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Abstract We present the currently most precise predictions
for the W -boson mass and the leptonic effective mixing angle
in the aligned Two-Higgs-Doublet Model. The evaluation
includes the full one-loop result, all known higher-order cor-
rections of the Standard Model, and the non-standard two-
loop contributions that increase with mass splittings between
charged and neutral THDM Higgs bosons. They depend on
tan β and the soft Z2-symmetry breaking parameter m2

12 of
the scalar potential, in addition to the non-standard boson
masses. Whenever the one-loop corrections become large,
the two-loop contributions yield substantial modifications
of the predictions, which is of particular importance for
the W mass where large mass shifts are required to reach
the recently published final result of the CDF collaboration.
Numerical results are shown for the dependence on the vari-
ous non-standard parameters and in comparison with exper-
imental data.

1 Introduction

Precise measurements of electroweak observables at lepton
and hadron colliders provide important tests of the elec-
troweak Standard Model (SM) as well as of possible physics
beyond the Standard Model (BSM). Model parameters enter-
ing the theoretical predictions via loop corrections can be
constrained by comparison with the measured data provided
the theoretical precision can compete with the experimental
accuracy. Prominent cases of precision observables, mea-
sured with highest accuracy and very sensitive to virtual
heavy particles, are the effective leptonic mixing angle in
terms of sin2 θeff , and the correlation of the gauge boson
masses MW , MZ via the Fermi constantGF . The latter allows
a precise prediction of MW from MZ , the electromagnetic

a e-mail: s.hessenberger@gmx.de
b e-mail: hollik@mpp.mpg.de (corresponding author)

fine-structure constant and the Fermi constant, in combina-
tion with additional parameters in the higher-order contribu-
tions. With the discovery of a SM-like Higgs boson by the
LHC experiments ATLAS [1] and CMS [2] all the required
input parameters of the SM are determined, and together
with the adequate calculation of the loop corrections, accu-
rate predictions for the electroweak observables have become
available.

Measurements of MW at LEP [3], Tevatron [4], and the
LHC [5] resulted in the current world average [6]

MW,exp = 80.379 ± 0.012 GeV. (1)

Recently the final result of the W mass measurement by the
CDF Collaboration [7] has been presented,

MW,CDF = 80.4335 ± 0.0094 GeV (2)

which is in obvious tension with the average (1) from previ-
ous measurements and with the SM prediction.

The effective leptonic mixing angle at the Z resonance has
been measured in electron–positron reactions e+e− → f f̄
at the colliders LEP and SLC via the forward–backward and
τ -polarization asymmetries as well as the left–right asymme-
try accessible by longitudinally polarized initial-state elec-
trons that were available at the SLC. The average is given by
[8]

sin2 θeff,exp = 0.23153 ± 0.00016. (3)

It is worth to note that the individual value measured by the
SLD Collaboration [9] via the left–right asymmetry,

sin2 θeff,SLD = 0.23097 ± 0.00027, (4)

is about two standard deviations lower than (3) where all
asymmetries at the Z resonance have been combined. It is
the most precise measurement of the mixing angle from a
single observable.
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The SM prediction of MW is based on the complete one-
loop [10,11] and two-loop contributions [12–25] and has
been further improved by the leading higher-order correc-
tions up to four loops [26–34]. The same level of accuracy
has been achieved for the effective leptonic mixing angle
[12,13,15–18,36–43].

For testing extensions of the SM the same level of accu-
racy is desirable. For example, in the minimal supersymmet-
ric version of the Standard Model, the MSSM, the one-loop
results [45–59] were improved by including the leading two-
loop corrections via calculations of the contributions �ρ to
the ρ-parameter ofO (ααs) [60,61] and ofO (

α2
t

)
,O (αtαb),

O (
α2
b

)
[62,63]. For a detailed analysis of precision observ-

ables in the MSSM see for example [59,64–67].
The mere extension of the SM by a second Higgs doublet,

the Two-Higgs-Doublet Model (THDM), can provide a new
type of large contributions to �ρ arising from the Higgs sec-
tor, in contrast to the SM where the Higgs sector respects the
custodial symmetry and hence deviations of ρ from unity can
only originate from other sources, like gauge and Yukawa
couplings. The THDM Higgs sector accommodates three
neutral and a pair of charged Higgs particles, with masses
as independent free parameters; in general, custodial sym-
metry is broken and thus ρ different from unity can occur for
mass splittings between different isospin states of the scalar
sector. The non-standard one-loop corrections to precision
observables are very sensitive to mass differences between
charged and neutral Higgs bosons [68–76] and in particular
have a large impact on the prediction of MW . Because of the
potentially large quantum effects, the THDM has become
popular to provide an explanation for the larger value of the
W mass given by the new CDF result; accordingly, a series
of recent papers deal with analyses of electroweak precision
data in various versions of the THDM [77–88].

The one-loop corrections in the THDM for scenarios with
large mass splittings, as required for MW , are quite sizeable;
hence calculations beyond one loop are needed in order to
get reliable theoretical predictions for precision observables.
Since the dominating quantum effects are associated with the
ρ-parameter, the leading two-loop effects can be embedded
via �ρ in case of broken custodial symmetry. In [89], we
presented the two-loop corrections to the ρ-parameter in the
CP-conserving THDM originating from the top-Yukawa and
the scalar self interactions. This was done under the assump-
tion that one of the neutral CP-even states of the THDM can
be identified with the scalar boson observed at the LHC with
properties like the Higgs particle of the SM.

In this paper we provide the currently most precise predic-
tions for MW and the leptonic sin2 θeff in the CP-conserving
THDM combining the two-loop corrections of [89] with the
THDM one-loop corrections and the complete set of avail-
able SM loop contributions. The outline is as follows: Sect. 2
specifies the CP-conserving THDM and gives a list of theo-

retical constraints on the model parameters. A phenomeno-
logically interesting special case is the Inert Higgs Doublet
Model (IHDM), which is briefly described as well. Section 3
reviews the status of the W -boson mass prediction in the SM
and explains the incorporation of the available non-standard
corrections for the W -mass prediction in the THDM. Analo-
gously, Sect. 4 deals with the effective mixing angle. Numer-
ical results are presented in Sect. 5, with conclusions given
in Sect. 6.

2 The Two-Higgs-Doublet model

The Higgs sector of the THDM contains two SU (2)L dou-
blets of complex scalar fields with hypercharge Y = 1,

�1 =
(

φ+
1

φ0
1

)

, �2 =
(

φ+
2

φ0
2

)

. (5)

Under the assumption of a discrete Z2 symmetry (�1 →
�1, �2 → −�2) which is only softly broken by a non-
diagonal mass term, the general gauge invariant potential is
given by (see e.g. [90])

V (�1,�2) = m2
11

(
�1

†�1

)
+ m2

22

(
�2

†�2

)

− m2
12

((
�1

†�2

)
+

(
�2

†�1

))

+ 1

2

1

(
�1

†�1

)
2 + 1

2

2

(
�2

†�2

)
2

+ 
3

(
�2

†�2

) (
�1

†�1

)

+ 
4

(
�1

†�2

) (
�2

†�1

)

+ 1

2

5

((
�1

†�2

)
2 +

(
�2

†�1

)
2
)

. (6)

Assuming conserved CP symmetry in the Higgs sector, all
parameters in the potential are chosen to be real. The mini-
mum of the potential corresponds to the vacuum field con-
figurations

