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Abstract We use observational data from the S2 star orbit-
ing around the Galactic Center to constrain a black hole solu-
tion of extended teleparallel gravity models. Subsequently,
we construct the shadow images of Sgr A� black hole. In par-
ticular, we constrain the parameter α = 1/λ which appears
in the Born–Infeld f (T ) model. In the strong gravity regime
we find that the shadow radius increases with the increase
of the parameter α. Specifically, from the S2 star observa-
tions, we find within 1σ that the parameter must lie between
0 ≤ α/M2 ≤ 6 × 10−4. Consequently, we used the best fit
parameters to model the shadow images of Sgr A� black hole
and then using the Gauss-Bonnet theorem we analysed the
deflection angle for leading order expansions of the param-
eter α. It is found that within the parameter range, these
observables are very close to the Schwarzschild case. Fur-
thermore, using the best fit parameters for the Born–Infeld
f (T ) model we show that the angular diameter is consistent
with recent observations for the Sgr A� with angular diameter
(51.8±2.3)μarcsec and difficult to be distinguished from the
GR. For the deflection angle of light, in leading order terms,
we find that the deflection angle expressed in the ADM mass
coincides with the GR, but the ADM mass in the Born–Infeld
f (T ) gravity increases with the increase of α and the overall
deflection angle is expected to me greater in f (T ) gravity.
As a consequence of this fact, we have shown that the elec-
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tromagnetic intensity observed in shadow images is smaller
compared to GR.

1 Introduction

Black holes can be currently considered the leading astro-
physical laboratories for testing General Relativity (GR) as
well as any theory of modified and quantum gravity. They
allow tests in strong field regime and potentially are one of
the main tools to discriminate among concurring theories of
gravity. In particular, recent advances in optical, radio, X-ray
and gravitational wave astronomy [1–6] have directly con-
firmed the presence of supermassive black holes in the galac-
tic centers of giant elliptical and spiral galaxies, as well as
small astrophysical black holes of medium and stellar sizes.
Due to the observations of the first radio images of the super-
massive black hole at the center of the M87* galaxy, by Event
Horizon Telescope (EHT) collaboration, black hole shad-
ows have become a very useful tool to test GR and examine
whether possible deviations from it are possible [7]. In such
studies, one first calculates the shadows of various black hole
solutions [8–26] and then confronts them with the M87* data
[27–55].

GR predicts that the unique astrophysically viable asymp-
totically flat black hole solution is only described by its mass,
angular momentum and charge. In astrophysics, the charge
is usually very small so it does not play any role. Further,
if one only takes spherical symmetry, the solution is just
described by its mass and, thus, the Schwarzschild solution.
If one modifies GR, then, there could be more asymptoti-
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cally flat spherically symmetric black hole solutions. There
are several ways of modifying GR [58,59]. One interesting
approach is the so-called teleparallel gravity when curvature
is zero but torsion is non-zero [60–63] (still the compatibil-
ity condition holds

◦∇αgμν = 0). It turns out that there is a
theory which is equivalent to GR (having the same predic-
tions and classical field equations), which is known as the
teleparallel equivalent of GR (see [62]). The action of this
theory is built from the torsion scalar T which is constructed
by contraction of torsion tensor with some particular coeffi-
cients in front. This scalar T differs by a boundary term with
respect to the Levi–Civita Ricci scalar R̊. If one starts from
this theory, one can modify its action and formulate modified
teleparallel theories of gravity (see [61] for a comprehensive
review about them). For example, one can formulate modified
theories by having the three scalars constructed by the tor-
sion tensor [64,65], or by introducing scalar fields, which are
the so-called scalar-torsion theories [66–72], or by including
the boundary term B [73–77], or even by considering other
scalars such as the teleparallel Gauss-Bonnet [78–80]. Due
to the nature of the torsion tensor, it is much simpler than in
the Riemannian case to construct theories with second order
field equations. The covariant formulation of these theories
were already developed in [63,81,82].

