-
selves. While [99] addresses the full back-reacted problem
for the 5D RS model by including the R4 term in the Jordan
and Einstein frames separately, such an exact treatment is
too complicated to be feasible in the 6D case and falls much
beyond the scope of the present work. In any case, as the
higher curvature contributions are all sub-leading and highly
suppressed compared to n = 2, they are expected to provide
very minor corrections (if any) to our results. As such, they
can be safely neglected for the purpose of this work.
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5.2 Role in the stabilization scheme

With the necessary R2 contribution from the gravitational
sector at hand, one can use heuristic arguments to bridge the
gap with the bulk field method from the preceding sections.
As the physical origin of the higher curvature correction(s)
can be traced to the bulk energy density, it stands to reason
that the resulting scalar φ̃ should be an explicit function only
of the compact coordinates y and z. The solution for the
background metric in the Einstein frame is given by (2) (by
extremizing (55)). Equipped with the metric, the equation of
motion for φ̃, as obtained from (55), is formally identical to
(11) away from the boundaries:

− 1

R2
y
∂y

(
a4b3∂y φ̃

)
− 1

r2
z
∂z

(
a4b5∂zφ̃

)
+ m̃2a4b5φ̃ = 0

(61)

where m̃2 = (5γ2)
−1 as noted earlier. Note that reducing

the value of γ2 makes φ̃ more and more massive, and in
the limit γ2 → 0 the scalar mode becomes infinitely heavy
and loses its dynamical behaviour (in addition to φ̃ → 0
itself according to (54)), therefore effectively dropping out
of the theory. This is expected, as in absence of the higher
curvature correction there can be no scalar potential, hence
no stabilizing mechanism in the current picture. (61) can
be solved via separation of variables, with the form of the
general solution being identical to (13):

φ̃(y, z) = e2c|y| (Aeν̃c|y| + Be−ν̃c|y|) [
DPl̃

ñ (tanh(k|z|))
+EQl̃

ñ (tanh(k|z|))
]

sech
5
2 (kz) (62)

where the parameters ν̃ and ñ are defined just as in (14)
and (15) (with −4α̃2 being the separation constant of (61)
analogous to (12)):

ν̃ = 2

√

1 + R2
y α̃

2

c2 , ñ = 2

√

1 + α̃2r2
z cosh2(kπ)

k2 − 1

2
(63)

and l̃ (as in (16)) alone contains the information about the
higher curvature coupling:

l̃ = 5

2

√

1 + 4m̃2r2
z

25k2 = 5

2

√

1 +
(

4

125γ2

)
r2
z

k2 (64)

Now, being a function only of the compact coordinates
(as assumed earlier), φ̃(y, z) is forbidden from having any
dynamics on the 3-branes. This is qualitatively in agreement
with the former bulk field prescription. As an immediate
corollary, we obtain four constant values of φ̃ (having mass
dimension +2) serving as fixed boundary values on the four
3-branes.

φ̃(0, 0) = ũ1 , φ̃(0, π) = ũ2 , φ̃(π, 0) = ũ3 , φ̃(π, π) = ũ4

(65)

These values can be physically interpreted as the VEVs of φ̃

frozen on the corresponding branes. The resulting boundary
conditions are completely identical to (17)–(20), with only
the various parameters replaced by their tilde counterparts.
Note that the current approach renders these boundary con-
ditions exact, whereas in the earlier formulation they were
valid only in the large coupling regime. With the full solution
for φ̃ (which is formally identical to (21)–(25)) at hand, the
rest of the analysis can proceed exactly as before, leading to
the stabilization of both moduli under appropriate choices of
parameters.

In this picture, the set of fundamental parameters turns out
to be {γ2, α, ũ1, ũ2/ũ1, ũ4/ũ2}. The redefinition of the two
dimensionless mass parameters μ1 and μ2, constructed from
m and α respectively, takes the following form:

μ̃1 = m̃rz
k

=
(

1√
5γ2

)
rz
k

, μ̃2 = α̃rz
k

(66)

It is clear that the effect of γ2 enters through the parameter
μ̃1 alone. This relation further allows us to estimate a typical
magnitude of γ2 which is concordant with the stabilization
mechanism dsecribed earlier. First, recall that |�6| ∼ M̃4

implies k/rz ∼ M̃ . Combining this with μ̃1 ∼ 0.1 (as
demonstrated before), one roughly obtains a very small
γ2 ∼ M̃−2. This, in turn, explains the closeness of the VEVs
of φ̃ to M̃2. Using (54), we have at leading order:

〈φ̃〉i = ũi ∼
√

5γ2

κ6
|R|i ∼ |R|i (67)

where the subscript denotes the value at the location of the
i th 3-brane. With the energy density in the bulk typically ren-
dering |R| ∼ M̃2 and making higher curvature contributions
significant, it is thus natural for near-Planck scale VEVs to
arise in the scalar-tensor picture.