〈�i 〉 = 1√
2

(
0
vi

)
, (7)

and the minimum conditions for v1 and v2 read as follows,

m2
11 = m2

12 tβ − 1

2
v2c2

β

(

1 + 
345t

2
β

)
,

m2
22 = m2

12

tβ
− 1

2
v2s2

β

(


2 + 
345

t2
β

)

, (8)

with

v2 = v2
1 + v2

2, tβ ≡ tan β = v2

v1
,


345 = 
3 + 
4 + 
5. (9)
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Expanding the scalar fields around the vacuum expectation
values,

�1 =
(

φ+
1

1√
2

(v1 + η1 + iχ1)

)

,

�2 =
(

φ+
2

1√
2

(v2 + η2 + iχ2)

)

, (10)

yields the mass terms quadratic in the fields, which are diag-
onalized by unitary transformations
(
G±

H±

)

= R (β)

(
φ±

1

φ±
2

)

,

(
G0

A0

)
= R (β)

(
χ1

χ2

)
,

(
H0

h0

)
= R (α)

(
η1

η2

)
, (11)

with

R (x) =
(

cos x sin x
− sin x cos x

)
≡

(
cx sx

−sx cx

)
, (12)

in order to disentangle the Goldstone bosons G0 and G±
from the physical mass eigenstates: two CP-even states h0

and H0, one CP-odd state A0, and a pair H± of charged
Higgs bosons.

The gauge-boson masses are determined by v and the elec-
troweak gauge couplings g1, g2,

M2
W = 1

4
g2

2v2, M2
Z = 1

4

(
g2

1 + g2
2

)
v2 , (13)

and provide the doublet-specific relation to the electroweak
mixing angle,

cos2 θW = c2
W = M2

W

M2
Z

,

sin2 θW = s2
W = 1 − c2

W . (14)

Whereas the combination v2 = v2
1 +v2

2 is fixed by the vector
boson masses, there are seven other free parameters of the
Higgs potential, which can be expressed in terms of the Higgs
boson masses, the mixing angles α and β, and one remaining
independent parameter (see [90] for the general relations).
Conventionally the soft Z2-breaking mass parameter m2

12 is
chosen. In our previous calculation of the two-loop contri-
butions to the ρ-parameter [89], we used the dimensionless
quantity

λ5 = 2m2
12

v2 cβsβ
(15)

from the parameterisation given in [91] instead, which is
employed in the FeynArts model-file of the THDM. For
consistency we present the results of the W boson mass and
the effective leptonic mixing angle also using the combina-
tion λ5 in (15).

Furthermore, two additional assumptions have been made
in [89], which are adopted also for the present study. First
the CP-even state h0 is identified with the scalar particle
observed by the LHC experiments. Second, the alignment
limit [92] is applied where the couplings of h0 to the gauge
bosons and fermions are identical to the corresponding cou-
plings of the SM Higgs boson. Formally this can be achieved
by setting

α = β − π

2
. (16)

Flavour-changing neutral currents (FCNC) through neutral
Higgs exchange at the tree level can be avoided by the
arrangement that not more than one of the doublets cou-
ples to fermions of a given charge [93,94], This has lead to
four different model classes in the literature which go by the
names type-I, type-II, type-X and type-Y (see for example
the review [95] for more details). In all of them, however, the
couplings between up-type quarks and Higgs bosons are the
same. In our calculation of the non-standard two-loop cor-
rections in the THDM all the Yukawa couplings except those
of the top quark are neglected, hence the results of [89] are
valid independent of the model classification. In the align-
ment limit, the coupling between the SM-like scalar h0 and
the top quark is identical to the top-Yukawa coupling in the
SM, while the couplings between the top quark and the non-
standard Higgs bosons A0, H0 and H± are modified by an
additional factor of t−1

β .

2.1 The Inert-Higgs-Doublet model

A particular interesting version of the THDM is the Inert-
Higgs-Doublet-Model (IHDM) [96] which is distinguished
by an unbroken Z2 symmetry. Under this symmetry all the
SM fields and the doublet �1 are even, whereas �2 is odd.
The IHDM has received attention in the context of radia-
tive neutrino masses [97] or as a solution to the naturalness
problem [98]. Moreover, since the Z2 symmetry is unbro-
ken, the lightest particle that is oddly charged can provide a
dark matter candidate [99]. An overview with more details
on phenomenology and additional references can be found
in [100].

The potential of the IHDM is given by (6) settingm2
12 = 0.

The scalar doublets appear in the following form,

�1 =
(

G±
1√
2

(
v + h0 + iG0

)
)

,

�2 =
(

H±
1√
2

(
H0 + i A0

)
)

. (17)
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Only �1 has a non-vanishing vacuum expectation value v,
related to the parameters of (6) via the minimum condition,

v2 = −2m2
11


1
. (18)

With h0 = HSM and the Goldstone bosons G0,G±, the dou-
blet �1 is SM-like. The second doublet �2, the inert doublet,
contains instead the non-standard Higgs fields H0, A0 and
H±. The four physical masses are related to the parameters
of the potential in the following way,

m2
h0 = −2m2

11 = 
1v
2,

m2
H0 = μ2

2 + 1

2
(
3 + 
4 + 
5) v2,

m2
A0 = μ2

2 + 1

2
(
3 + 
4 − 
5) v2,

m2
H± = μ2

2 + 1

2

3v

2. (19)

The couplings of the scalar h0 to fermions and gauge bosons
are identical to the corresponding couplings of the Higgs
boson in the SM. Owing to the Z2 symmetry, the additional
particles H0, A0 and H± do not couple to fermions. More-
over, they can appear only pairwise in interaction vertices
and the lightest of these non-standard particles will be sta-
ble. If this is one of the neutral bosons, the IHDM provides
a suitable dark matter candidate.

In order to specify the free parameters of the IHDM, it
is convenient to choose, besides mh0 = MHSM , the masses
mH0 ,mA0 ,mH± , the quartic coupling 
2 of the non-standard
scalars, and the quantity


345 = 
3 + 
4 + 
5, (20)

which is of special interest since 
345 describes the coupling
of the standard-like Higgs particle to a potential dark matter
candidate.

2.2 Theoretical constraints

The parameters of the potential given in (6) are subject to
various restrictions. A stable vacuum requires the potential
to be bounded from below. In the THDM this requirement
has to be fulfilled for all possible directions along which the
component fields of �1,2 go to large values. As explained in
[96,101,102] the conditions


1 > 0,


2 > 0,


3 + √

1
2 > 0,


3 + 
4 − |
5| > −√

1
2, (21)

ensure that the quartic terms in the potential are positive for
large values of the field components in all directions. These
tree-level bounds can be improved by considering higher-
order corrections to the potential. For more details see the
discussion in [95] and references therein. For our analysis we
employ the tree-level bounds as an estimate for the allowed
parameter range.