One famous modification in teleparallel gravity is known
as f (T ) that it is achieved by upgrading the torsion scalar to
any arbitrary function [81,83–85]. This theory is usually for-
mulated with tetrads and a spin connection which is always
pure gauge. This means that it is always possible to choose
a specific gauge such that the spin connection vanishes. Fur-
ther, this theory contains symmetric and antisymmetric field
equations. If one imposes that both the metric and the connec-
tion respects spherical symmetry, then the two most general
tetrads (in the Weitzenböck gauge) [86] that solve the anti-
symmetric field equations for f (T ) were obtained in [87].
The first one is real and so far, there are not non-trivial exact
black hole solutions (only perturbed ones) [88–93]. Further,
using numerical and a dynamical approach, it has been found
that the real tetrad contains a regular black hole solution in
f (T ) Born–Infeld gravity [94,95]. On the other hand, it has
been recently found that for the complex tetrad, there are two
exact asymptotically flat black hole solutions for two differ-
ent theories, a Born–Infeld f (T ) and a more complicated one
given by non-trivial modifications of GR [87]. These two
exact black solutions represent the first non-trivial ones in
the literature of teleparallel gravity. In the context of scalar-
torsion theories, recently, new exact scalarized black hole
solutions were obtained in [96].

Our aim is to study the astrophysical properties of the
exact black hole solution found in Born–Infeld f (T ) gravity
and use data to constrain its parameter. This particular theory
also has the interesting feature that it can describe inflation

without introducing a scalar field. This paper is organized
as follows. In Sect. 2, we briefly review teleparallel gravity
and exact Born–Infeld solution reported recently in [87]. In
Sect. 3, we study the shadow images in Born–Infeld f (T )

gravity. In Sect. 4, we constrain the parameter of the solutions
using the motion of the S2 star orbit. In Sect. 5, we investi-
gate the deflection angle of light in the weak gravity regime.
Finally in Sect. 6, we comment on our results. Throughout
this paper, Latin indices refer to tangent space and the Greek
indices label coordinates on spacetime. Overcircles quanti-
ties are computed from the Levi–Civita connection (Rieman-
nian quantities), we assume the metric signature (+ − −−)

and natural units c = G = 1.

2 Exact black hole solution in Born–Infeld f (T ) gravity

In what follows we provide a brief review on teleparallel
gravity and f (T ) gravity. These theories are constructed in a
manifold which is globally flat and assumes the compatibility
condition. Hence, torsion is the field strength tensor of the
theory which is the responsible of gravity. Its formulation is
usually built from tetrads eaμ (orthonormal basis on tangent
space) and a purely-gauge spin connection wa

bμ (see [61] for
more details about these theories). According to this picture,
the metric tensor can be expressed in terms of the tetrad field
terms of the following equation

gμν = ηabe
a
μe

b
ν , (1)

in which ηab = diag(1,−1,−1,−1) is the Minkowski met-
ric. Using them, we define the torsion tensor as

T ρ
μν = ea

ρ
(
∂μe

a
ν − ∂νe

a
μ + ωa

bμe
b
ν − ωa

bνe
b
μ

)
. (2)

It can be shown that the torsion tensor is invariant under
local Lorentz transformations if one simultaneously trans-
forms the tetrad and spin connection. Since the spin con-
nection is purely-gauge as ωa

bμ = �a
c∂μ(�−1)cb , one can

always choose a gauge (known as the Weitzenböck gauge)
such that it vanishes.

One of the most remarkable results in these theories is that
there is an equivalent description of GR but based purely on
torsion, the so-called teleparallel equivalent of GR which is
built from the action

S = 1

16π

∫
T e d4x + SM , (3)

with e = det(eaμ) = √−det(gμν), SM represents the action
for the matter fields that it is usually assumed to be coupled
minimally to the metric, and T is known as the torsion scalar
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which is defined as

T = 1

4
T ρσμTρσμ + 1

2
TμσρTρσμ − T ρ

ρσ T
μ

μ
σ . (4)

This teleparallel scalar is connected to the Riemannian Ricci
scalar as R̊ = −T + 2

e ∂μ(eT λ
λ
μ). Clearly, (3) provides the

same equations as the Einstein’s field equations since T dif-
fers by a boundary term to

