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Abstract The energy–momentum tensor for the electro-
magnetism with Lorentz breaking even term of the Standard
Model Extended (SME) photon sector confined in a hyper
torus is determined. A generalized partition function method
is used, following in parallel the thermofield dynamics for-
malism written in N-dimensional toroidal manifold. After
considering general aspects of the SME photon sector in a
toroidal manifold, the influence of the isotropic CPT-even
electromagnetic sector of the SME is analysed. The approach
is then applied to the Casimir effect at finite temperature,
corresponding to a topology (S1)r × RN−r , where N is the
dimension of the Minkowski space-time, and r is the number
of compactified dimensions.influence of the isotropic CPT-
even electromagnetic sector of the SME is analysed.

1 Introduction

The standard model of particle physics is so far the best the-
ory describing in a unified way the fundamental interactions
of nature. However, it fails to address the gravitational inter-
action. Despite the experimental success, the last being the
Higgs boson in 2013, a more complete theory is necessary to
predict, for instance, the Higgs mass. Beyond that, remains
to be properly explained the origin of the electron’s elec-
tric dipole moment, de, and its experimental upper bounds
[1]. Theories beyond the standard model predict a small, but
potentially measurable de ≤ 10−29 e ·cm [2], which presents
an asymmetric charge distribution along the spin axis. By
these motivations it is mandatory to investigate the physics
beyond the standard model.

a e-mail: humberto.belich@ufes.br (corresponding author)

In 1989, Kostelecký and Samuel [3] proposed a sponta-
neous Lorentz symmetry violation through nonzero vacuum
expectation values of nonscalar fields (vacuum expectation
values of tensor fields) based on a string field theory. Taking
this violation proposal into a field theory context, Kostelecký
and colleagues investigate a possible extension of the stan-
dard model [4]. This proposal has been known as Standard
Model Extension (SME) [5,6].

The presence of terms that violate the Lorentz symme-
try imposes anisotropies in the space-time [7,8]. Relativistic
quantum effects [9–15] with Lorentz symmetry breaking and
non minimal coupling [16–28] have opened the possibility
of investigating implications in quantum mechanics, that this
background violating Lorentz invariance can promote.

The first studies addressing the consequences of violat-
ing Lorentz symmetries came about in the early 1990s.
This subject matter had as its starting point the work car-
ried out by Carrol, Field and Jackiw [29], proposing a
modified Maxwell electrodynamics. This modification intro-
duced, in the Lagrangian density, a Chern–Simons-like term,
εμνκλVμAνFκλ, in (1+3) spacetime dimensions. This stands
for a coupling of the gauge field with a field violating
the Lorentz symmetry (Vμ). Still in the 1990s, Colladay
and Kostelecky [5,6,30], developed a theoretical model that
would correspond to an extension of the well-known SM of
fundamental interactions.

In recent years, efforts have been made as an attempt to test
CPT symmetry, as, for example, mechanisms to test Lorentz
and CPT symmetries using antimatter experiments [31]. In
particular, such symmetries are explored within the scope of
chiral perturbation theory [32]. Furthermore, there are tests
involving neutrinos from the gamma ray bursts [33–36] and
a phenomenological discussion using neutral mesons [37].
Following the same perspective, studies involving the break-
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ing of the CPT symmetry from gravitational effects in a sys-
tem of self-interacting particles are presented in [38]. The
assessment of the values for the Lorentz and CPT coeffi-
cients has also been discussed [39–41]. In this realm, the
important effect of compactification, including the Casimir
effect, in breaking of the CPT symmetry has been only par-
tially addressed in the literature [42].

