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Abstract We analyze several spherically symmetric exte-
rior vacuum solutions allowed by the Einstein-Aether (EA)
theory with a non-static aether and study the thermodynamics
of their Killing and universal horizons. We show that there
are five classes of solutions corresponding to different values
of a combination of the free parameters, c2, c13 = c1 + c3

and c14 = c1 + c4, which are: (A) c2 �= 0 and c13 �= 0
and c14 = 0, (B) c2 �= 0 and c13 = 0 and c14 = 0, (C)
c2 = 0 and c13 �= 0 and c14 = 0, (D) c2 = 0, c13 = 0 and
c14 �= 0, and (E) c2 = −c13 �= 0 and c14 �= 0. We present
explicit analytical solutions for these five cases. All these
cases have singularities at r = 0 and are asymptotically flat
spacetimes and possess both Killing and universal horizons
with the universal horizons always being inside the Killing
horizons. Finally, we compute the surface gravity, the tem-
perature, the entropy and the first law of thermodynamics for
the universal horizons.

1 Introduction

The two recurring themes in our quest for a theory of quan-
tum gravity have been to either introduce a new fundamental
symmetry such as supersymmetry or break a fundamental
symmetry such as Lorentz invariance (LI). The breaking of
LI is found to make the construction of quantum gravity a
possible task, at least on paper, see [1] for an example. Cur-
rently, one of the principal guiding lights in quantum gravity
research is the study of black hole thermodynamics. Thus,
it is interesting to investigate the thermodynamics of black
holes in a gravitational theory that explicitly breaks LI. This
is precisely what we intend to do in this work.
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The LI is an exact symmetry in special relativity, quan-
tum field theories, and the standard model of particle physics,
while in General Relativity (GR) it is only a local symmetry
in freely falling inertial frames [2]. The violation of LI in the
gravitational sector is not as well explored as in matter inter-
actions where it is highly constrained by several precision
experiments [3]. Jacobson and his collaborators introduced
and analyzed a general class of vector-tensor theories called
the Einstein-Aether (EA) theory [4–8] to study the effects of
violation of LI in gravity. A brief review of the vector-tensor
theories of gravity can be found in [9]. The first spherical
static vacuum solutions in the EA theory were obtained by
Eling and Jacobson in 2006 [10]. Since then several more
solutions have been found including our recent analytical
solutions for static aether [12]. Most of the literature on black
holes in EA theory can be found in the papers [13–35].

The subject of black hole thermodynamics was born in
1974 when Stephen Hawking [36] mathematically showed
that a black hole radiates as though it had a temperature pro-
portional to its surface gravity, and he asserted that the sim-
ilarities between the laws of black-hole mechanics [37] and
the laws of thermodynamics were more than a coincidence
[38]. Hawking also obtained a precise relationship between
the entropy of the black hole and its surface area [39]. The
reviews [40,41] give a good outline of the subject.

The paper is organized as follows. Section 2 briefly
presents the EA theory, whose field equations are solved for a
general spherically symmetric metric in Sect. 3. In Sect. 4, we
present the basics of black hole thermodynamics. In Sects.
5–12 we present the explicit analytical solutions and study
their thermodynamics. We summarize our results in Sect. 13.
The field equations are quite long, so we have relegated them
to the Appendix.
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2 Field equations in the EA theory

The general action of the EA theory is given by

S =
∫ √−g (LEinstein + Laether + Lmatter)d

4x, (1)

where, the first term is the usual Einstein–Hilbert Lagrangian,
defined by R, the Ricci scalar, and G, the EA gravitational
constant, as

LEinstein = 1

16πG
R. (2)

The second term, the aether Lagrangian is given by

Laether = 1

16πG
[−Kab

mn∇au
m∇bu

n + λ(gabu
aub + 1)],

(3)

where the tensor Kab
mn is defined as

Kab
mn = c1g

abgmn + c2δ
a
mδbn + c3δ

a
nδ

b
m − c4u

aubgmn, (4)

being the ci dimensionless coupling constants, and λ a
Lagrange multiplier enforcing the unit timelike constraint
on the aether, and

δamδbn = gaαgαmg
bβgβn . (5)

Finally, the last term, Lmatter is the matter Lagrangian, which
depends on the metric tensor and the matter field.

In the weak-field, slow-motion limit EA theory reduces
to Newtonian gravity with a value of Newton’s constant GN

related to the parameter G in the action (1) by [15],

G = GN

(
1 − c14

2

)
. (6)

Here, the constant c14 is defined as

c14 = c1 + c4. (7)

The field equations are obtained by extremizing the action
with respect to independent variables of the system. The vari-
ation with respect to the Lagrange multiplier λ imposes the
condition that ua is a unit timelike vector, thus

gabu
aub = −1, (8)

while the variation of the action with respect ua , leads to [15]

∇a J
a
b + c4aa∇bu

a + λub = 0, (9)

where,

Jam = Kab
mn∇bu

n, (10)

and

aa = ub∇bua . (11)

The variation of the action with respect to the metric gmn

gives the dynamical equations,

GEinstein
ab = T aether

ab + 8πGTmatter
ab , (12)

where

GEinstein
ab = Rab − 1

2
gabR,

T aether
ab = ∇c[J c (aub) + uc J(ab) − J(a

cub)]
−1

2
gab J

c
d∇cu

d + λuaub

+c1[∇auc∇bu
c − ∇cua∇cub] + c4aaab,

Tmatter
ab = −2√−g

δ
(√−gLmatter

)
δgab

. (13)

Later, when we solve the field equations (12), we do take
into consideration the Eqs. (8)–(11) in the process of sim-
plification. Thus, in this paper (as in the Eqs. (126)–(131)
below) we seem to solve only the dynamical equations, but
in fact, we are also solving the equations arising from the
variations of the action with respect λ and ua .