◦
R and appears linearly in the

action. One can then modify this action to construct modi-
fied teleparallel theories of gravity. One of the most famous
ones is the one when one upgrades T by an arbitrary and
differentiable function of it, namely

S = 1

16π

∫
f (T ) e d4x + SM . (5)

If we vary this action with respect to eaμ, one finds that the
vacuum field equations in the Weitzenböck gauge are

(∂μ fT )Sν
μλ + e−1eaν∂μ(eSa

μλ) fT

− fT T
σ

μνSσ
λμ − 1

2
f δλ

ν = 0

where fT = d f/dT and we defined the superpotential as

Sρμν = 1

2

(
Tνμρ + Tρμν − Tμνρ

)

−gρμT
σ

σν + gρνT
σ

σμ . (6)

The field equations (6) have symmetric and antisymmetric
contributions. The antisymmetric part of the field equations
in spherical symmetry has two branches, one given by a
real tetrad and another one by a complex one. Recently, two
exact black hole solutions in f (T ) teleparallel gravity were
reported by Bahamonde et al. [87]. These solutions were
found in the second branch with tetrad field being [87]

eaμ

=

⎛
⎜⎜⎝

0 iB(r) 0 0
iA(r) sin θ cos φ 0 −r sin φ −r sin θ cos θ cos φ

iA(r) sin θ sin φ 0 r cos φ −r sin θ cos θ sin φ

iA(r) cos θ 0 0 r sin2 θ

⎞
⎟⎟⎠ ,

which reproduces the spherically symmetric metric

ds2 = A(r)2dt2 − B(r)2dr2 − r2d�2 , (7)

where d�2 = dθ2 + sin2 θdφ2 is the line element of a two
dimensional unit sphere. The torsion tensor for this tetrad
is spherically symmetric (and real) and the torsion scalar
behaves as

T = 2

r2B2A
((

B2 + 1
)
A + 2rA′) . (8)

Our main aim is to investigate the phenomenology of this
new exact black hole solution. The exact solution is based
on a theory motivated from Born–Infeld electromagnetism,

which has the following form of the function

f (T ) = λ

(√
1 + 2T

λ
− 1

)
, (9)

with λ being the so-called Born–Infeld parameter. It is
interesting to mention that Born–Infeld f (T ) gravity was
the first modified teleparallel gravity studied in the con-
text of inflation [83]. If one assumes that T/λ � 1, then
f (T ) = T − T 2/(2λ) + O(1/λ2) which behaves as TEGR
(or GR) and a torsion-squared correction. For this theory and
the tetrad (7), there is the following exact spherically sym-
metric solution [87]

ds2 = a2
1

r

[√
λ(a0λ + r) − 2 tan−1

(√
λr

2

)]
dt2

− λ5/2r5

(4 + r2λ)2

[√
λ(a0λ + r)

−2 tan−1

(√
λr

2

)]−1

dr2 − r2d�2 , (10)

where a0, a1 are integration constants. In order to obtain an
asymptotically flat spacetime we require that a2

1 = 1/
√

λ.
Further, to have a smooth transition from the Schwarzschild
solution of TEGR (λ → ∞) one needs to set a0 = −2M/λ.
Doing so, and by introducing the parameter

α = 1

λ
(11)

we obtain that the metric becomes

ds2 =
[

1 − 2M

r
− 2

√
α

r
tan−1

(
r

2
√

α

) ]
dt2

− α−5/2r5

(4 + r2/α)2

[
1 − 2M

r

−2
√

α

r
tan−1

(
r

2
√

α

) ]−1

dr2 − r2d�2 . (12)

Thus, smaller values of α would mean that the deviation from
GR would be smaller. Let us compute the ADM mass which
coincides with the Komar mass in our case and it is defined
as

M = lim
r→∞

r

2

(
1 − gab(∂ar)(∂br)

)
= M + π

√
α

2
. (13)

One can notice that the ADM mass M is shifted by π
√

α

2
with respect to the mass parameter M .