The unitarity requirement for the scattering matrix puts
additional constraints on the parameters of the Higgs poten-
tial. Due to the optical theorem, the s-wave scattering length
a0 is restricted to |a0| ≤ 1/2. For scattering processes with
four scalars in the high-energy limit, a0 is directly propor-
tional to the scalar couplings. Moreover, due to the Gold-
stone boson equivalence theorem the scattering of longitu-
dinal gauge bosons can be calculated as scalar–scalar scat-
tering by replacing the gauge boson with the corresponding
Goldstone bosons. In the SM, the constraints from tree-level
unitarity gives an upper bound on the Higgs mass [104,105].
The application of the analysis in the THDM [106–112] is
more complicated due to the larger number of possible scat-
tering processes and the involved structure of the scalar quar-
tic couplings. With the help of a unitary transformation, the
scattering matrix of the coupled scalar–scalar channels can
be simplified by using the original fields φ+

i , ηi and χi from
(10) instead of the mass eigenstates. The restrictions on the
s-wave scattering length constrain the eigenvalues of the scat-
tering matrix at tree-level (see for example [95])

e1,2 = 3

2
(
1 + 
2) ±

√
9

4
(
1 − 
2) 2 + (2
3 + 
4) 2,

e3,4 = 1

2
(
1 + 
2) ± 1

2

√
(
1 − 
2) 2 + 4
2

4,

e5,6 = 1

2
(
1 + 
2) ± 1

2

√
(
1 − 
2) 2 + 4
2

5,

e7 = 
3 + 2
4 − 3
5,

e8 = 
3 − 
5,

e9 = 
3 + 2
4 + 3
5,

e10 = 
3 + 
5,

e11 = 
3 + 
4,

e12 = 
3 − 
4, (22)

to fulfill |ei | ≤ 8π . We are employing these tree-level bounds
as an estimate of the validity of perturbativity. For more accu-
rate restrictions higher-order corrections have to be consid-
ered for the scattering processes. A one-loop analysis of the
unitarity bounds can be found in [113,114].

The constraints from vacuum stability and S-matrix uni-
tarity are identical in the aligned THDM and the IHDM. In
the IHDM the parameters are further constrained by the con-
dition
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m2
11√

1

≤ μ2
2√

2

(23)

to ensure that v in (17) corresponds to the global minimum
of the potential [115].

3 The MW − MZ interdependence

The correlation between the gauge boson masses MW and
MZ can be established via the Fermi constant GF , which is
determined with high accuracy from precise measurements
of the muon lifetime and the calculation of the muon decay
width within the low-energy effective Fermi model including
QED corrections up to O(α2) for the point-like interactions
[116–121]. Comparison of the muon-decay amplitude calcu-
lated in electroweak theories like the SM or THDM with the
Fermi model result yields the relation

GF√
2

= πα

2M2
W

(
1 − M2

W
M2

Z

) (1 + �r) , (24)

where the non-QED loop corrections are summarized in the
quantity �r . Since it depends on all the virtual particles in
the loop contributions,

�r = �r (MW , MZ ,mt , . . . ) (25)

is a model-dependent quantity, and the relation (24) provides
the prediction of MW in specific models in terms of the model
parameters and the highly accurate input quantities MZ ,GF

and the electromagnetic fine-structure constant α.

3.1 One-loop calculations

At the one-loop level, the contributions to �r consist of
the W self-energy, vertex and box diagrams, and the related
counterterms. In the on-shell renormalization scheme, the
required counterterms arise from charge and mass renormal-
ization (see for example [122,123]),

e0 = Zee = (1 + δ(1)Ze)e,

M2
W,0 = M2

W + δ(1)M2
W ,

M2
Z ,0 = M2

Z + δ(1)M2
Z , (26)

according to

δZe = 1

2
�γ (0) + sW

cW

�
(1)
γ Z (0)

M2
Z

,

δ(1)M2
W = Re �

(1)
W

(
M2

W

)
,

δ(1)M2
Z = Re �

(1)
Z

(
M2

Z

)
, (27)

with the transverse part �V of the gauge-boson self-energies,
the photon vacuum polarization

�γ
(
k2

)
= �

(1)
γ

(
k2

)

k2 , (28)

and the non-diagonal photon–Z mixing self-energy. In the
on-shell scheme the electroweak mixing angle is a derived
quantity,

s2
W,0 = 1 − c2

W,0 = 1 − M2
W,0

M2
Z ,0

= s2
W + δ(1)s2

W + · · · (29)

yielding

s2
W = 1 − M2

W

M2
Z

, c2
W = 1 − s2

W , (30)

and the one-loop counterterm

δ(1)s2
W

s2
W

= −c2
W

s2
W

δ(1)c2
W

c2
W

= c2
W

s2
W

(
δ(1)M2

Z

M2
Z

− δ(1)M2
W

M2
W

)

. (31)

With the notation δvertex+box for the vertex and box diagram
contributions including external wave-function

�r (1) = 2 δ(1)Ze + �
(1)
W (0) − δ(1)M2

W

M2
W

− c2
W

s2
W

(
δ(1)M2

Z

M2
Z

− δ(1)M2
W

M2
W

)

+ δvertex+box . (32)

At the one-loop level, �r can be split

�r (1) = �α − c2
W

s2
W

�ρ(1) + �r (1)
rem (33)

into three parts, containing

• the shift of the fine-structure constant �α from charge
renormalization, originating from the light-fermion con-
tribution to the photon vacuum polarization;

• the loop correction �ρ(1) to the ρ-parameter, which can
be written as

�ρ(1) = �
(1)
Z (0)

M2
Z

− �
(1)
W (0)

M2
W

; (34)

• the remainder part �r (1)
rem summarizing all the other

terms.

The loop correction to the ρ-parameter is sensitive to the
mass splitting between the partners within an isospin dou-
blet [124]. In the SM, this yields a sizeable contribution from
the top–bottom quark doublet [124–126]. In the THDM, it
can moreover get large contributions from the non-standard
Higgs bosons in case of mass splittings between neutral and
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charged scalars, yielding the dominant non-standard loop
corrections in �r .

In the alignment limit of the THDM, one can identify the
loop contributions of the scalars h0,G0,G± with the standard
scalar contributions to the SM part of �r . Consequently, the
non-standard contributions to �r arise from the scalars H0,
A0, and H±. Thus, one can write at the one-loop level

�r (1) = �r (1)
SM + �r (1)

NS . (35)

Since the scalar contributions to the vertex and box correc-
tions are negligible due to the small Yukawa couplings to
electron and muon, the non-standard scalars contribute to
�r only through the gauge boson self-energies, yielding the
non-standard part

�r (1)
NS = �

γ
NS (0) + �

(1)
W,NS (0) − δ(1)M2

W,NS

M2
W

− c2
W

s2
W

(
δ(1)M2

Z ,NS

M2
Z

− δ(1)M2
W,NS

M2
W

)

. (36)

The subindex NS indicates that only the non-standard parts
of the self-energies and counterterms, respectively, have to
be taken. The corresponding expressions are listed in the
Appendix. The dominant effect on �r , as noted above, can
be traced back to the additional non-standard correction to
the ρ-parameter, entering (33) with

�ρ
(1)
NS = α

16πs2
WM2

W

{
m2

A0m
2
H0

m2
A0 − m2

H0

log

(
m2

A0

m2
H0

)

− m2
A0m

2
H±

m2
A0 − m2

H±
log

(
m2

A0

m2
H±

)

− m2
H0m

2
H±

m2
H0 − m2

H±
log

(
m2

H0

m2
H±

)

+ m2
H±

}
. (37)

The origin of �ρ
(1)
NS are the couplings of the non-standard

Higgs sector when they violate the custodial symmetry.
�ρ

(1)
NS vanishes for mH0 = mH± or mA0 = mH± .

3.2 Higher oder corrections in the SM

For the products of the large one-loop contributions �α

and �ρ(1) resummations were derived which incorporate
(�α)n to all orders [127,128] and two-loop terms of the form
(�ρ(1))2 and (�α�ρ(1)) [14]; moreover, prescriptions are
given in [14] for incorporating also the higher-order reducible
terms from �α and �ρ.