The Casimir effect is a remarkable manifestations of vac-
uum fluctuations. For the electromagnetic field, this effect
emerges due to the difference between the energy density
of the modes outside the plates and those inside the plates,
which are subject to the boundary conditions. This leads to
the attraction between two metallic plates, parallel to each
other, embedded into the vacuum [43]. The attraction is due
to a fluctuation of the fundamental energy of the field, that
by the presence of plates, select the electromagnetic vac-
uum modes by boundary conditions- [44–47]. The measure-
ments of this effect in great accuracy in the last decades has
gained attention of the theoretical and experimental commu-
nity [48,49]. One practical implication of these achievements
is the development of micro-devices [50–53]. Also in the
CPT-even photon sector of the Standard-Model Extension
is taken into account in [54–65], and with embedded into a
gravitational background [66,67],

In the present work, we consider the effect of compact-
ification of the electromagnetism with breaking of Lorentz
symmetry [68], with the preservation of the CPT symme-
try [69]. in order to analyze the influence on such break-
ing of symmetry in the Casimir effect with thermal field
treatment [68–77]. In terms of thermofield dynamics, the
algebraic formalism of finite-temperature quantum field the-
ory, a Bogoliubov transformation has then been generalized
to describe thermal and space-compactification effects, of a
field in toroidal topology �r

N = (S1)r × RN−r [78]. In �r
N ,

N stands for the dimension of the Minkowski space-time,
whilst r is the number of compactified dimensions. Here,
following a different way, we consider a generalization of
the partition function approach, in order to handle with the
space compactification and temperature. One advantage in
this procedure is that we avoid the duplication of the degree
of freedom in the Bogoliubov formalism. Considering then
general aspects of the SME photon sector in a toroidal mani-
fold, the influence of the isotropic CPT-even electromagnetic
sector of the SME in the Casimir effect at finite temperature
is analysed.

This work is organized in the following way. In Sect. 2, the
gauge sector of the SME is considered. in Sect. 3, the com-
pactification in �r

N is developed through a partition function
procedure. In Sect. 4, the vacuum fluctuation effects is stud-
ied for N = 4, with the compactified dimensions r = 1, 2
submitted to the model, and our Concluding remarks are pre-
sented in Sect. 5.

2 The theoretical model and notation

The Lagrangian density of the CPT-even electrodynamics in
the photon sector of the SME is given by

L = −1

4
FμνF

μν − 1

4
(kF )μνλρ FμνFλρ, (1)

where (kF )μνλρ is a tensor dimensionless coupling and renor-
malizable. This tensor has the same symmetries of the Rie-
mann tensor, composed of 19 elements, i.e.

(kF )μνλρ = − (κF )νμλρ , (kF )μνλρ = − (kF )μνρλ ,

(kF )μνλρ = (kF )λρμν ,

(kF )μνλρ + (kF )μλρν + (kF )μρνλ = 0.

With these symmetry and antisymmetry properties associ-
ated with a double null trace, (kF )μν

μν = 0, the original
256 components are reduced to 19 independent components.
The tensor trace contracted with the two field strengths gen-
erates a term proportional to the Maxwell term. Therefore, as
the gauge sector of the Standard Model already has this term,
the null trace condition removes this extra Maxwell term. It
is used to construct the vacuum Maxwell equations similar
as appears in a material medium [79].

The starting point for obtaining the structure of the Hamil-
tonian of electrodynamics comes from the definition of the
canonical conjugate momentum

πμ = ∂L
∂

·
Aμ

= −F0μ − (kF )0μλρ Fλρ, (2)

with the fundamental Poisson brackets written as
{
Aμ (x) , πν (y)

} = δν
μ (x − y) . (3)

We can express the conjugate momentum as,

πk = −Dkj F0
j − (kF )0k jl Fjl , (4)

and the Dkj matrix is,

Dkj = δk j + 2 (kF )0k
0

j , (5)

From the Eq. (2), when taking μ = 0 will imply π0 = 0,
which corresponds the constraint in the theory. The presence
of the constraint suggests that one should study the struc-
ture of the Hamiltonian according to the Dirac method. This
analysis leads to [80]

Hc = 1

2

[
πk + (kF )0kmn Fmn

] (
D−1)

k j

[
π j + (kF )0 jmn Fmn

]

+ πk∂k A0 + 1

4

(
Fjk
)2 + 1

4
(kF )k jlm Fkj Flm . (6)

The above expression is the canonical Hamiltonian density,
and it is kept positive definite for sufficiently small values
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of (kF )μνλρ , providing a stable theory. With this Hamilto-
nian, in the following section, the partition function in �r

N is
introduced as a generalized Matsubara method [81].