In a more general situation, the Lagrangian of GR is recov-
ered, if and only if, the coupling constants are identically
zero, e.g., c1 = c2 = c3 = c4 = 0, considering the Eqs. (4)
and (8).

3 Spherical solutions of EA field equations

We start with the most general spherically symmetric static
metric

ds2 = −A(r)dt2 + B(r)dr2 + r2dθ2 + r2 sin2 θdφ2. (14)

In accordance with Eq. (8), the aether field is assumed to be
unitary and timelike, chosen as

ua =
[

b(r)√−a(r)2B(r) + b(r)2A(r)
,

a(r)√−a(r)2B(r) + b(r)2A(r)
, 0, 0

]
, (15)

where xμ = (t, r, θ, φ) are the directions of the aether vec-
tor. Since the aether vector is unitary we have a(r)2B(r) −
b(r)2A(r) = −1. This kind of aether vector with time and
radial components we have called non-static aether, based
on the nomenclature created by Eling and Jacobson [11].
They have referred as static aether when the aether is paral-
lel to the Killing vector, i.e., the aether vector has only time
component.

Substituting

b(r) = ε

A(r)

√
A(r)[a(r)2B(r) + 1] (16)

from this last condition we obtain the aether vector depending
only of a(r), where ε = ±1.

ua =
[
ε

√
A(r)[a(r)2B(r) + 1]

A(r)
, a(r), 0, 0

]
, (17)

123



Eur. Phys. J. C (2022) 82 :943 Page 3 of 20 943

The timelike Killing vector of the metric (14) is giving by

χα = (−1, 0, 0, 0). (18)

The Killing and the universal horizon [42,43] are obtained
finding the largest root of

χαχα = 0, (19)

and

χαuα = 0, (20)

respectively, where χα is the timelike Killing vector. In our
case,

χαχα = −A(r), (21)

χαuα = A(r)b(r)√−a(r)2B(r) + b(r)2A(r)
. (22)

In order to identify eventual singularities in the solutions,
it is useful to calculate the Kretschmann scalar invariant K.
For the metric (14), it is given by

K = 1

4r4B4A4

(
16B4A4 − 32B3A4

+16B2A4 + 8A′2r2B2A2 + 8B ′2r2A4 + 4r4A′′2B2A2

−4r4A′′BA2B ′A′ − 4r4A′′B2AA′2

+ r4B ′2A′2A2 + 2r4B ′A′3AB + r4A′4B2
)

. (23)

The field equations are given in full detail in the Appen-
dices A (collecting the terms c2, c13 and c14) and B (col-
lecting the terms c123, c14 and c2). Notice that assuming
c123 = 0 does not give the same field equations that assuming
c2 + c13 = 0 or c2 = 0 with c13 = 0. This characteristic of
the field equations imposes different solutions for each case
that will be clearer below.

Solving simultaneously Eqs. (126)–(131) using Maple 16
we get five particular families of analytic solutions: (A) c2 �=
0 and c13 �= 0 and c14 = 0, (B) c2 �= 0 and c13 = 0 and
c14 = 0, (C) c2 = 0 and c13 �= 0 and c14 = 0, (D) c2 = 0,
c13 = 0 and c14 �= 0, and (E) c2 = −c13 �= 0 and c14 �= 0.
Let us now analyze these five possible cases in detail. The
solutions for only c2 = 0 or only c13 = 0 were not shown
because they are a special case of static aether, imposing
a(r) = 0 (see our previous work [12] for the static aether
case).

It was shown [20] that Smarr formula and corresponding
first law of black hole mechanics exists for ranges of the ci ’s,
0 ≤ c14 < 2, c13 < 1 and 2+c13+3c2 > 0. All our solutions
fall within this interval. Imposing these limits on our choices,
we get c2 > −2/3, −2 < c13 < 1 and 0 < c14 < 2.

4 Black hole thermodynamics

We briefly discuss the thermodynamics of black holes for
the sake of completeness. The essential ingredient for this is
the existence of horizons, the usual event horizon in the rel-
ativistic case and universal horizon in the Lorentz-violating
theories like the one we are considering here. For more dis-
cussion on black hole thermodynamics in EA theory, we refer
the readers to references [14,22,45–47]. Recently, the ther-
modynamics of black holes in Einstein-Aether–Maxwell the-
ory was investigated by the phase-space solution method in
[47].