The electroweak corrections in the SM are known at
the complete two-loop level [19–24]; in addition, the pure
fermion-loop corrections [129,130] up to four-loop order

are available, as well as the three-loop corrections to the
ρ parameter [30]. QCD corrections to �r are calculated at
the two- and three-loop level, O (ααs) [12,13,15–18] and
O (

αα2
s

)
[26–29], and to the ρ parameter at four-loop order

O (
α3
s GFm2

t

)
[32–34].

For practical calculations, in [131] a simple parametrisa-
tion is given which reproduces the SM prediction for MW

from (24) with

�r = �r (α) + �r
(
α2

)
+ �r (ααs ) + �r

(
αα2

s
)
+ �r

(
G3

Fm
6
t
)

+�r
(
G2

Fm
4
t αs

)
+ �r

(
GFm2

t α
3
s
)

(38)

including �r (α) as the SM part of the one-loop result (33),
the full two-loop electroweak correction �r

(
α2

)
, the two- and

three-loop QCD corrections �r (ααs ) and �r
(
αα2

s
)
; the elec-

troweak three-loop term �r
(
G3

Fm
6
t
)

and the three- and four-
loop mixed electroweak–QCD contributions �r

(
G2

Fm
4
t αs

)
and

�r
(
GFmtα

3
s
)

are approximations based on the corresponding
corrections to the ρ parameter.

3.3 Two-loop corrections in the THDM

The THDM prediction for �r beyond the one-loop level can
be decomposed according to

�r = �rSM + �rNS, (39)

where �rSM contains all the known SM corrections men-
tioned above and �rNS comprises the additional non-
standard contribution, which in the alignment case originates
from the non-standard bosons H0, A0 and H±. The expan-
sion up to two-loop order,

�rNS = �r (1)
NS + �r (2)

NS , (40)

accommodates the complete non-standard one-loop part
�r (1)

NS from (36) and the two-loop part �r (2)
NS which we

approximate by the potentially large terms associated with
theρ-parameter. These contain products of�ρ

(1)
t ,�ρ

(1)
NS, �α

as well as the non-standard two-loop irreducible corrections
to the ρ-parameter calculated in [89]. Technically, they are
obtained in the gauge-less limit (vanishing gauge couplings
g1, g2 while keeping the ratio MW /MZ constant) and in the
top-Yukawa approximation where only the top-quark mass
is kept different from zero. This yields a significant step of
improvement at the two-loop level taking into account those
contributions that can become sizeable whenever the one-
loop contribution in �r is large.

In analogy to the SM, the non-standard two-loop contri-
bution can be written in terms of a one-particle irreducible
part �r (2)

NS,irr and a reducible part �r (2)
NS,red ,

�r (2)
NS = �r (2)

NS,red + �r (2)
NS,irr . (41)
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The reducible non-standard contribution, �r (2)
NS,red , arises

from the non-standard one-loop correction to the ρ parame-
ter (37) in the expansion of �r up to two-loop order, in the
on-shell scheme given by

�r = �α + �α2 − c2
W

s2
W

�ρ(1)

×
(

1 + 2�α − 2
c2
W

s2
W

�ρ(1)

)

+ . . . (42)

with

�ρ(1) = �ρ
(1)
t + �ρ

(1)
NS , �ρ

(1)
t = 3 α

16πs2
W

m2
t

M2
W

. (43)

The two-loop terms of �r which contain only �α and �ρ
(1)
t

are already included in the SM part; therefore, the non-
standard part remains as follows,

�r (2)
NS,red = −2

c2
W

s2
W

�α �ρ
(1)
NS + 4

c4
W

s4
W

�ρ
(1)
NS �ρ

(1)
t

+2
c4
W

s4
W

(
�ρ

(1)
NS

)2
. (44)

As a side note, we mention that a reparametrization of
�ρ(1) → �ρ(1) replacing the basic on-shell parameters in
the normalization of �ρ(1) by the Fermi constant with the
help of

GF√
2

= πα

2s2
WM2

W

(
1 + �r (1) + . . .

)
(45)

induces additional factorized two-loop terms in �r that allow
to rewrite (42) as follows,

�r = �α + �α2 − c2
W

s2
W

�ρ(1)

×
(

1 + �α − c2
W

s2
W

�ρ(1)

)

+ . . . (46)

which corresponds to the expansion of the resummed form

1 + �r → 1

1 − �α
· 1

1 + c2
W
s2
W

�ρ

(47)

found in [14] for the SM.

The irreducible non-standard two-loop contribution
�r (2)

NS,irr originates from the W self-energy and the coun-
terterms for the parameters in (24). In our approximation,
the two-loop charge renormalization constant is zero and the
two-loop self-energy �

(2)
W (0) is canceled by the two-loop W

mass counterterm. Hence, the only remaining quantity is the
two-loop counterterm for s2

W , obtained from expanding the
bare relation (29),

δ(2)s2
W

c2
W

= − δ(1)M2
Z

M2
Z

(
δ(1)M2

Z

M2
Z

− δ(1)M2
W

M2
W

)

+ δ(2)M2
Z

M2
Z

− δ(2)M2
W

M2
W

, (48)

which in the gauge-less limit reduces to

δ(2)s2
W

c2
W

= − �
(1)
Z (0)

M2
Z

�ρ(1) + �
(2)
Z (0)

M2
Z

−�
(2)
W (0)

M2
W

= �ρ(2) , (49)

where �ρ(2) is the two-loop correction to the ρ parameter as
derived in [89].

TheW, Z self-energies �
(2)
W,Z correspond to the set of gen-

uine two-loop diagrams and diagrams with subloop renor-
malization, i.e. one-loop diagrams with insertion of mass
counterterms and of δ(1)s2

W . The two-loop terms with δ(1)s2
W

factorize and can be extracted; in combination with the fac-
torized first term in (49) one obtains

�ρ(2) = −c2
W

s2
W

(
�ρ(1)

)2 + δρ(2) . (50)

The residual part δρ(2) contains the genuine two-loop self-
energies combined with the part of the subloop renormal-
ization from the mass counterterms of the internal particles.
The quadratic term in �ρ(1) from (50) is already included in
�r2

NS,red (in the GF -parametrization of �ρ it would vanish).
The irreducible two-loop part of �r is thus given by

�r (2)
irr = −c2

W

s2
W

δρ(2) , (51)

it still contains the SM contribution. In the notation of [89],
δρ(2) is divided into four finite parts

δρ(2) = δρ
(2)
t,SM + δρ

(2)
t,NS + δρ

(2)
H,NS + δρ

(2)
H,Mix, (52)

where δρ
(2)
t,SM contains the SM-like scalars h0, G0, G± and

the top-Yukawa coupling, whereas the non-standard scalars
H0, A0, H± appear in the residual three parts.

Separating off the SM contribution δρ
(2)
t,SM in (51), which

is already part of �rSM, one obtains the non-standard con-
tribution as follows,

�r (2)
NS,irr = �r (2)

t,NS + �r (2)
H,NS + �r (2)

H,Mix

= −c2
W

s2
W

(
δρ

(2)
t,NS + δρ

(2)
H,NS + δρ

(2)
H,Mix

)
. (53)

The various entries of �r have the following properties.