3 The partition function in an r-dimensional torus

The partition function for the CPT-even sector of the SME
in the functional integral representation is defined as

Z (L0 · · · Lr ) =
∫

DAμDπμδ (�a)

× |det {�a (x) , �b (y)}|1/2

× exp

{∫ L0

0
· · ·
∫ Lr

0

∫
dD+1x

(
iπμ∂τ Aμ−Hc

)}
,

(7)

where �a = (φ1, φ2, ψ1, ψ2) is a second-class set formed
by the first-class constraints and the gauge fixing conditions;
Mab (x, y) = {�a (x) ,�b (y)} is the constraint matrix with
determinant det {�a (x) ,�b (y)} = det

(−Dkj∂ j∂k
)4; and

Hc is the canonical Hamiltonian given in Eq. (6). The par-
tition function represents a generalization of the system in
N = D + 1 dimensions and the topology �r

N = �r
D+1 =

S
10 × S

11 · · · S1r × R
D+1−r . In this case, the compactifica-

tion of the CPT-even sector of the SME will occur in r + 1
dimensions, with r � D. Therefore, the partition function of
the SME for the CPT-even sector reads

Z (L0 · · · Lr )

=
∫

DA0Dπ0DAkDπkδ
(
π0) δ

(
∂kπ

k
)

× δ
(
Djk∂ j Ak

)
δ
(
Djk∂ j∂k A0 − (kF )0i jk ∂i Fjk

)

× det
(−Dkj∂ j∂k

)2

× exp

{∫ L0

0
· · ·
∫ Lr

0

∫
dD+1x

(
iπ0∂τ A0 + iπk∂τ Ak

)}

× exp

{∫

β

dx

[
−1

2

[
πk + (kF )0kmn Fmn

]

× (D−1)
k j

[
π j + (kF )0 jmn Fmn

]

−πk∂k A0 − 1

4

(
Fjk
)2 − 1

4
(kF )k jlm Fkj Flm

]}
. (8)

Performing the proper integrations over the canonical con-
jugate momenta and introducing the following redefinitions,

F0k = Fτk,

(kF )0kmn = i (kF )τkmn ,

it leads to

Z (L0 · · · Lr ) =
∫

DAkDAτ δ
(
Djk∂ j Ak

)
det
(−Dkj∂ j∂k

)

× exp

{∫ L0

0
· · ·
∫ Lr

0

∫
dD+1x

×
[
−1

2
Fτk Dkj Fτ j − 1

4

(
Fjk
)2

−1

4
(kF )k jlm Fkj Flm − i (kF )τkmn Fτk Fmn

]}
.

(9)

This expression is rewritten as

Z (L0 · · · Lr ) = N det
(−Djk∂ j∂k

) ∫
DAaδ

(
Djk∂ j Ak

)

× exp

{∫ L0

0
· · ·
∫ Lr

0

∫
dD+1x

×
[
−1

4
FabFab − 1

4
(kF )abcd FabFcd

]}
,

(10)

where a, b, c, d = 0, 1, 2, 3, considering that x0 is Euclid-
ian; i.e. i t → τ such that 0 < τ < L0 = β, with β = 1

T , T
being the temperature. This partition function is not explic-
itly Lorentz covariant. To fix that, the Faddeev-Popov ansatz
is used. We choose a covariant gauge condition in the form
of the Lorenz gauge by

G [Aa] = − 1√
ξ
∂a Aa + f, (11)

where f is an arbitrary scalar function and ξ is an arbitrary
real parameter. The partition function results in