Besides the horizons, the other important quantity in black
hole thermodynamics is the surface gravity κ . Once we have
these two quantities, we can interpret the κ/2π as the tem-
perature of the black hole and A/4 as the entropy of the black
hole where A is the surface area of the horizon. The surface
gravity for Killing and universal horizons is defined respec-
tively as (see the equations (37) and (39) of the reference
[47]),

κkh = 1

2

√
−χa;bχb;a |r=rkh ,

κuh = 1

2
ub(uaχa);b |r=ruh , (24)

where the symbol semicolon means covariant derivative. Cal-
culating these quantities we get

κkh = 1

2

√
A′2
BA

|r=rkh ,

κuh = −εa
(
A′a2B + A′ + 2AaBA′ + Aa2B ′)

4
√
A

(
a2B + 1

) |r=ruh .

(25)

We would like to mention that since any constant multiple
of a Killing vector is also another Killing vector, it does not
uniquely specify the scaling of the surface gravity; it can be
changed by a constant factor by rescaling the Killing vector.
If the spacetime is asymptotically flat, then one can normalize
the Killing vector at the spatial infinity thereby obtaining a
unique value for the surface gravity – which is what we have
done here.

For the universal horizon, we can directly write down
(see equation (63) of [47]) the surface gravity, temperature,
entropy and the first law for the universal horizon respectively
as,

Tuh = κuh

2π
,

Suh = πr2
uh

G
= Auh

4G
,

δSuh = δM

Tuh
, (26)
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where Auh is the the area of universal horizon. It is clear from
the equations above that they are exactly the same as in GR.
However, for a non-static aether, one may have to redefine
surface gravity because of the contribution of aether vector
field [47] as we have in Eq. (24).

In order to compare our results with the GR black we
calculate the thermodynamical quantities for rkh = ruh =
rGR = 2M or the Schwarzschild radius rs = 2GN M

c2 giving

κGR = GNM

r2
s

= c4

4GNM
= 1

4M
,

TGR = h̄κGR

2πckB
= h̄c3

8πkBGNM
= 1

8πM
,

SGR = kBc3AGR

4h̄GN
= 4πkBGNM2

h̄c
= 4πM2,

AGR = 4πr2
s = 16πG2

N M
2

c4 = 16πM2,

δSGR = 8πkBGNM δM

h̄c
= 8πM δM. (27)

We are explicitly showing all the constants because the grav-
itational coupling constant is different in GR and EA. But,
from now on, we work with GN = c = h̄ = kB = 1.

5 Solutions for case (A): c2 �= 0 and c13 �= 0 and c14 = 0

The solution of the field equations (126)–(131) for c14 = 0
we get,

A = G1 + G2

r
+ G3r

2 + G4

r4 ,

B = r4

r4 + G2r3 + G4
, (28)

where G1, G2, G3 and G4 are arbitrary integration constants
we have chosen G1 = 1 and G3 = 0 in order to have a
flat spacetime at infinity and G2 = −|G2| in order to have
a resemblance with the Schwarzschild solution as in the GR
and |G2| = 2M , where M is the Schwarzschild mass. Note
again as in the Case C, the term r−4 it could be compared
in GR to the Hartle and Thorne [48] solution of a slowly
rotating deformed relativistic star, assuming the quadrupole
moment is zero. Thus, A(r) and B(r) can be rewritten as

A = 1 − 2M

r
+ G4

r4 ,

B = r4

r4 − 2Mr3 + G4
. (29)

The solutions for a(r) and b(r) are

a = − 8ζ

r2(24c2 + 8c13)c13

√
−G4c13(3c2 + c13)2,

b = ε r4

r4 − 2Mr3 + G4

√
r4c13 − 2c13Mr3 + c13G4 − G4

r4c13
,

(30)

where ζ = ±1, hereinafter, −G4c13(3c2 + c13)
2 > 0

and (r4c13 − 2c13Mr3 + c13G4 − G4)/c13 > 0, in order to
ensure that the components of the aether vector are real. The
first condition imposes that G4 and c13 must have opposite
signs, while the second one is identical to the Case C, chang-
ing E4 by G4. Then, we have the same limit for G4 in order
to ensure that b be real, that is,

G4 ≥ 27

16

(
c13

c13 − 1

)
M4. (31)

Note that the solutions presented in this section depend
explicitly on the parameters c2 and c13.

The Kretschmann scalar is given by

K = 12(4M2r6 − 20MG4r3 + 39G2
4)

r12 . (32)

Note that r = 0 is the singularity of the spacetime.
The Killing horizon equation is given by

χαχα = −1 + 2M

r
− G4

r4 = 0, (33)

whose roots are

rkh1,2,3,4

= 1

2
M + η1

√
3

12
δ2

+ζ
1

12

√
−−72M2δ1δ2 + 6δ2δ2

1 + 288δ2G4 − 144
√

3M3δ1

δ1δ2
, (34)

where η1 = ±1, hereinafter,

δ1 =
(

432G4M
2 + 12

√
−768G3

4 + 1296G2
4M

4

) 1
3

,

δ2 =
√

12M2δ1 + 2δ2
1 + 96G4

δ1
. (35)

The universal horizon equation is

χαuα = ε

√
r4c13 − 2c13Mr3 + c13G4 − G4

r4c13
, (36)

whose four solutions are

ruh1,2,3,4 = 1

2
M + η1

√
3

12
λ3 + ζ

1

12[
−(−72M2c13λ2λ3 + 6

×12
1
3 λ3λ

2
2 − 24×12

2
3 λ3G4c13

+ 24×12
2
3 λ3G4c

2
13

−144
√

3M3c13λ2)(λ2λ3)
−1

] 1
2
, (37)

123
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where

λ1 = 36M2 + √
3

√
−256c13G4 + 256G4 + 432M4c13

c13
,

λ2 =
[
(−1 + c13)G4λ1c

2
13

] 1
3

,

λ3 =

√√√√12M2c13λ2 + 212
1
3 λ2

2 + 8G412
2
3 c2

13 − 8G412
2
3 c13

c13λ2
.