123



970 Page 8 of 18 Eur. Phys. J. C (2022) 82 :970

• �r (2)
t,NS incorporates the coupling of the top quark to the

non-standard scalars, which is proportional to t−1
β and

enters all the diagrams for this contribution quadratically.
• �r (2)

H,NS incorporates the non-standard scalar interac-
tions. It is proportional to the squared coupling between
three non-standard scalars, which has the form

1

2

(
1

tβ
− tβ

)
(

2m2
H0 − λ5v

2
)

v
(54)

in the alignment limit. Consequently, �r (2)
H,NS vanishes

for

tβ = 1 or λ5 = 2m2
H0

v2 . (55)

Moreover, it is zero formA0 = mH± , since this mass con-
figuration restores the custodial symmetry of the scalar
potential. However, differently from �ρ

(1)
NS , this contri-

bution does not vanish formH0 = mH± (ifmA0 �= mH± ).
• �r (2)

H,Mix incorporates the interaction between the stan-

dard and the non-standard scalars. Similarly to �ρ
(1)
NS , it

vanishes for mH0 = mH± or mA0 = mH± due to the
restoration of the custodial symmetry. Differently from
�ρ

(1)
NS , this contribution contains additional couplings

between h0 and the non-standard scalars of the form

m2
h0 + 2m2

S − λ5v
2

v2 , (S = H0, A0, H±), (56)

which can be enhanced by λ5. In contrast to �r (2)
t,NS and

�r (2)
H,NS , the contribution �r (2)

H,Mix does not depend on
tβ .

3.4 Loop corrections in the IHDM

The non-standard one-loop corrections to the gauge-boson
self-energies are the same in the IHDM and the general
THDM in the alignment limit, yielding �r (1)

NS for both cases
which depends only on the masses of the H0, A0, H±
bosons. Differences arise at the two-loop level. Since Yukawa
interactions of the non-standard scalar doublet are absent,
there is no �r (2)

t,NS term in the IHDM. Moreover, as discussed
in [89], the only non-standard two-loop contribution to the ρ

parameter, δρ
(2)
I HDM , follows from the interaction of h0, G0,

G± with H0, A0, H± and is thus equivalent to δρ
(2)
H,Mix ; it

vanishes for equal charged and non-standard neutral Higgs-
boson masses and contains the coupling between h0 and the
non-standard scalars, which is determined by the combina-
tion 
345 of coefficients in the scalar potential, as specified
in (20) of Sect. 2.1. The corresponding contribution to �r is

given by

�r (2)
IHDM,irr = c2

W

s2
W

δρ
(2)
I HDM , (57)

which introduces an additional dependence on the IHDM
parameter 
345, which is not present in �r (1)

NS and �r (2)
NS,red .

3.5 Incorporation of the higher-order corrections

For an accurate prediction of MW in the THDM we have to
combine all the by now available loop contributions from the
SM and beyond in the quantity �r , which depends on the
SM input and on all the free non-standard parameters of the
THDM,

�r(MW , . . . ) = �rSM(MW , . . . ) + �rNS(MW , . . . ) (58)

The SM part, �rSM, contains, besides the one-loop result, the
complete two-loop and the partial higher-order contributions
listed in (38). Since the two-loop electroweak part is quite an
inconvenient expression which involves furthermore numer-
ical integrations, we make use of the parametrization given
in [43] in terms of the SM input parameters.

Summarizing the various standard and non-standard con-
tributions to �r we write (58) as follows,

�r = �rSM + �r (1)
NS + �r (2)

NS,red + �r (2)
NS,irr (59)

where the three non-standard terms are specified in the equa-
tions (36), (44), and (53). In case of the IHDM, �r (2)

NS,irr has

to replaced by �r (2)
I HDM,irr in (57).

The predicted value of MW fulfills the relation (24) for a
given specific set of parameters. Since �r itself does depend
on MW , the solution of (24) for MW has to be determined
numerically.

4 The effective electroweak mixing angle

The electroweak mixing angle in the effective leptonic vertex
of the Z boson [35] is another important precision observable,
measured with high accuracy at the Z resonance by the LEP
and SLC experiments [8]. Theoretically it is derived from the
ratio of the dressed leptonic vector and axial vector couplings
gV,A of the Z boson,

sin2 θeff ≡ s2
l = 1

4

(
1 − Re

gV
gA

)
, (60)

keeping the notation s2
l as a short term. The effective cou-

plings

gV = v + �gV , gA = a + �gA, (61)
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contain the lowest-order leptonic Z couplings

v = −1

2
+ 2s2

W , a = −1

2
, (62)

and the corresponding loop contributions �gV,A evaluated
at the Z -mass scale (without the QED corrections associated
with virtual photons).

It is convenient to relate s2
l to the on-shell quantity s2

W in
(30) by a factor κ which incorporates the loop corrections in
terms of �κ ,

s2
l = s2

W κ = s2
W (1 + �κ) . (63)

Analogously to �r in (25), �κ = �κ(MW , MZ ,mt , . . . )

is a model-dependent quantity, depending on all parameters
of the standard and non-standard particles which enter the
loop contributions. An additional model dependence in the
prediction of s2

l occurs via s2
W through the W mass obtained

by means of �r , as described in the previous Sect. 3.

4.1 One-loop calculations

Loop corrections lead to deviations �κ from the relation κ =
1. The expansion of (60) yields the one-loop contribution

�κ(1) = − 1

4s2
W

v

a

(
�g(1)

V

v
− �g(1)

A

a

)

, (64)

which can be written as follows,

�κ(1) = cW
sW

Re �
(1)
γ Z

(
M2

Z

)

M2
Z

+ δ(1)s2
W

s2
W

+ v

v − a

(
FV

(
M2

Z

)

v
− FA

(
M2

Z

)

a

)

. (65)

The first two terms originate from photon–Z mixing and from
renormalization of the on-shell weak mixing angle (31) The
corrections from the vertex diagrams and the wave-function
renormalization of the external fermions are collected in the
vector and axial vector form factors FV,A, with lepton masses
neglected.

In the alignment limit of the THDM, one can identify the
one-loop contribution of the scalars h0,G0,G± with the stan-
dard scalar contribution to the SM part of �κ . Consequently,
the non-standard contribution to �κ arise from the scalars
H0, A0, and H±. Thus, one can write at the one-loop level

�κ(1) = �κ
(1)
SM + �κ

(1)
NS , (66)

with the SM part

�κ
(1)
SM = cW

sW

Re �
(1)
γ Z ,SM

(
M2

Z

)

M2
Z

+ δ(1)s2
W,SM

s2
W

+ v

v − a

(
FV,SM

v
− FA,SM

a

)
, (67)

where the subindex indicates that only the standard particles
are kept in the one-loop self-energy and vertex corrections.

The contributions from the non-standard scalars to the ver-
tex corrections and to the lepton self-energies are suppressed
owing to the small Yukawa couplings. Accordingly, we can
neglect the non-standard contributions to the form factors
FV,A. The one-loop non-standard contribution to �κ is thus
given by

�κ
(1)
NS = cW

sW

Re �
(1)
γ Z ,NS

(
M2

Z

)

M2
Z

+ δ(1)s2
W,NS

s2
W

, (68)

and is obtained via the non-standard content of the vector-
boson self-energies from Appendix A.

A sizeable part of the one-loop contribution to �κ is asso-
ciated with �ρ(1), Eq. (34), via

�κ(1) = c2
W

s2
W

�ρ(1) + · · · (69)

involving the non-standard term (37), which becomes large
in case of a large mass splitting in the non-standard scalar
spectrum.