Although μ̃1 alone is apparently not very sensitive to
minor changes in γ2, the tuning between μ̃1 and μ̃2 nec-
essary for simultaneous stabilization of c and k makes the
precise value of the higher curvature coupling play a signif-
icant role. However, it is still not possible to constrain γ2

accurately from this information alone, as one also needs the
value of �6 to break the degeneracy present in the definition
of μ1. As it is not possible to measure �6 directly, the cur-
rent line of argument only allows a rough estimation of the
magnitude of γ2.

If �6 and ũ2 can be estimated independently from some
other source, e.g. by fitting relevant braneworld-motivated
cosmological models with available cosmological data, then
experimental measurement of the O(TeV) radion mass from
(45) might ameliorate the situation and better help constrain
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Table 2 Estimates of the O(TeV) radion masses corresponding to the
parameter values from Table 1 (computed using (45)), and the corre-
sponding values of the higher curvature couplings associated with each
choice of μ̃1, expressed in terms of the fundamental parameters of the
model which are not expected to be directly measurable in collider
experiments

μ̃1 μ̃2 ũ4/ũ2 m1 × [
(ũ2/ f1) e−cminπ

]−1
γ2 × k′2

0.40 0.24 1.122 0.253 1.250

0.50 0.30 1.160 0.404 0.800

0.60 0.36 1.200 0.590 0.555

0.70 0.42 1.248 0.821 0.408

0.80 0.48 1.303 1.100 0.313

the higher curvature coupling(s). The reason is the depen-
dence of the functions F1(k) and F2(k) on μ1 (as seen in
Table 1) and their explicit appearance in the expression of
m1. Without precise measurement of �6 however, the degen-
eracy in μ1 persists. This is not surprising, as even in the 5D
Goldberger–Wise scheme, measurement of the 4D radion
mass alone does not help us accurately constrain the mass
of the bulk scalar (beyond a rough order of magnitude esti-
mation similar to what has been shown here). In the current
picture, the information regarding the bulk scalar’s mass is
simply passed on to the higher curvature coupling, preventing
any precise estimation of the latter in a similar spirit. In the
table below, we show estimates of the radion masses and the
corresponding R2 couplings (in terms of the undetermined
parameters) for the parameter values listed in Table 1.

As f1 ∼
√

48M̃4/k′2, the values of m1 and γ2 are essen-
tially expressed in units involving the two precisely unknown
quantities k′ and ũ2. This explicitly shows that a measure-
ment of the radion mass alone is not sufficient to constrain γ2

accurately unless k′ and ũ2 are also known to a sufficiently
high degree of accuracy. One expects the latter to lie beyond
the scope of collider searches, and alternative avenues like
cosmological signatures of the model must be considered.
Due to the fundamentally different and involved nature of
such an investigation, we leave that treatment to a future
work.

6 Discussions

The prospect of stabilizing both moduli of a doubly warped
Randall-Sundrum braneworld model using a single bulk
scalar field has been studied. Such a mechanism is cru-
cial for a complete resolution of the gauge hierarchy prob-
lem in a higher dimensional scenario, and needs to supple-
ment the gravitational part of the action giving rise to the
warped metric. While the approach taken here is essentially
a direct generalization of the Goldberger–Wise mechanism

to six dimensions, the presence of nested warping brings
out additional subtleties and constraints on the parameter
space. As demonstrated, these constraints do not necessarily
involve any extreme fine tuning of the fundamental param-
eters. In the c > k regime, which is phenomenologically
preferred as it requires no brane-localized phantom field to
explain the coordinate dependence of the 4-brane tensions,
the effective potential admits a true minimum in k around
kmin ∼ 0.1 without any significant tuning. The stabilization
of c, on the other hand, requires tuning on two different lev-
els: firstly among the parameters μ1, μ2, and u4/u2 (for the
appearance of a suitable cmin), and secondly for u1/u2 (to
ensure cmin ∼ 12). This can be interpreted physically as a
consequence of the doubly warped structure of the underly-
ing spacetime. A further departure from the singly warped
model is that in order to achieve 0.1 ≤ kmin ≤ 0.6 and
cmin ∼ 12, the minimum admissible magnitude of u1/u2

is O(10), which is one order of magnitude higher than the
analogous requirement in case of the 5D mechanism.