If we now assume that T/λ � 1 and we expand the metric
up to O(α2), we notice that the metric becomes

ds2 =
[

1 − 2M

r
+ 4 α

r2 − π
√

α

r

]
dt2
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−
[

1 − 2M

r
− 16M α

r3 + 12α

r2 − π
√

α

r

]−1

dr2

−r2d�2 + O(α2) , (14)

where one can see that this solution behaves as Schwarzschild
in addition to some corrections. It is known that this exact
solution contains an event horizon as reported in [87].

3 Black hole shadows in Born–Infeld f (T ) gravity

Even though teleparallel gravity expresses the gravitational
field through torsion, the geodesic equation still holds for this
framework if one assumes that matter is minimally coupled to
the metric (and at most to the Levi–Civita connection). This
can be seen from the following force-like equation which
appears in teleparallel gravity: [62]

d2xμ

dδ2 + �μ
νρ

dxν

dδ

dxρ

dδ
= Kμ

νρ

dxν

dδ

dxρ

dδ
, (15)

where δ is the arc-length parameter which parametrizes the
worldline of the particles, �μ

νρ is the Weitzenböck connec-

tion and K λ
μν = 1

2

(
T λ

μν + T λ
μν + T λ

νμ

)
is the contortion

tensor. Since the Levi–Civita connection and the Weitzen-
böck connection are related as

◦
�μ

νρ = �μ
νρ − K λ

μν , one
can rewrite the above equation yielding the standard geodesic
equation

d2xμ

dδ2 + ◦
�μ

νρ

dxν

dδ

dxρ

dδ
= 0 . (16)

As it is known, there are two constants of motion for particle
motion in spherical symmetry, namely the energy E and the
angular momentum L of the particle, due to the existence
of the timelike and spacelike Killing vectors. Following the
standard procedure it is straightforward to obtain the equa-
tions of motion for photons as

dt

dδ
= E

A2(r)
, A(r)B(r)

dr

dδ
= ±

√
R(r)

r2 ,

dθ

dδ
= ±

√
�(θ)

r2 ,
dφ

dδ
= L csc2 θ

r2 , (17)

where we have defined

R(r) ≡ E2r4 − (Q + L2)r2A2(r) and

�(θ) = Q2 − L

sin2 θ
, (18)

withQbeing the Carter constant. Separation of the Hamilton-
Jacobi equations into radial and polar parts involves a sepera-
tion constant [101]. Using the above equations we can further

study the radial geodesics by introducing the effective poten-
tial Veff(r) as follows

(
dr

dδ

)2

+ Veff(r) = 0 , (19)

where

Veff(r) = − 1

A2(r)B2(r)

R(r)

r4 (20)

and

ξ = L

E
, η = Q

E2 . (21)

We can use the two impact parameters ξ and η in order to
analyze the motion of photons around the black hole. Since
we are interested to explore the possible deviations from GR
encoded in the parameter α we need to use the conditions
for unstable orbit. As we know, in the observer’s sky, we can
observe the black hole shadow due to the fact that some of
the scattered photons escape from the black hole while some
photons are captured by the black hole. These unstable circu-
lar photon orbits can be obtained by applying the following
conditions:

Veff(r) = 0 ,
dVeff

dr
= 0 ,

d2Veff

dr2 ≤ 0 . (22)

Using Eqs. (17) and (19) it is easy to combineVeff and R(r). If
we express the above conditions in terms of R(r) we obtain:

R(r) = 0 ,
dR(r)

dr
= 0 ,

d2R(r)

dr2 > 0 . (23)

The radius of the photon sphere can be used to find the
size of black hole shadow. In order to describe the shadow
as seen by large distances, one introduces the two celestial
coordinates X and Y [101], namely

X = lim
r∗→∞

(
−r2∗ sin θ0

dφ

dr

)
, (24)

Y = lim
r∗→∞ r2∗

dθ

dr
, (25)

with r∗ the distance between the black hole and the observer,
and θ0 the inclination angle between the observer’s line of
sight and the black hole rotational axis.