4.2 Higher order corrections in the SM

The one-loop calculation of the effective mixing angle was
performed in [11] for the neutral-current vertex in neutrino
scattering. The first results for s2

l at the Z resonance [35,36]
are based on one-loop calculations improved by higher orders
from �α and �ρ, and an expansion in the top-quark mass
[37]. QCD corrections are known at the two-loop order [12,
13,15–18], together with the leading three-loop [26–28] and
four-loop [32–34] terms from the top quark. The two-loop
electroweak SM contributions have been obtained in [38–
43]. The leading three-loop corrections via the ρ parameter at
O (

G3
Fm

3
t

)
and O (

G2
Fα2

s m
2
t

)
were calculated for a massless

Higgs boson in [31] and with Higgs mass dependence in [30].
In [43] a simple parametrization is given, which incorpo-

rates the complete electroweak one- and two-loop corrections
together with the QCD corrections of O (ααs) [12,13,15–
18] and O (ααs) [26–28] and the leading electroweak three-
loop corrections of O (

G3
Fm

3
t

)
and O (

G2
Fα2

s m
2
t

)
[30,31].

An update is found in [44] which includes also the leading
O (

GFm2
t α

3
s

)
terms [32–34]; the differences, however, are

very small, not more than 2 · 10−5 for s2
l . The required input

parameters are the masses of the Higgs particle, the top quark
and the Z boson, together with the strong coupling constant
αs

(
M2

Z

)
.
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4.3 Two-loop corrections in the THDM

The one-loop corrections can be supplemented by the leading
reducible and irreducible two-loop contributions, containing
products of �α and �ρ(1) and the irreducible two-loop cor-
rection δρ(2) to ρ, see Eq. (52). The resulting two-loop con-
tribution to �κ is given by

�κ(2) = �α
c2
W

s2
W

�ρ(1) − c4
W

s4
W

(
�ρ(1)

)2 + c2
W

s2
W

δρ(2) (70)

As a side-remark, we note that the appearance of the reducible
products in �κ is again a consequence of the on-shell param-
eters in the normalization of �ρ. After a reparametrization
�ρ(1) → �ρ(1) by the Fermi constant with the help of
Eqs. (45) and (33) in the expression

�κ(1) = c2
W

s2
W

�ρ(1) + . . . (71)

the resulting two-loop shift cancels the reducible term in (70)
and we obtain

�κ(2) = c2
W

s2
W

δρ(2) (72)

as the two-loop correction to �κ .
Next we have to identify the non-standard two-loop cor-

rections. Separating �ρ
(1)
t and �ρ

(1)
NS in the reducible term

of (70) yields

�α
c2
W

s2
W

�ρ(1) − c4
W

s4
W

(
�ρ(1)

)2

= �α
c2
W

s2
W

(
�ρ

(1)
t + �ρ

(1)
NS

)
− c4

W

s4
W

((
�ρ

(1)
t

)2

+2 �ρ
(1)
t �ρ

(1)
NS +

(
�ρ

(1)
NS

)2
)

. (73)

Since the terms without �ρ
(1)
NS are already incorporated in

�κSM, we retain the non-standard reducible part

�κ
(2)
NS,red = �α

c2
W

s2
W

�ρ
(1)
NS

−c4
W

s4
W

(
2 �ρ

(1)
t �ρ

(1)
NS +

(
�ρ

(1)
NS

)2
)

. (74)

The irreducible part δρ(2) can be separated into the dif-
ferent non-standard contributions according to (52), which
leads to the following contributions to �κ ,

• contribution from the non-standard top-Yukawa cou-
plings

�κ
(2)
t,NS = c2

W

s2
W

δρ
(2)
t,NS, (75)

• contribution from the exclusively non-standard scalar
corrections

�κ
(2)
H,NS = c2

W

s2
W

δρ
(2)
H,NS, (76)

• contribution from the mixed standard–non-standard scalar
corrections

�κ
(2)
H,Mix = c2

W

s2
W

δρ
(2)
H,Mix . (77)

In the IHDM, the only irreducible non-standard two-loop
contribution to the ρ parameter is δρ

(2)
I HDM (which is equiv-

alent to δρ
(2)
H,Mix ), hence

�κ
(2)
I HDM,irr = c2

W

s2
W

δρ
(2)
I HDM . (78)

With these specifications, the two-loop irreducible contribu-
tion to �κ is given by

�κ
(2)
NS,irr = �κ

(2)
t,NS + �κ

(2)
H,NS + �κ

(2)
H,Mix (79)

in the aligned THDM, and

�κ
(2)
NS,irr = �κ

(2)
I HDM,irr (80)

in the IHDM.

4.4 Incorporation of the higher-order corrections

For an accurate prediction of s2
l in the THDM we have to

combine all the by now available loop contributions from the
SM and beyond in the quantity �κ , which depends on the
SM input quantities and on the non-standard parameters of
the THDM,

�κ(MW , . . . ) = �κSM(MW , . . . ) + �κNS(MW , . . . ) (81)

For a given set of parameters, the predicted value of s2
l ful-

fills the relation (63) with the corresponding MW calculated
from (24). Since the W mass varies with the model param-
eters, �κ is needed as an expression where MW appears as
an independent variable

In the following we write only MW as an explicit variable
in �κ , dropping the ellipsis. The SM part,

�κSM(MW ) = �κ
(1)
SM(MW ) + �κ

(ho)
SM (MW ) (82)
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contains besides the one-loop result the complete two-loop
and the partial higher-order contributions listed above. Since
the full SM result is an inconvenient expression, we make
use of the parametrization for the SM prediction of s2

l given
in [43] for the set of SM input parameters MZ ,mt ,mh0 , αs ,
yielding the value s2

l,SM. By inverting (63) one obtains

�κSM(MW,SM) = s2
l,SM

(

1 − M2
W,SM

M2
Z

)−1

− 1 , (83)

while MW is simultaneously fixed by the standard value
MW,SM via (24) with �rSM.

Since the W mass varies with the non-standard model
parameters, we need �κ as an expression where MW appears
as an independent variable. For the one-loop correction of �κ

in the SM we use the explicit result (67) with MW as one of
the input quantities. From (83) we obtain

�κ
(ho)
SM (MW,SM) = �κSM(MW,SM)

−�κ
(1)
SM

(
MW,SM

) ≡ δκ
(ho)
SM (84)

which we use as an approximation for the second term in (81),
yielding

�κSM(MW ) = �κ
(1)
SM (MW ) + δκ

(ho)
SM . (85)

The prediction of the effective leptonic mixing angle can now
be written in the following way,

s2
l =

(

1 − M2
W

M2
Z

)

×
(

1 + �κSM + �κ
(1)
NS + �κ

(2)
NS,red + �κ

(2)
NS,irr

)
(86)

evaluated for MW as obtained from (24) with the full �r =
�rSM + �rNS.

For comparison, we will also need the effective mixing
angle including just the one-loop non-standard corrections,
calculated from

sin2 θ
(1)
eff ≡ s2 (1)

l =
⎛

⎝1 −
(
M (1)

W

MZ

)2
⎞

⎠

×
(

1 + �κSM + �κ
(1)
NS

)
, (87)

where M (1)
W is used as the corresponding input for the W -

boson mass obtained from (24) with �r = �rSM + �r (1)
NS.

5 Numerical results

For the analysis of the precision observables the following
input [6] for the SM parameters is used, together with the
mass of the SM-like Higgs boson mh0 = 125.1 GeV,

GF = 1.1663787 · 10−5 GeV−2, MZ = 91.1876 GeV,

mt = 172.76 GeV, αs

(
M2

Z

)
= 0.1179. (88)

The shift �α = 0.05907 in the electromagnetic fine structure
constant, �α = �αlept+�αhad, contains the leptonic contri-
bution up to four-loop order [132,133] �αlept = 0.031498,
and the hadronic part extracted from experimental data with
the help of dispersion relations, �αhad = 0.027572 taken
from [134]; this yields �α as the default value in the SM
parametrizations for MW , �r and s2

l given in [131] and [43].