(38)

In order to have a real aether vector we must impose that

c13 < 1, (39)

c13 < −2(1 + c2), (40)

and

c13G4 ≤ 0. (41)

In order to have real Killing horizons we must impose that

G4 ≤ 27

16
M4, (42)

and real universal horizons we must have

G4 ≥ 27

16

(
c13

c13 − 1

)
M4. (43)

From these two conditions we have that

G4 = 27

16

(
c13

c13 − 1

)
M4. (44)

We can observe that the condition (44) satisfies simulta-
neously the conditions for a real aether vector.

Thus, using Eq. (44), the aether vector can be written as

a = −3
√

3ζM2

4r2
√

1 − c13
(45)

b = 4ε (c13 − 1) (−2r + 3M) r2
√

3M2 + 4Mr + 4r2

(c13 − 1) 16r3 (r − 2M) + 27c13M4 (46)

Again, using Eq. (44), the universal horizons are given by

ruh1,2 = 3M

2
, (47)

ruh3,4 = −M

2
+ η1

√
2

2

√
−M2. (48)

Substituting the Eq. (44) into the Killing horizons, we get
that they depend on c13 and the mass M . Thus, we plot the
real Killing and universal horizons shown in the Fig. 1, for
two different values of M = 1 and M = 2.

Since the outermost universal horizon is ruh1 = ruh2, the
surface gravity, temperature, entropy and the first law and
using Eq. (26) we have

κuh1 = −εζ
√

6

9M

|(c13 + 3c2) c13|
(c13 + 3c2) c13

1√
1 − c13

, (49)

Tuh1 = − εζ
√

6

18πM

|(c13 + 3c2) c13|
(c13 + 3c2) c13

1√
1 − c13

, (50)

Suh1 = 9πM2

4G
, (51)

δSuh1 = −3
√

6π

εζ
δM M

(c13 + 3c2) c13

|(c13 + 3c2) c13|
√

1 − c13. (52)

Since the surface gravity must be positive, we have to choose
−εζ/c13(c13+3c2) > 0. The first law of the thermodynamics
is calculated using Eq. (26), i.e., δSuh1 = δM/Tuh1.

6 Solutions for case (B): c2 �= 0 and c13 = 0 and c14 = 0

For the field equations (126)–(131) for c13 = 0 and c14 = 0
are given by

A = D2 + D3r
2 + D4

r
,

B = r

r + D4
, (53)

where the two solutions for a(r) and b(r) can be written as

a = D1

r2 ,

b = ε

√
D2

1 + r4 + r3D4

r2(r + D4)2 , (54)

where D1, D2, D3 and D4 are arbitrary integration constants
and we have chosen D2 = 1 and D3 = 0 in order to have a
flat spacetime at infinity. The choice D4 = −|D4| is in order
to have a resemblance with the Schwarzschild solution as in
the GR and |D4| = 2M , where M is the Schwarzschild mass.
Thus, A(r), B(r) and b(r) can be rewritten as

A = 1 − 2M

r
,

B = r

r − 2M
,

b = ε

√
D2

1 + r4 − 2r3M

r2(r − 2M)2 , (55)

where D2
1 +r4 −2r3M > 0. Note that the solution presented

in this section does not depend explicitly on the parameter
c2, although c2 �= 0.

The Kretschmann scalar is given by

K = 48M2

r6 . (56)

We can note that r = 0 is the only singularity of this space-
time.

The Killing horizon equation is obtained from

χαχα = −1 + 2M

r
= 0, (57)

123
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Fig. 1 These figures show the
Killing and universal radii for
the Case B where we have: rkh1
(blue dot-dashed line), rkh2
(green dashed line), ruh1 (violet
long-dashed). The Killing and
universal horizons that are not
displayed in these figures are
imaginaries

whose solution is

rkh = 2M. (58)

Note that the Killing horizon coincides just as in GR.
The universal horizon equation is

χαuα = ε

√√√√(
1 − 2M

r

) [
D2

1

r3(r − 2M)
+ 1

]
= 0, (59)

whose four solutions are

ruh1,2,3,4 = 1

2
M + η1

√
3

12
α2 + η2

√
6

12√
12M2α1α2 − α2α2

1 − 48α2D
2
1 + 24

√
3M3α1

α1α2
,

(60)

where η2 = ±1, hereinafter, and

α1 =
(

432D2
1M

2 + 12
√

−768D6
1 + 1296D4

1M
4

) 1
3

,

α2 =
√

12M2α1 + 2α2
1 + 96D2

1

α1
. (61)

Since α1 must be real we have that D1 ≤ √
1296/768M2.