Using the geodesics equations we finally obtain

X = −ξ(rph) csc θ0 , (26)

Y =
√

η(rph) − ξ2(rph) cot2 θ0 , (27)
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Fig. 1 Left panel: Density plot of the shadow Rsh as a function of the parameter M and α for the metric described by (12). Right panel: Shadow
radius as a function of α with a fixed mass M = 1

and thus we have X2 + Y 2 = ξ2(rph) + η(rph). Hence, the
shadow radius Rsh can finally be found as

Rsh(rph) =
√

ξ2(rph) + η(rph) = rph

A(rph)
. (28)

The angular diameter of the shadow can be defined as

θsh = 2 RshM

D
, (29)

where D is the distance from the black hole and M is the
black hole mass. In Fig. 1, we display the shadow radius of
the black hole in Born–Infeld f (T ) gravity as a function of
the parameter α. We find that the shadow radius increases
with the increase of α.

We can see that the event horizon radius is expected to
increase due to parameter α. We close this section by con-
sidering the scenario where the black hole is surrounded by
an infalling/radiating accretion flow. Via this simple model,
one can extract valuable information about the intensity of
the radiation which can be detected by a distant observer. In
order to achieve this we need to estimate the specific intensity
at the observed photon frequency νobs at the point (X,Y ) of
the observer’s image [26,34,102–105]

Iobs(νobs, X,Y ) =
∫

γ

g3 j (νe)dlprop . (30)

We consider a freely-falling gas dropped from rest at infinity
with E = 1, which has the following four-velocity

uμ
e =

(
1

A2(r)
,− 1

A(r)B(r)

√
1 − A2(r), 0, 0

)
. (31)

In addition we need to use the condition pμ pμ = 0, from
which one can easily obtain

pr

pt
= ±A2(r)

B(r)

√(
1

A2(r)
− b2

r2

)
, (32)

with b being the impact parameter. It is important to men-
tion here that sign +(−) describes the case when the photon
approaches (or draws away) from the black hole. The redshift
function z can be calculated using [26,34,102–105]

z = pμu
μ
obs

pνuν
e

, (33)

with uμ
obs the 4-velocity of the observer. For the specific emis-

sivity we assume a simple model in which the emission is
monochromatic, with emitter’s-rest frame frequency ν�, and
the emission has a 1/r2 radial profile:

j (νe) ∝ δD(νe − ν�)

r2 , (34)

where δD denotes the Dirac delta function. The accretion
flow has spherically symmetry and it can be described as an
optically-thin disk region around the black hole. Expressing
the proper length in terms of radial coordinate for observed
flux, we find

Fobs(X,Y ) ∝ −
∫

γ

z3 pt
r2 pr

dr. (35)

In the next section we will constrain the parameter α and
use its best fit value to plot the shadow images for the Sgr A�

black hole.

4 Observational constraints on Born–Infeld f (T )

gravity

Let us now focus on the most important aspect of the present
work which is to constrain the parameter of the theory and test
this solution with observations from the shadow of the Sgr
A� central black hole. For the distance we shall assume the
distance D = 8.3 kpc, while for the black hole mass we can
take M = 4.1 × 106 M. Our strategy is to first constrain α
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using the motion of the S2 star orbit (see, the data [107,108])
and then construct the specific shadow images within the
range of validity of the observations and more specifically,
its best fitting value. To study the motion of a test particle
using the f (T ) solution, without loss of generality, we can
take the equatorial plane with (θ = π/2, θ̇ = 0), and then
having in mind that there are two constants of motion (namely
the total energy E and the total angular momentum L of the
S2 star) which are given by

ṫ = E

A2(r)
, φ̇ = L

r2 , (36)

where dots refer differentiation with respect to the arc-length
parameter δ. One can also find that the radial equation of
motion for the particle (S2 star in our case) is given by [109–
111]

r̈ = − 1

2B2(r)

[
dA2(r)

dr
ṫ2 − dB2(r)

dr
ṙ2 − 2r φ̇2

]
. (37)

The real position is given by the Cartesian coordinates
(x, y, z), along with the corresponding velocity components
(vx , vy, vz). From the Cartesian coordinates we can find the
coordinates in spherical coordinates in the equatorial plane
easily using

x = r cos φ , y = r sin φ , z = 0 , (38)

with the corresponding three-velocities given by

vx = vr cos φ − rvφ sin φ ,

vy = vr sin φ + rvφ cos φ , vz = 0 . (39)