Z (L0 · · · Lr ) = N
∫

DAa det

∣∣∣∣
−�√

ξ

∣∣∣∣

× exp

{∫ L0

0
· · ·
∫ Lr

0

∫
dD+1x

[
−1

4
FabFab

−1

4
(kF )abcd FabFcd − 1

2ξ
(∂a Aa)

2
]}

. (12)

Using the Feynman gauge ξ = 1, the partition function for
the CPT-even photonic sector of the SME, compactified in
�r
D+1, reads

Z (L0 · · · Lr ) = det (−�) [det (−�δab + Sab)]
−1/2 , (13)

where � = ∂a∂a and Sab = 2 (kF )abcd ∂c∂d corresponds to
the symmetric operator containing the parameters responsi-
ble for breaking the Lorentz symmetry.

As mentioned earlier, the CPT-even term of the SME is
described by the tensor (kF )μνλρ , which is constituted by 19
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independent coefficients, among which there are 10 birefrin-
gent and 9 non-birefringent coefficients. The exact calcula-
tion of the partition function of the CPT-even electrodynam-
ics of the SME can become a challenging task. A route to
such a condition is to decompose this tensor in terms of four
3 × 3 matrices, κDE , κHB , κDB , κHE [82–85], i.e.,

(κDE ) jκ = −2 (kF )0 j0κ , (κHB) jκ = 1

2
ε j pqεκlm (kF )pqlm ,

(κDB) jκ = − (κHE )κ j = εκpq (kF )0 j pq . (14)

The matrices κDB and κHE stand for the parity-odd sector
described by 8 components, while κDE and κHB represent
the parity-even sector and possess together 11 independent
components. These four matrices together make up the 19
independent elements of the tensor (kF )μνλρ . Hence, from
the perspective of parity, such matrices are rearranged into
two groups: one group with even parity components (κ̃e) and
the other with odd parity (̃κo). The even parity components
are written as

(̃κe+) jκ = 1

2
(κDE + κHB) jκ ,

(̃κe−) jκ = 1

2
(κDE − κHB) jκ − 1

3
δ jκ(κDE )i i ,

κ̃tr = 1

3
tr(κDE ), (15)

while the odd parity components are written in terms of an
symmetric (̃κo−) and a antisymmetric matrix (̃κo+), given in
terms of

(̃κo−) jκ = 1

2
(κDB − κHE ) jκ ,

(̃κo+) jκ = 1

2
(κDB + κHE ) jκ . (16)

Regarding the compactification, the matrices given in
Eq. (14) are written as

(κDE ) jκ = 2 (kF )τκτ j , (κHB) jκ = 1

2
ε j pqεκlm (kF )pqlm ,

(κDB) jκ = − (κHE )κ j = εκpq (kF )τ j pq . (17)

Now, we seek to constrain the tensor (kF )μνλρ for the parity-
even and isotropic component configuration. One should start
by considering κ̃e+ = 0, what leads to κDE = −κHB . Then
the non-birefringent components are given by

(κDE ) jk = (̃κe−) jk + κ̃trδ jk . (18)

The isotropic component κ̃tr is obtained by imposing κ̃e− =
0, such that

(κDE ) jk = κ̃trδ jk

(κHB) jk = −κ̃trδ jk . (19)

In order to calculate the partition function on the influ-
ence of the isotropic contribution, using these definitions,
the following operators are such that p2δab − S̃ab, with
S̃ab = 2 (KF )abcd pc pd . In this way, the matrix S̃ab becomes

S̃ττ = κ̃trp2, S̃τk = κ̃tr pτ pk,

S̃ jk = −κ̃trδ jk p
2 + 2̃κtrδ jkp2 − κ̃tr p j pk . (20)

As a result, it follows,

det (−�δab + Sab) = det
[
(̃κtr + 1)3 (−�)2

]

× det

[
−� + 2̃κtr

κ̃tr + 1
∇2
]2

. (21)

Using this results in Eq. (13), the partition function is rewrit-
ten as

ln Z (L0 · · · Lr ) = −Tr ln

[
−� + 2̃κtr

κ̃tr + 1
∇2
]

. (22)

The trace of this equation is calculated by writing the
gauge field in terms of a Fourier expansion, i.e.,

Aa (L0 · · · Lr , x) =
(
L0

V

)1/D−1

· · ·
(
Lr

V

)1/D−1

×
∫ D∏

n=r+1
V n/3 dnpn

(2π)n

×
∑

n0···nr
e
i
(
ωn j x j+x·p

)

Ãa (n0 · · · nr ,p) .