Besides, we must have that D2
1 + r4 − 2r3M ≥ 0, in order

to b be real, as pointed out after (55). These two conditions
simultaneously applied impose that

D1 =
√

27

16
M2. (62)

Thus, the aether vector is given by

a = 3
√

3M2

4r2 (63)

b = ε |−2r + 3M | √3M2 + 4Mr + 4r2

4r |−r + 2M | (64)

The Killing and universal horizons are given by

ruh1,2 = 3M

2
, (65)

ruh3,4 = −M

2
+ η1

√
2

2

√
−M2. (66)

The only real universal horizons are ruh1 and ruh2. Since the
outermost horizon is ruh1 = 3M/2, we get for the surface
gravity, temperature, entropy and the first law, using Eq. (26),
thus

κuh1 =
√

6ε

9M
, (67)

Tuh1 =
√

6ε

18Mπ
, (68)

Suh1 = 9π M2

4G
, (69)

δSuh1 = 3
√

6 δM Mπ

ε
. (70)

Since the surface gravity must be positive, we have to choose
ε = 1. The first law of the thermodynamics is calculated
using Eq. (26), i.e., δSuh1 = δM/Tuh1.

7 Solutions for case (C): c2 = 0 and c13 �= 0 and c14 = 0

The solution of the field equations (126)–(131) for c2 = 0
and c14 = 0 we get,

A = E1 + E2

r4 + E3r
2 + E4

r
,

B = 1

1 + E2
r4 + E4

r

, (71)

where the solutions of a(r) and b(r) are given by

a = ζ

√
− E2

c13 r4 ,

123
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b = ε

√√√√r4
(−E2 + c13r4 + c13E2 − 2c13Mr3

)
c13

(
r4 + E2 − 2Mr3

)2 , (72)

where E1, E2, E3 and E4 are arbitrary integration constants
we have chosen E1 = 1 and E3 = 0 in order to have a
flat spacetime at infinity and E4 = −|E4| in order to have
a resemblance with the Schwarzschild solution as in the GR
and |E4| = 2M , where M is the Schwarzschild mass. Thus,
A(r), B(r) and b(r) can be rewritten as

A = 1 + E2

r4 − 2M

r
,

B = 1

1 + E2
r4 − 2M

r

,

b = ε

√√√√r4
(−E2 + c13r4 + c13E2 − 2c13Mr3

)
c13

(
r4 + E2 − 2Mr3

)2 , (73)

where −E2/c13 > 0 and
(−E2 + c13r4 + c13E2 − 2c13

Mr3
)
/c13 > 0. The first condition is imposed in order to

have a real, while the second one ensures that b be real. The
last one is not obvious but it can be found if we analyze
the first and second derivatives of the expression inside the
parenthesis, beyond it behavior in the limits for r → ±∞
and the position of the minimum of the function.

Note that the solutions presented in this section depend
explicitly on the parameter c13. Besides, the term r−4 is inter-
esting because it could be compared in GR to the Hartle and
Thorne [48] solution of a slowly rotating deformed relativis-
tic star, assuming the quadrupole moment is zero.

The Kretschmann scalar is given by

K = 12(39E2
2 − 20E2Mr3 + 4M2r6)

r12 . (74)

Notice again that r = 0 is the only singularity.
The Killing horizon equation is given by

χαχα = −1 − E2

r4 + 2M

r
= 0, (75)

whose four roots are

rkh1,2,3,4 = 1

2
M + η1

√
3

12
β2 + η2

1

12√
−−72M2β1β2 + 6β2β

2
1 + 288β2E2 − 144

√
3M3β1

β1β2
,

(76)

where

β1 =
(

432E2M
2 + 12

√
−768E3

2 + 1296E2
2M

4

) 1
3

,

β2 =
√

12M2β1 + 2β2
1 + 96E2

β1
. (77)

The universal horizon is

χαuα = ε

√
− E2 − c13r4 − c13E2 + 2c13Mr3

c13r4 = 0,

(78)

whose four solutions are

ruh1,2,3,4 = 1

2
M + η1

√
3

12
γ3

+η2

√
6

12
√

γ2γ3

[
12M2c13γ2γ3 − 12

1
3 γ3γ

2
2

+4 × 12
2
3 γ3E2c13 − 4 × 12

2
3 γ3E2c

2
13

+ 24
√

3M3c13γ2

] 1
2
, (79)

where

γ1 = 36M2 + √
3

√
256E2 − 256c13E2 + 432M4c13

c13
,

γ2 =
[
(−1 + c13)E2γ1c

2
13

] 1
3

,

γ3 =
√

12M2c13γ2 + 2×12
1
3 γ 2

2 − 8×12
2
3 E2c13 + 8×12

2
3 E2c2

13

c13γ2
.