During the numerical analyses, from the observers point of
view, we need to work with the apparent orbit which has
the coordinates (X ,Y,Z) related to the real orbit given by
(x, y, z) using [112]

X = x B + yG , Y = x A + yF , Z = xC + yF , (40)

whereas for the apparent components of the velocity and the
real component of the velocity we have the relations [112]

VX = vx B + vyG , VY = vx A + vy F ,

VZ = vxC + vy F , (41)

in which we defined [112]

B = sin � cos ω + cos � sin ω cos i , (42)

G = − sin � sin ω + cos � cos ω cos i , (43)

A = cos � cos ω − sin � sin ω cos i , (44)

F = − cos � sin ω − sin � cos ω cos i , (45)

Fig. 2 1σ and 2σ parameter region of Born–Infeld f (T ) black hole
solution consistent with S2 star observations after a Monte–Carlo–
Markov Chains analysis

C = sin ω sin i , (46)

F = cos ω sin i . (47)

Note here the following important quantities: ω, i , and �

which are the argument of pericenter, the inclination between
the real orbit and the observation plane, and the ascending
node angle, respectively. Recently, the Gravity Collabora-
tion measured for the first time the orbital precession of S2,
and constrained its departure from the one predicted in GR
whose best fit value is fSP = 1.10 ± 0.19 [106]. Here a
value fSP = 0 recovers Newtonian’s gravity and fSP = 1
which is consistent with GR. The result clearly shows that
GR is consistent with observations. In the present work, we
would like to test a possible deviations from GR using the
modified gravity f (T ) gravity solutions. One must relay on
the numerical analyses to obtain the equations of motion for
the orbit. We are going to use the Bayesian theorem with
the likelihood function with the posterior probability density
with the likelihood function is given by

lnL(O|P) = −1

2

N∑
i=1

[(
X obs,i − Xmod,i

)2

σ 2
obs,i

]

−1

2

N∑
i=1

[(
Yobs,i − Ymod,i

)2

σ 2
obs,i

]
, (48)

where the two observed and theoretical quantities are noted
as (Xobs,Yobs), and (Xmod ,Ymod) (see, [108,109]). In order
to find the best-fit values we use the Monte-Carlo-Markov
Chains analysis. For the central mass object we take 4.1 ×
106M along with the uniform priors α/M2 ∈ [0, 1] for the
Solution 2, respectively. In Fig. 2, we present the region of
the parameter space in agreement with S2 star data. Con-
cerning the α parameter, in which we are interested in this
manuscript, the best fit within 1σ confidence are given in
Table 1. Within 1σ we found an upper bound 0 ≤ α/M2 ≤
6 × 10−4 for the Born–Infeld f (T ) gravity. Using the con-
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Table 1 In the table we present the best fit parameters obtained within
1σ confidence

Schwarzschild (GR) Born–Infeld f (T ) gravity

M [4.1 × 106M] 1.020 1.015

α [M2] – 1.559 × 10−5

� [0] 228.171 228.171

ω [0] 66.263 66.263

i [0] 134.567 134.567

ε [no units] 0.890 0.890

a [mas] 126.332 126.321

θsh [μas] 51.686 52.530

χ2
r 6.777 8.801

< χ2 > 3.885 4.400

straints we have presented the shadow of Sgr A� black hole
as shown in Fig. 3. For the angular diameter we have found
52.530 μarcsec. Using the recent result reported for Sgr A�

given by (51.8 ± 2.3)μarcsec [4–6] we conclude that the
angular diameter of the Born–Infeld f (T ) gravity is con-
sistent with the observation and could not be distinguished
from the Schwarzschild black hole in GR by the present tech-
nology. From the shadow images given in Fig. 3, one can
observe the characteristic photon rings and also an interest-
ing fact that the intensities of the electromagnetic radiation
are small in Born–Infeld f (T ) gravity models compared to
Schwarzschild black hole.