5.1 Parameter dependence

Since the non-standard loop contribution is very sensitive to
the difference between the masses of the charged and neu-
tral scalars, we illustrate in Fig. 1 the impact of a variation
of mH± on MW . The masses of the neutral Higgs bosons
are kept fixed, assuming equal masses of H0 and A0 on the
left side and a small mass difference on the right hand side.
The settings for the other non-SM parameters are specified
above the corresponding plots. The upper panels display the
deviation of MW from the SM prediction with just the one-
loop non-standard correction included (blue dashed line) and
including all the available non-standard corrections (purple
solid line) of two-loop order. The grey shaded area displays
the experimental result with the associated 1 σ uncertainty
according to the PDG value in (1); the light-blue area in the
upper part of the figure shows the new CDF result (2). The
lower panels display the effects of the individual two-loop
corrections, with the reducible contributions subtracted. The
different lines correspond to the various non-standard two-
loop contributions to �r yielding a mass shift of MW calcu-
lated as function of �r (2)

x according to

�M (2)
W

(
�r (2)

x

)
= MW

(
�r (1)

NS + �r (2)
NS,red + �r (2)

x

)

−MW

(
�r (1)

NS + �r (2)
NS,red

)
(89)

with �r (2)
x = �r (2)

t,NS (red line), �r (2)
x = �r (2)

H,NS (orange

line) and �r (2)
H,Mix (green line).

The one-loop non-standard contribution �r (1)
NS depends

only on the scalar masses and is independent tβ and λ5. It

is dominated by the non-standard correction �ρ
(1)
NS to the

ρ parameter, which increases quadratically with the mass
difference between charged and neutral scalars and is small
for mH± 	 mH0 or mH± 	 mA0 . Adding the non-standard
two-loop corrections leads to notable deviations. Similar to
the one-loop contribution, the mass shifts from �r (2)

H,Mix are
small for mH0 	 mH± or mA0 	 mH± and grow with the
mass difference between charged and neutral scalars. The
shifts from �r (2)

H,NS are zero for mH± = mA0 but not for
mH± = mH0 . These terms are additionally enhanced for
large values of tβ and vanish for tβ = 1. The mass shifts from
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Fig. 1 Shift in MW from non-standard Higgs boson mass splittings.
The upper panels show the difference to the SM result, at one-loop order
(blue dashed line) and with all the available non-standard corrections
(purple line). The current world average with 1 σ range is displayed by

the grey area; the new CDF result is indicated by the shaded area in light
blue. The lower panels show the individual two-loop contributions from
�r (2)

t,NS (red line), �r (2)
H,NS (orange line), and �r (2)

H,Mix (green line)
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Fig. 2 Shift in s2
l from non-standard Higgs boson mass splittings, for

the same input as in Fig. 1. The upper panels show the difference to the
SM result, at one-loop order (blue dashed line) and with all the available

non-standard corrections (purple line). The current world average with
1 σ range is displayed by the upper grey area. The value measured by
SLD is indicated by the shaded area in light blue

�r (2)
t,NS originating from the top-Yukawa contribution to ρ are

substantially smaller than those from the scalar sector. They
are of some influence only for tβ 	 1 and are suppressed for
larger values of tβ . Since the SM prediction of MW is below
the experimental 1 σ limits, also for the current PDG world
average, mass splitting between charged and neutral scalars
can improve the agreement between the measurement and
the theoretical prediction, in which the growing significance
of the two-loop corrections is clearly visible.

Whereas for the PDG value moderate non-standard cor-
rections are needed, a substantial upward shift of MW is
required in order to reach the 1σ interval for the new CDF
value, where the two-loop corrections are important: they
enhance the one-loop result sizeably and hence have a con-
siderable impact on constraining the appropriate range of the
corresponding THDM parameters.

In a similar way, Fig. 2 illustrates the effect of a mass split-
ting between charged and neutral scalars, showing the impact
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Fig. 3 Influence of mH± and tβ on the theoretical prediction of MW .
The bands indicate the parameter configurations for which the calcu-
lated MW is within the 1σ uncertainties of the measured values, the PDG

value refers to the coloured band and the CDF value to the dashed band.
The red-shaded areas show the parameter regions that are excluded by
vacuum stability and tree-level unitarity

of a variation of mH± on the leptonic sin2 θeff(= s2
l ), for the

same parameters as in Fig. 1 to allow a direct comparison of
the two figures. The masses of the neutral Higgs bosons are
kept fixed, assuming equal masses of H0 and A0 on the left
side and a small mass difference on the right hand side.

Differently to the W mass, increasing the mass splitting
between neutral and charged Higgs bosons distorts the good
agreement between theory and the world-average sin2 θeff,exp

in (3) for the effective mixing angle. The values of mH±
required for getting to the CDF result for MW pull sin2 θeff

away from the world average towards the 2 σ boundary. It is
interesting to observe that instead full agreement is achieved
with the SLD measurement (4) from the left–right asymme-
try.

In order to illustrate the influence of the additional param-
eters tβ and λ5, we display in Fig. 3 regions in the mH±–
tβ plane where the predicted MW is in agreement with the
experimental results, either with the PDG value in (1) or with
the new CDF result in (2). We present results for λ5 = 1
(left side) and λ5 = 6 (right side) with neutral masses
mH0 = 500 GeV and mA0 = 550 GeV. The parameter con-
figurations that lead to a prediction in accordance with the
1σ range of the experimental values are illustrated by the
coloured band (PDG) and by the dashed band (CDF). More-
over, the areas shaded in red display the parameters which
are excluded by the theoretical bounds from vacuum stability
and tree-level unitarity. Around tβ = 1 the contribution via

δρ
(2)
H,NS is close to zero and the main two-loop effects arise

from δρ
(2)
H,Mix , which are additionally enhanced for smaller

values of λ5. Larger tβ values yield additional contributions

from δρ
(2)
H,NS , especially for mH± close to mH0 when both

�ρ
(1)
NS and δρ

(2)
H,Mix are small. For λ5 = 1 the theoretical

bounds restrict the allowed values of tβ quite strongly; never-

theless, the contributions from δρ
(2)
H,NS can be sizeable, giving

rise to the curvature of the bands. For λ5 = 6 the theoretical
constraints give room to a wider range of tβ , simultaneously

the influence of δρ
(2)
H,NS is weaker, owing to the factor (54),

such that the dependence on tβ becomes rather flat for larger
values. For very small values of tβ , on the other hand, the top-

Yukawa contribution δρ
(2)
t,NS can become important due to its

enhancement by t−2
β . However, such small values are strongly

restricted from flavour physics (see for example [135]).

5.2 Inert-Higgs-doublet model

The predictions of MW and s2
l in the IHDM are domi-

nantly influenced by mass differences between the neutral
and charged Higgs bosons as well. When only the one-loop
corrections �r (1)

NS and �κ
(1)
NS are considered, the results are

equivalent to those in the aligned THDM, depending only
on the non-standard particle masses. Also the reducible cor-
rections from products of �ρ

(1)
NS and �α will be identical.