(80)

In order to have real Killing horizons we must impose that

E2 ≤ 27

16
M4, (81)

and real universal horizons we must have

E2 ≥ 27

16

(
c13

c13 − 1

)
M4. (82)

From these two conditions we have that

E2 = 27

16

(
c13

c13 − 1

)
M4. (83)

Thus, using Eq. (83), the aether vector can be written as

a = 3
√

3ζM2

4r2
√

1 − c13
(84)

b = 4ε (c13 − 1) (−2r + 3M) r2
√

3M2 + 4Mr + 4r2

(c13 − 1) 16r3 (r − 2m) + 27c13M4 (85)

Again, using Eq. (83), the universal horizons are given by

ruh1,2 = 3M

2
, (86)

ruh3,4 = −M

2
+ η1

√
2

2

√
−M2. (87)
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Substituting the Eq. (83) into the Killing horizons, we get
that they depend on c13 and the mass M . Thus, we plot the

real Killing and universal horizons shown in the Fig. 2, for
two different values of M = 1 and M = 2.

Since from Fig. 2 the outermost universal horizon is ruh1,
the surface gravity, temperature, entropy and the first law and
using Eq. (26) we have

κuh1 =
√

6

9M
√

1 − c13
, (88)

Tuh1 =
√

6

18πM
√

1 − c13
, (89)

Suh1 = 9π M2

4G
, (90)

δSuh1 = 3
√

6 πδM M
√

1 − c13. (91)

Since the surface gravity must be positive and real, we have
to choose ε = η = 1 and c13 < 1. The first law of the
thermodynamics is calculated using Eq. (26), i.e., δSuh1 =
δM/Tuh1.

8 Solutions for case (D): c2 = 0 and c13 = 0 and c14 �= 0

The solution of the field equations (126)–(131) for c2 = 0
and c13 = 0 we get,

A = F1 + F2

r
+ F3

r2 , B = r2

r2 + F2r + F3
, (92)

where F1, F2, F3 and F4 are arbitrary integration constants
we have chosen F1 = 1 in order to have a flat spacetime at
infinity and F2 = −|F2| in order to have a resemblance with
the Schwarzschild solution as in the GR and |F2| = 2M ,
where M is the Schwarzschild mass. Thus, A(r) and B(r)
can be rewritten as

A = 1 − 2M

r
+ F3

r2 , B = r2

r2 − 2Mr + F3
. (93)

The metric of this case can be associated to the Reissner–
Nordström spacetime in GR, identifying F3 with the electric
charge.

The Kretschmann scalar is given by

K = 4(12M2r2 − 24MF3r + 14F2
3 )

r8 . (94)

We can notice again that r = 0 is the only singularity.
The solutions for a(r) and b(r) are

a = ζ

c14r

√
c14(2Mc14r − c14r2 + F3r2F2

4 c
2
14 + 2

√
2F3F4c14r − F3c14 + 2F3),

b = ε r2

(r2 − 2Mr + F3)

√
F3(r2F2

4 c
2
14 + 2

√
2F4c14r + 2)

c14r2 , (95)

where (2Mr−c14r2+F3r2F2
4 c

2
14+2

√
2F3F4c14r−F3c14+

2F3) > 0 and F3(r2F2
4 c

2
14 + 2

√
2F4c14r + 2) > 0, in order

to have a and b real.
Looking at the term under the square root at b, we can see

that it vanishes only at r = −
√

2
F4C14

, which coincides with
the minimum or maximum of the function, depending on
whether the sign of F4 is positive or negative, respectively. If
F4 > 0, the minimum occurs for r < 0, while if F4 < 0, the
maximum occurs for r > 0. Thus, to ensure that b is real for
every value of r ≥ 0, we must choose F3 > 0 and F4 > 0.
Doing a similar analysis of the term under the square root in a
we see that it has a minimum, that occurs for some r < 0 or a
maximum, that occurs for some r > 0, depending on whether
F3 > 1

F4
2c14

or if F3 < 1
F4

2c14
, respectively. Imposing, as for

b, that a is real for all r ≥ 0, the only possible option is
F3 > 1

F4
2c14

. So, the existence of the aether vector field

imposes F4 > 0 and F3 > 1
F4

2c14
.

We can factorize these aether component equations giving

a = ε

r

√
F3(c14F4r + √

2)2 − c14(r2 − 2Mr + F3)

c14
,

b = ε r(c14F4r + √
2)

(r2 − 2Mr + F3)

√
F3

c14
. (96)

Note that the solutions presented in this section depend
explicitly on the parameter c14.

The Killing horizon equation is

χαχα = −1 + 2M

r
− F3

r2 = 0, (97)

whose two roots are

rkh1,2 = M + η1

√
M2 − F3, (98)

where F3 ≤ M2, establishing an upper limit for the constant
F3, to insure that exist Killing horizons. Then, the solution
for this case is restricted to values of F3 and F4 such that
F4 > 0 and

1

F4
2c14

< F3 ≤ M2. (99)

The universal horizon equation is given by
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Fig. 2 These figures show the
Killing and universal radii for
the Case C, where we have: rkh1
(blue dot-dashed line), rkh2
(green dashed line), ruh1 (violet
long-dashed). The Killing and
universal horizons that are not
displayed in these figures are
imaginaries

χαuα

= ε

√
1 − 2M

r
+ F3

r2

×
√

2c14Mr − c14r2 + F3r2F2
4 c

2
14 + 2

√
2F3F4c14r − F3c14 + 2F3

c14(r2 − 2Mr + F3)
+ 1 = 0, (100)

whose three solutions are

ruh1 = −
√

2

F4c14
,

ruh2,3 = M + η1

√
M2 − F3. (101)