5 Deflection of light in Born–Infeld f (T ) gravity

In this final section, we will proceed to elaborate the gravita-
tional lensing effect in weak gravity regime in f (T ) gravity
models using the optical geometry. For the general case, in
the equatorial plane by letting ds2 = 0, we find the optical
metric

dt2 = B2(r)dr2

A2(r)
+ r2dφ2

A2(r)
. (49)

To simplify further the work, we can write the optical
metric in approximated form in leading order in α, in the
equatorial plane, given by (see the expanded metric in (14))

dt2 � dr2
[
1 − 2M

r + 4 α
r2 − π

√
α

r

] [
1 − 2M

r + 12 α
r2 − π

√
α

r

]

+ r2dφ2

1 − 2M
r + 4 α

r2 − π
√

α

r

+ O(α2) (50)

In what follows we shall apply the optical geometry by
applying the Gauss-Bonnet theorem to compute the deflec-
tion angle of light, which can be summarised as follows:

Theorem LetDR be a non-singular domain outside the light
ray with boundaries ∂DR = γg(op) ∪CR, of an oriented two-

dimensional surface S with the optical metric g(op). More-
over let K and κ be the Gaussian optical curvature and the
geodesic curvature associated to the optical geometry.Under
this construction the Gauss-Bonnet theorem can be written
as follows [114]

∫

DR

K dS +
∮

∂AR

κ dt +
∑
k

θk = 2πχ(DR) . (51)

In this equation θk stands for the exterior angle at the kth

vertex. We chose the regular domain to be outside of the
light ray, say in the (r, φ) optical plane, this means that the
domain has the topology of disc having the Euler character-
istic number χ(DR) = 1. Furthermore we need to compute
two important quantities: the Gaussian optical curvature and
the geodesic curvature. Let us first focus on the Gaussian
optical curvature K which in leading order terms gives

K � −2M

r3 − π
√

α

r3 + O(α2) . (52)

Let us now introduce a smooth curve defined as follows
γ := {t} → DR , where the geodesic curvature can be found
from [114]

κ = g(op)
( ◦∇γ̇ γ̇ , γ̈

)
, (53)

having in mind the additional unit speed condition g(op)(γ̇ , γ̇ )

= 1, along with the γ̈ being the unit acceleration vector. In
the large limit, but finite radial distance r ≡ R → ∞, we
have two jump angles (say at the source S and observer O),
which satisfy θO + θS → π [114]. On the other hand, for
the geodesic curvature for the light ray (geodesics) we must
have κ(γg(op) ) = 0. Hence we only need to compute the con-
tribution to the curve CR . From the Gauss-Bonnet theorem
we have

lim
R→∞

∫ π+α̂DA

0

[
κ
dt

dφ

]

CR

dφ = π − lim
R→∞

∫∫

DR

K dS. (54)

To simplify the problem further, let us chose the black hole
at the coodinate center and consequently the geodesic curva-
ture for the curve is CR at the distance distance R from the
coordinate center. It follows that [114]

κ(CR) = | ◦∇ĊR
ĊR |. (55)

We can now utilize the unit speed condition and the optical
metric to show that limR→∞ κ(CR) → R−1. This shows that
the optical metric is asymptotically Euclidean and therefore
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Fig. 3 Shadow images of Sgr A� black hole in GR (left panel) and Born–Infeld f (T ) gravity (right panel) using the best fit parameters. We have
considered the best fit for the black hole mass given in Table 1 and the distance form the Sgr A� to Earth D = 8.3 kpc

the deflection angle reads

α̂DA = −
π∫

0

∞∫

r(φ)

KdS, (56)

where we have the surface element reads dS = √
g(op)drdφ

and the equation for the light ray r(φ) = b/ sin φ. Solving
this integral we can approximate the deflection angle as

α̂DA = −
π∫

0

∞∫

b
sin φ

[
−2M

r3 − π
√

α

r3

]
dS

= 4M

b
+ 2π

√
α

b
− π

(
3π2 + 80

)
α

16 b2 + O(α2) . (57)