Special features occur at the two-loop level. Differences
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Fig. 4 Shift in MW and s2
l in the IHDM from neutral–charged Higgs

boson mass splitting, with one-loop non-standard corrections only (blue
dashed line) and including the non-standard two-loop corrections (full
lines). The different solid lines represent different values of 
345. The

current world averages with 1σ range are displayed by the grey areas;
the areas in light blue indicate the new CDF result for MW (left panel)
and the SLD result for s2

l (right panel)

Fig. 5 Results in the IHDM in the mH± –
345 plane. The bands indi-
cate the parameter configurations for which the calculated MW is within
the 1σ uncertainties of the measured values; the PDG value refers to the
coloured band and the CDF value to the dashed band. The red-shaded
areas show the parameter regions that are excluded by vacuum stability
and tree-level unitarity

arise through the irreducible corrections: contributions cor-
responding to δρ

(2)
t,NS and δρ

(2)
H,NS are absent in the IHDM,

and the corrections result from the remaining contribution
δρ

(2)
I HDM , which corresponds to δρ

(2)
H,Mix . This term con-

tains both standard and non-standard scalars with couplings
involving the parameter combination 
345, Eq. (20). Hence,
the two-loop corrections induce a dependence of the preci-
sion observables on 
345 as the only model parameter in
addition to the masses entering the predictions.

In Fig. 4 we exemplify the dependence of MW and s2
l

on the mass difference between charged and neutral Higgs
bosons for different values of 
345, in terms of their shifts
with respect to the SM predictions. In order to emphasize
the effects of mass splitting we allow also the case with H±

as the lightest scalar, although in such a scenario the IHDM
does not provide a dark matter candidate. For comparison,
the shifts in M (1)

W and sin2 θ
(1)
eff , calculated with one-loop non-

standard corrections only, are displayed by the blue dashed
line. As expected, the two-loop corrections show a signifi-
cant dependence on the value of 
345 which can enhance or
diminish the shifts in an asymmetric way with respect to the
minimum.

In Fig. 5 we visualize values in the mH±–
345 plane that
lead to an agreement between the theoretical prediction and
the experimental 1σ limits for MW , again for the PDG result
(coloured band) and the recent CDF result (dashed band).
The areas shaded in red display the theoretical constraints on
the parameter space. Note that, differently to the two-loop
corrections to the ρ parameter, the theoretical constraints
are affected also by the choice of the coefficient 
2 in the
scalar potential. For the selected value 
2 = 1 the bounds
are rather loose, and the allowed regions are most signifi-
cantly constrained via the W mass. The growing influence
of 
345 with the mass splitting is visible by the curvature of
the dashed band.

5.3 Computational tools

For computation of the electroweak precision observables
the code THDM_EWPOS has been developed, which con-
tains all the entries described in this paper and in [88].
For the development, the calculation of the one-loop correc-
tions was done with the help of the Mathematica packages
FeynArts [136] and FormCalc [137]. The non-standard
two-loop contributions were calculated using the Mathemat-
ica package TwoCalc [138,139]. The one- and two-loop
results have been implemented as Fortran routines with the
help of FormCalc and the methods from [140], which were
developed for the implementation of the two-loop Higgs-
mass corrections at O (

α2
t

)
in FeynHiggs. These routines
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are then called inTHDM_EWPOS in the calculation of the vari-
ous precision observables. For the numerical evaluation of the
one-loop integrals the program uses the library LoopTools
[137]. For the numerical evaluation of the required two-loop
integrals the Fortran routine implemented in the program
FeynHiggs [141–143] is used.

6 Conclusions

We have given an overview over the currently most precise
calculation of the electroweak precision observables MW and
sin2 θeff in the aligned Two-Higgs-Doublet Model where one
of theCP-even scalars (h0) is identified with the scalar boson
at 125 GeV observed by the LHC experiments ATLAS and
CMS. It includes, besides all the known SM loop correc-
tions, the full non-standard one loop contributions and the
leading non-standard two-loop contributions from the top-
Yukawa coupling and the self-couplings of the Higgs bosons.
As already at the one-loop level, the non-standard two-loop
contributions from the scalar self-interactions are particu-
larly sensitive to mass splittings between neutral and charged
scalars and become sizeable whenever the one-loop correc-
tions are large. Hence, they turn out to be of special impor-
tance when a large loop-induced shift in the predicted W -
boson mass is required, as it is the case for the recently pub-
lished final result of the CDF experiment. Simultaneously,
the predictions for sin2 θeff move away from the experimental
world average by more than one standard deviation, towards
the 2 σ limit, but show full agreement with the individual
value of the SLD experiment measured via the left–right
asymmetry.

As a new feature, the two-loop contributions have a sig-
nificant dependence on the parameters tan β and λ5 (or m2

12,
respectively), a coefficient of the THDM scalar potential that
is not fixed by the masses of the neutral and charged Higgs
bosons. In the Inert-Higgs-Doublet Model, the two-loop con-
tributions depend on a specific combination 
345 of quartic
coefficients in the scalar potential and are independent of
tan β. In both cases, they can modify the one-loop predictions
substantially and are relevant for phenomenological analy-
ses.

For computation of the electroweak precision observables
the Fortran code THDM_EWPOS has been developed and is
available at [144]. It contains all the entries described in this
paper and in [88].
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A Non-standard contributions to the gauge boson self-
energies

The part of the gauge-boson self-energies in the aligned
THDM resulting from the non-standard scalars in the one-
loop diagrams is given by the following expressions,

�
(1)
W,NS

(
p2

)
= α

16πs2
W

[
2A0(m2

H±) + A0(m2
H0 ) + A0(m2

A0 )

−4B00(p2,m2
A0 ,m

2
H±)

−4B00(p2,m2
H0 ,m

2
H±)

]
, (90)

�
(1)
Z ,NS

(
p2

)
= α

16π c2
Ws2

W

[
2

(
c2
W − s2

W

)2
A0(m2

H±)

+A0(m2
H0 ) + A0(m2

A0 )

−4(
(
c2
W − s2

W

)
2B00(p2,m2

H± ,m2
H±)

+ B00(p2,m2
A0 ,m

2
H0 ))

]
, (91)

�
(1)
γ,NS

(
p2

)
= α

2π

[
A0(m2

H±) − 2B00(p2,m2
H± ,m2

H±)
]
,

(92)

�
(1)
γ Z ,NS

(
p2

)
= α

4π

c2
W − s2

W
cW sW

[
A0(m2

H±)

− 2B00(p2,m2
H± ,m2

H±)
]
. (93)

They are specified in terms of the one- and two-point integrals
A0 and B0 in dimensional regularization with dimension D
and scale parameter μ,

A0(m2)

= (2πμ)4−D

iπ2

∫
dDq

1

q2 − m2 + iε

= m2

(
2

4 − D
− γ + log 4π − log

m2

μ2 + 1

)

+ O(4 − D) ,

B0(p2,m2
1,m2

2)

= (2πμ)4−D

iπ2

∫
dDq

1
[
q2 − m2

1 + iε
][

(p + q)2 − m2
2 + iε

]
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= 2

4 − D
− γ + log 4π

−
∫ 1

0
dx log

x2 p2 − x(p2 + m2
1 − m2

2) − iε

μ2 + O(4 − D) ,

together with the tensor integral coefficients

B1(p2,m2
1,m2

2) = 1

2p2

[
A0(m2

1) − A0(m2
2)

−(p2 + m2
1 − m2

2) B0(p2,m2
1,m2

2)
]
,

B00(p2,m2
1,m2

2) = 1

2(D − 1)

[
A0(m2

2) + 2m2
1 B0(p2,m2

1,m2
2)

+(p2 + m2
1 − m2

2) B1(p2,m2
1,m2

2)
]
.

A compact analytic expression for B0 can be found in [122].
The relation

B00(0,m2,m2) = 1

2
A0(m

2)

ensures that the non-standard contributions to the photon self-
energy (92) and to the photon–Z mixing (93) vanish for p2 =
0.
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