As we saw earlier, F4 must be positive leading to ruh1 < 0
and therefore this does not correspond to a real horizon. Thus,
we have that ruh2,3 are the outermost universal horizon, if
F3 ≤ M2, and we have for the surface gravity, temperature,
entropy and the first law, using Eq. (26)

κuh2 =
F3

[
2 + √

2c14F4

(
M + √

M2 − F3

)]

2c14

(
M + √

M2 − F3

)3 (102)

Tuh2 =
F3

[
2 + √

2c14F4

(
M + √

M2 − F3

)]

4πc14

(
M + √

M2 − F3

)3 (103)

Suh2 =
π

(
M + √

M2 − F3

)2

G
, (104)

δSuh2 =
4πc14

(
M + √

M2 − F3

)3
δM

F3

[
2 + √

2c14F4

(
M + √

M2 − F3

)] . (105)

The first law of the thermodynamics is calculated using
Eq. (26), i.e., δSuh2 = δM/Tuh2.

Then, when we establish the condition F3 < M2, this is
in agreement with the solution of the Reissner–Nordström

metric. See Figs. 3, 4 and 5. From the Figs. 3, 4 and 5, as

already pointed out, we can see that for values of F3 > M2 we
do not have any horizon, thus, we have naked singularities.

9 Solutions for case (E): c2 = −c13 �= 0 and c14 �= 0

The solution of the field equations (126)–(131) for c2 = −c13

we get,

A = H2 + H4

r
+ H3

r2 ,

B = H1

H2 + H4
r + H3

r2

, (106)

where H1, H2, H3 and H4 are arbitrary integration con-
stants we have chosen H1 = H2 = 1 in order to have a
flat spacetime at infinity and H4 = −2M in order to have
a resemblance with the Schwarzschild solution, where M is
the Schwarzschild mass.

Thus, A(r) and B(r) can be rewritten as

A = 1 − 2M

r
+ H3

r2 ,

B = 1

1 − 2M
r + H3

r2

. (107)

The solutions for a(r) and b(r) are

a = ε

r

√
2
√

2ζr� + 2Mr (2c13 − c14) + H3 (c14 − 2)

(2c13 − c14)
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Fig. 3 These figures show the
Killing and universal radii for
the Case D where we have: rkh1
or ruh1 (blue dot-dashed line),
rkh2 or ruh2 (green dashed line),
rkh3 or ruh3 (black dotted line).
The violet long-dashed straight
lines represent the inferior and
superior limits of F3. The
horizons that are not displayed
in these figures are imaginaries.
The gray areas are the regions
where the condition (99) is valid

b = εr
(√

2H3(−1 − c13) + ζr
√

(2c13 − c14)
)

(
2Mr − r2 − H3

)√
(2c13 − c14)

, (108)

where� = √
H3 (−1 + c13) (2c13 − c14) and H3 (−1 + c13)

(2c13 − c14) > 0, in order to ensure that the components of
the aether vector are real. Note that the solutions presented
in this section depend explicitly on the parameters c13 and
c14.

The Kretschmann scalar is given by

K = 8(7H3
2 − 12H3Mr + 6M2r2)

r8 . (109)

Note that r = 0 is the singularity of the spacetime.
The Killing horizon equation is given by

χαχα = −1 + 2M

r
− H3

r2 = 0, (110)
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Fig. 4 These figures show the
Killing and universal radii for
the Case D where we have: rkh1
or ruh1 (blue dot-dashed line),
rkh2 or ruh2 (green dashed line),
rkh3 or ruh3 (black dotted line).
The violet long-dashed straight
lines represent the inferior and
superior limits of F3. The
horizons that are not displayed
in these figures are imaginaries.
The gray areas are the regions
where the condition (99) is valid

whose roots are

rkh1,2 = M + η1

√
M2 − H3, (111)

where H3 ≤ M2.
The universal horizon equation is

χαuα =
√

− 2
√

2� + 2c13H3 − 2r2c13
2 − 2c13

2H3 + c13c14r2

r2 (2c13 − c14) c13
,

(112)
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Fig. 5 These figures show the
universal horizon temperatures,
for the Case D, where we have:
Tuh1 (blue dot-dashed line) and
TGR (green dashed line). The
violet long-dashed straight lines
represent the inferior and
superior limits of F3. The gray
areas are the regions where the
condition (99) is valid

whose four solutions are

ruh1,2 = η1

√
2H3 (−1 + c13)

2c13 − c14
, (113)

Since the outermost universal horizon is ruh1, the sur-
face gravity, temperature, entropy and the first law and using
Eq. (26) we have
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κuh1 =
√

2

8

√√√√
(
−2c13H3 + 2c13M

√
2�1 + c14H3c13 + 4 |c13 (−1 + c13) H3|

)
c13

(−1 + c13) H3

×
√
c13

2H3 − c13H3 + |c13 (−1 + c13) H3|
∣∣∣∣ 2c13 − c14

c13 (−1 + c13) H3

∣∣∣∣
× 1√

c13 (2c13 − c14)
, (114)