From the last equation, one notices that the deflection angle
is affected by the parameter α in leading order terms. At
least mathematically, in leading order terms, it seems like we
cannot distinguish the black hole in f (T ) gravity from the
GR. Implying that the deflection angle in leading order terms
expressed by the ADM mass (see Eq. (13)) is given by

α̂DA = 4

b

(
M + π

√
α

2

)
− π

(
3π2 + 80

)
α

16 b2

= 4M
b

− π
(
3π2 + 80

)
α

16 b2 + O(α2) . (58)

However from the physical point of view the ADM mass in
f (T ) gravity, i.e. M is bigger compared to the mass param-
eter M , since α ≥ 0.

Of course, we see that one can go beyond the leading order
term and, in that case, the second order term is a correction
term proportional to δα̂ ∼ −α/b2, meaning that the deflec-
tion angle decreases to the α corrections, but the first order
term which increases the mass is dominant and overall the

deflection angle is expected to increase. This increase on the
deflection angle explains why the intensity of electromag-
netic radiation detected by a distant observer shown in Fig. 3
is smaller in f (T ) gravity compared to GR. The best accu-
racy of measuring the deflection of light by the sun is from
measuring the deflection of radio waves from distant quasars
using the Very Long Baseline Array (VLBA) [115], which
achieved an accuracy of 3 × 10−4. For that we can use the
leading order contribution term

δα̂DA

α̂GR
DA

= 2π
√

α/b

4M/b
< 3 × 10−4. (59)

Assuming that light grazes the surface of the Sun with b =
6.96×108 m and mass in geometric units M = 1.48 km, we
get the following interval 0 ≤ α/M2 ≤ 3.64 × 10−8. Where
we have excluded the negative domain, we can see that the
positive bound belongs to the interval obtained from the S2
star constrain given by 0 ≤ α/M2 ≤ 6 × 10−4.

6 Conclusions

We have used an exact solution in Born–Infeld f (T ) gravity
and studied the phenomenological aspects using the black
hole shadows and the S2 star orbit. The impact of modi-
fied gravity is encoded in the coupling parameter α which
changes the properties of the black hole and its shadow.
We used data from the orbital motion of S2 star around the
Sgr A� black hole through a Monte-Carlo-Markov Chains
(MCMC) analysis within 1σ we found an upper bound
0 ≤ α/M2 < 6 × 10−4. Using the best fit parameters we
found the angular diameter 52.530 μarcsec for the shadow.
Using the recent result for the angular diameter for Sgr A�

reported as (51.8 ± 2.3)μarcsec [4–6] we see that the angu-
lar diameter of the Born–Infeld f (T ) gravity is consistent
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with the observation and very difficult to distinguished from
the Schwarzschild black hole, at least with the present data.
We have also computed the deflection angle of light in the
weak gravity regime and found that in leading order terms
mathematically the Born–Infeld f (T ) gravity cannot be dis-
tinguished from the classical GR, however the ADM mass
in f (T ) gravity is bigger due to α corrections and overall
the deflection angle is expected to increase. This fact is in
perfect agreement with our shadow image shown in Fig. 3,
for Born–Infeld f (T ) gravity the intensity observed at infin-
ity is smaller compared to GR. This has to do with the fact
that when the deflection angle increases more photons will be
captured by the black hole and the intensity will be smaller at
infinity. From the weak deflection angle we obtain an upper
bound given by 0 ≤ α/M2 ≤ 3.64×10−8. Finally, it should
be noted that, with the improvement of the precision of mea-
suring the shadow of black holes we should have better con-
straints to have a more rigorous test of modified theories of
gravity.

Still there are some questions regarding the exact black
hole solution that we analysed. For example, it is important to
analyse its stability by performing perturbations of the tetrad.
Furthermore, some other aspects that could be interesting to
analyse are the predictions of the quasi-normal modes gen-
erated by having this background solution. Since the tetrad is
complex, one would need to be careful on performing these
perturbations carefully such that all the observables are real.
Another question that could be interesting astrophysically is
to analyse its viability by studying accretion disks configura-
tions under this solution. All of these studies will be reported
in forthcoming studies.
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