On the phenomenological side, the stabilizing mechanism
with a massive bulk scalar gives rise to two scalar radions.
One of them has TeV scale mass and couples to SM fields on
the visible brane with inverse TeV scale strength. The other
one has Planck scale mass and couples to visible matter with
inverse Planck strength. The cross-coupling among the two
radions and SM fields is also suppressed by the Planck scale.
Furthermore, the TeV scale radion is lighter than the lowest-
lying KK excitations of bulk scalars in this model. Alto-
gether, these make the TeV scale radion (whose features are
expected to be very close to the radion of the singly warped
scenario) the first detectable BSM signature of this model
in collider experiments. The interactions of the other radion
with SM fields, although beyond the scope of ground-based
colliders, may leave observable signatures in extreme astro-
physical phenomena (e.g. gamma-ray bursts and compact
merger events) as well as early cosmological features (e.g.
high precision data from next generation CMB missions).
Together, ground-based colliders and extra-terrestrial obser-
vations may thus probe the validity of the doubly warped
model in the near future. The latter prospects are interesting
and we intend to explore them in future works.

The bulk scalar approach is especially attractive as it
allows room for a purely gravitational interpretation, with
higher curvature contributions in the bulk automatically giv-
ing rise to the required scalar mode and its potential in the Ein-
stein frame. Since the bulk of such warped geometry model
is endowed with large bulk cosmological constant , the con-
tributions from higher curvature terms become natural. This
motivates us to include higher curvature terms in the bulk
such as in f (R) model. This feature distinguishes it from cer-
tain other stabilization schemes, e.g. stabilization of the two
moduli with two distinct bulk and brane-localized fields. For
appropriate choices of f (R), a variety of bulk scalar poten-
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tials can be generated, the simplest of which is the quadratic
potential considered here. While the singly warped model
could be solved exactly in presence of non-negligible back
reaction, the doubly warped model becomes unsolvable as
the field equations turn out to be non-linear PDEs. Never-
theless, the well-known R2 correction is sufficient to make
contact with the conventional approach on physical grounds.
In soothe, at sufficiently high energy scales, gravity alone
appears capable of both warping spacetime and determining
the degree of warping. This possibility is intriguing, as it may
produce observable TeV scale signatures of higher curvature
gravity that can be explored in future collider experiments. In
principle, foremost among them should be theO(TeV) radion
mass associated with the larger modulus, which could be of
fundamental importance in constraining the magnitude(s) of
the higher curvature coupling(s) alongside independent cos-
mological probes.

The current study can be extended along various avenues.
As pointed out earlier, a more precise study of radion phe-
nomenology in a multiply warped background needs to
take interactions of the bulk field with higher dimensional
fermionic and gauge fields into account, alongside mixing
with the brane-localized scalars responsible for coordinate
dependent brane tensions. These effects, which constitute
salient features of geometries with nested warping, may
introduce a plethora of non-trivial modifications as far as
collider signatures are concerned. Theoretically, it is worth
investigating how other viable choices of f (R), or other
classes of higher curvature theories (e.g. Einstein–Gauss–
Bonnet gravity), incorporate higher order phenomena like
significant back reaction and affect the stabilization scheme.
Such studies would necessarily have to rely on numerical
techniques due to the complexity of the model. As plausi-
ble alternatives, one can also attempt to explain the origin
of the stabilizing potential from quantum and/or thermody-
namic perspectives, proceeding along the lines of [103–107].
Finally, it would be interesting to study the role of multiple
dynamical radion fields in various cosmological contexts as
well, e.g. in the inflationary and bouncing settings, alongside
their detectable signature on the Cosmic Microwave Back-
ground data from upcoming CMB missions.
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