(23)

In the expression above, j runs over the compactified dimen-
sions, ωn j are the boson Matsubara-like frequencies, the

wave numbers ωn j = 2π
L j
n j with n j = 0, 1, 2, ..., p =

(pr+1, . . . , pD) andV corresponds to the hypervolume of the
system. The generalized partition function, given in Eq. (22),
of the gauge field is now given as

ln Z (L0 · · · Lr ) = −
∫ D∏

n=r+1
V n/3 dnpn

(2π)n

×
+∞∑

n0···nr=−∞
ln

r∏

j=0
L2
j V

D−3r
3

×
⎡

⎣
r∑

n j=0

ω2
n j

+
(

1 − κ̃tr

κ̃tr + 1

)
p2

⎤

⎦ . (24)

In the next section, this result is explored in applications to
the Casimir effect.
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4 Vacuum fluctuation in torus

The previous result, given in Eq. (24), is considered in the
�2

3+1 and �1
3+1. The physical result is the Casimir effect at

finite temperature, followed by the effect of the breaking of
the Lorentz symmetry.

4.1 S1 × R
3: Casimir Effect

To study the Casimir effect from Eq. (24), we consider D = 3
and r = 1. In this perspective, the compactification occurs
in a spatial dimension, that is, �1

4 = S
1 × R

3, where the
dimension to be compactified is x1, having the circumfer-
ence length of S1 equal to L1. For this case, the periodicity
condition in x1 leads to 0 ≤ x1 ≤ L1, at the same time as
the others components vary in the range (−∞,+∞). In such
configurations, the field is

A(x0, x1, x2, x3) = A(x0, x1 + L1, x2, x3).

The expression for the partition function, Eq. (24), in this
configuration reads

ln Z (L1) = −V
∫

d3p

(2π)3

+∞∑

m=−∞
ln L2

1

×
[(

1 − κ̃tr

κ̃tr + 1

)
ω2
m +

(
1 − κ̃tr

κ̃tr + 1

)
p2 + p2

0

]
,

(25)

where the trace is calculated in terms of the Fourier expansion

Aa (x1, x) =
(
L1

V

)1/2

V
∫

d3p

(2π)3

∑

m

ei(ωmx1+x·p) Ãa (m,p) .

Here, V designates the system volume; p = (p0, p2, p3);
and ωm are the boson Matsubara frequencies ωm = 2π

L1
m

for m = 0,±1,±2, ... To calculate the integrals, we use

the transformation p′
i = pi

√
1+κ̃tr
1−κ̃tr

. Also, we use spherical
coordinates p → (ω, θ, φ), ω = |p|. By performing the
summation over m and doing the respective changes in the
variable, we have

ln Z (L1) = −2V

(
1 + κ̃tr

1 − κ̃tr

)∫
d�

∫ ∞

0
dωω2 ln

(
1 − e−L1ω

)
,

(26)

where d� = sin θdθdφ is the solid-angle element, and the
solved integral can be found in [86]. Calculating the deriva-
tive with regard to L1 of Eq. (26), it provides the energy
density, u; in other words, the pressure along the direction
x1, that is given by

u =
(

1 + κ̃tr

1 − κ̃tr

) −π2

15 (L1)
4 . (27)

This result corresponds to the Casimir effect for the periodic
boundary condition. The derivatives along the other direc-
tions provides the diagonal terms of the energy momentum
tensor. In particular for the compactification in time, it leads
to the Stefan–Boltzmann Law. Before to derive this result,
it is important to emphasize that the Casimir effect has been
measured with precision of few percents of error only over
the last two decades (see the references cited about that in the
Introduction). Refinements on those measurements would
reveal the breaking in the Lorentz symmetry. In addition, the
Casimir effect derived here can be considered on a cosmic
scale, in the sense of Birell and Ford [70], who have studied a
boson field in a toroidal universe model, in order to estimate
the origin of matter. In both cases, the effect of temperature
has to be taken into consideration. This is the subject matter
in the next applications.

4.2 S1 × R
3: Stefan–Boltzmann law

Considering, in Eq. (24), D = 3 and r = 1, where
the compactification is the time dimension, i.e., along x0,
�1

4 = S
1 × R

3, having the circumference length S
1 equal to

L0 = β = 1/T , where T is the temperature (the Boltzmann
constant is kB = 1). The periodicity condition in x0 leads
to 0 ≤ x0 ≤ L0, and the trace is calculated in terms of the
Fourier expansion, and the field is

Aa (x0, x) =
(
L0

V

)1/2

V
∫

d3p

(2π)3

∑

n

ei(ωn x0+x·p) Ãa (n, p) .

(28)

where V designates the system volume, p = (p1, p2, p3),
ωn are the bosonic Matsubara frequencies ωn = 2π

L0
n for n =

0,±1,±2, ... The partition function, Eq. (24), is rewritten as

ln Z (L0) = −V
∫

d3p

(2π)3

+∞∑

n=−∞
ln L2

0

[
ω2
n +

(
1 − κ̃tr

κ̃tr + 1

)
p2
]

.

(29)

Again, to calculate the integrals, the transformation p′
i =

pi
√

1+κ̃tr
1−κ̃tr

is used. Also, the spherical coordinates p →
(ω, θ, φ), ω = |p|are introduced. By performing the sum-
mation in n and using the respective changes in the variable,
the partition function, given in Eq. (29), takes the form

ln Z (β) = − 2V

(2π)3

(
1 + κ̃tr

1 − κ̃tr

)3/2 ∫
d�

∫ ∞

0
dωω2 ln

(
1 − e−βω

)
.

(30)

Calculating the derivative with regard to L0 of Eq. (30), it
provides the energy density, u, that is the free energy. This
leads to
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u =
(

1 + κ̃tr

1 − κ̃tr

)3/2
π2

15L4
0

=
(

1 + κ̃tr

1 − κ̃tr

)3/2
π2

15β4 , (31)

which corresponds to the energy density of the cavity or the
Stefan–Boltzmann law modified by the isotropic term.

4.3 S1 × S1 × R
2: Casimir effect at finite temperature

Here, we must consider D = 2 and r = 2 in Eq. (24). In
which compactification will occur in the time dimension and
in a spatial dimension, that is, �2

4 = S
1 ×S

1 ×R
2. The trace

is calculated in terms of the Fourier expansion, i.e.,

Aa (x0, x1, x) =
(
L0

V

)1/2 ( L1

V

)1/2

V 2/3

×
∫

d2p

(2π)2

×
∑

n0,n1

ei
(
ωn0 x0+ωn1 x1+x·p) Ãa (n0, n1,p) ,

(32)

where p = (p2, p3), ωn0 = 2π
L0
n0 and ωn1 = 2π

L1
n1 are

the bosonic Matsubara frequencies. This leads the partition
function, in Eq. (24), to be written as

ln Z (L0, L1) = − V 2/3
∫

d2p

(2π)2

+∞∑

n0,n1=−∞
ln L0

2L2
1V

−4/3

×
[
ω2
n0

+
(

1 − κ̃tr

κ̃tr + 1

)
ω2
n1

+
(

1 − κ̃tr

κ̃tr + 1

)
p2
]

.

(33)

In order to calculate the integrals, the use of the transforma-

tion p′
i = pi

√
1+κ̃tr
1−κ̃tr

leads to

ln Z (L0, L1) = −
(

1 + κ̃tr

1 − κ̃tr

)
V 2/3

∫
d2p

(2π)2

×
[ +∞∑

n0=−∞
ln
[
(2πn0)

2 + (L0ω)2
]

+
+∞∑

n1=−∞
ln
[
(2πn1)

2 + (L1ω)2
]

+ 4
+∞∑

n0,n1=1

ln V−4/3

×
[
(2πn0L1)

2 + (2πn1L0)
2 + (L0L1ω)2

]

+ ln V−4/3L2
0 + ln V−4/3L2

1

]
. (34)

In the thermodynamic limit, V → ∞, the last two terms
generate a pure divergence. In this way, we will perform

a renormalization in Eq. (34). Using the polar coordinates
p → (ω, θ), ω = |p|, and performing the summation in n,
the partition function in Eq. (34) takes the form

ln Z (L0, L1) = −2

(
1 + κ̃tr

1 − κ̃tr

)
V 2/3

×
∫

dφdωω

(2π)2

{
ln
(

1 − e−L0ω
)
+ln

(
1 − e−L1ω

)

+ 2
+∞∑

n0,n1=1

ln V−4/3 [(2πn0L1)
2

+ (2πn1L0)
2 + (L0L1ω)2] }. (35)

Performing the integration over the first two terms, the par-
tition function given in Eq. (35) reads

ln Z (L0, L1)= 1

π

(
1 + κ̃tr

1 − κ̃tr

)
V 2/3

[
ζ (3)

L2
0

+ ζ (3)

L2
1

]

+ O,

(36)

such that

O = − 2

π

(
1 + κ̃tr

1 − κ̃tr

)
V 2/3

∫
dωω

⎛

⎝
+∞∑

n0=1

+∞∑

n1=1

ln V−4/3
[
(2πn0L1)

2

+ (2πn1L0)
2 + (L0L1ω)2

]
⎞

⎠ . (37)

It is important to realize that in the limit β → ∞, the Casimir
effect given in Eq. (27) is recovered. For for L1 → ∞, the
Stefan–Boltzmann law, Eq. (27), is obtained again.

5 Conclusions and perspectives

We have investigated the influence of Lorentz symmetry vio-
lation by background fields on the vacuum fluctuation in the
SME of the electromagnetic field in D+1 dimensions with
r dimensions compactified in a torus. Based on the results
of the generalized real-time thermofield dynamics formal-
ism for the quantum field theory at finite temperatures in a
toroidal manifold, we have introduced a generalized partition
function to account for the field theory in a space-like torus
at finite temperature. This procedure has prevented the use of
the duplication in the thermofield dynamics approach. The
partition function associated with the CPT-even sector of the
SME of the electrodynamics in D+1 dimensions is analyzed.

With compactification in the x1 direction, the energy den-
sity (the pressure) of the system with the Lorentz viola-
tion contribution is calculated. This leads to a correction of
the standard result of the Casimir effect, due to the back-
ground field. The periodicity condition on x0 leads to the

123



Eur. Phys. J. C (2022) 82 :999 Page 7 of 8 999

Stefan–Boltzmann law with the Lorentz violation contribu-
tion. Finally, the periodicity condition on x0 and on x1 direc-
tions provide the modification of the Casimir effect at finite
temperature based on the contribution of the Lorentz sym-
metry violation.

The Casimir effect has been measured only recently with
a precision of the order of � 5% in error. Therefore, this is
a potentially theoretical and experimental realm for testing
a Lorentz violation. This is an aspect that deserves more
investigation.

Data Availability Statement This manuscript has no associated data
or the data will not be deposited. [Authors’ comment: This article is
about a theoretical consistency study on the influence of Spontaneous
Violation of Lorentz Symmetry on the Casimir effect. At this stage, we
still do not relate to possible experimental measurements.]
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