Tuh1 =
√

2

16π

×

√√√√
(
−2c13H3 + 2c13M

√
2�1 + c14H3c13 + 4 |c13 (−1 + c13) H3|

)
c13

(−1 + c13) H3

×
√
c13

2H3 − c13H3 + |c13 (−1 + c13) H3|
∣∣∣∣ 2c13 − c14

c13 (−1 + c13) H3

∣∣∣∣
× 1√

c13 (2c13 − c14)
, (115)

Suh1 = 2πH3 (−1 + c13)

G (2c13 − c14)
, (116)

δSuh1 = 8π δM
√

2

∣∣∣∣c13 (−1 + c13) H3

2c13 − c14

∣∣∣∣
√
c13 (2c13 − c14)

× 1√(
−2c13H3+2c13M

√
2�1+c14H3c13+4|c13(−1+c13)H3|

)
c13

(−1+c13)H3

× 1√
c13

2H3 − c13H3 + |c13 (−1 + c13) H3|
, (117)

where ε = ζ = 1. The first law of the thermodynamics is
calculated using Eq. (26), i.e., δSuh1 = δM/Tuh1.

10 Solutions for case (F): c2 = 0 and c13 �= 0 and
c14 �= 0

The solution of the field equations (126)–(131) for c2 = 0 is
given by a(r) = 0, i.e., the radial component of the aether
vector is null, thus, we have a static aether. Therefore, we
have not considered this case.

11 Solutions for case (G): c2 �= 0 and c13 = 0 and
c14 �= 0

The solution of the field equations (126)–(131) for c13 = 0
it is also given by a(r) = 0, i.e., the radial component of
the aether vector is null, thus, again we have a static aether.
Therefore, we have not considered this case.

12 Solutions for case (H): c2 = −c13 �= 0 and c14 = 0

The solution of the field equations (126)–(131) for Thus,
A(r) and B(r) can be rewritten as

A = J2

r
,

B = J1 r. (118)

The solutions for a(r) and b(r) are

a =
√
c13 r (r + J3 c13)

c13 r
,

b =
√
r (J1 r + J1 J3 c13 + c13)

J2 c13
, (119)

where J1, J2 and J3 are arbitrary integration constants. This
solution does not have a flat spacetime at infinity. Therefore,
we have also not considered this case.

13 Conclusions

In the present work, we analyze several spherically symmet-
ric exterior vacuum solutions allowed by the Einstein-Aether
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Table 1 Summary of the Aether conditions

Solution c2 c13 c14 ci

A 0 c13 < 1 and 2 + c13 + 2c2 > 0

B 0 0 c2 > −2/3

C 0 0 −2 < c13 < 1

D 0 0 0 < c14 < 2

E c2 = −c13 �= 0

Here ci (i=1..4) are the parameters of the aether field. In order to have
a theory that obeys the solar system tests, we must have 0 ≤ c14 < 2,
c13 < 1 and 2 + c13 + 2c2 > 0 [8,49]

(EA) theory with a non-static aether. We show that there are
five classes of solutions corresponding to different values
of a combination of the free parameters, c2, c13 = c1 + c3

and c14 = c1 + c4, which are: (A) c14 = 0 (B) c13 = 0
and c14 = 0, (C) c2 = 0 and c14 = 0, (D) c2 = 0 and
c13 = 0, and (E) c2 = −c13 �= 0. We present explicit ana-
lytical solutions for these five cases. The cases where only
c2 = 0 or only c13 = 0 are not analytic solutions. All these
cases present singularities at r = 0 and are asymptotically flat
spacetimes, and posses both Killing, and universal horizons.
We call attention to the fact that in all the cases presented
here, we have several solutions of the aether vector field for
the same spacetime. This means that the geometry of the
spacetime, defined by the metric, is not sensitive to different
aether fields of the same spacetime. Also, it should be noted
that all the solutions presented in this paper depend explicitly
on some of the aether parameters except the solution (B).

Table 2 Summary of the solutions

Case Metric functions Aether components Horizons Obs

(A) A = 1 − 2M
r + G4

r4 a = −3
√

3ζM2

4r2
√

1−c13
(1)

B =
(

1 − 2M
r + G4

r4

)−1
ruh = 3M

2

G4 = 27
16

(
c13

c13−1

)
M4 b = 4ε(c13−1)(−2r+3M)r2

√
3M2+4Mr+4r2

(c13−1)16r3(r−2m)+27c13M4

(B) A = 1 − 2M
r a = 3

√
3M2

4r2 ruh = 3M
2 (2)

B = (
1 − 2M

r

)−1
b = ε(−2r+3M)

√
3M2+4Mr+4r2

4r(−r+2M)

(C) A = 1 + E2
r4 − 2M

r a = 3
√

3ζM2

4r2
√

1−c13

B =
(

1 + E2
r4 − 2M

r

)−1
ruh = 3M

2

E2 = 27
16

(
c13

c13−1

)
M4 b = 4ε(c13−1)(−2r+3M)r2

√
3M2+4Mr+4r2

(c13−1)16r3(r−2m)+27c13M4

(D) A = 1 − 2M
r + F3

r2 a = ζ
r

√
F3(c14F4r+

√
2)2−c14(r2−2Mr+F3)

c14
ruh = M+

B =
(

1 − 2M
r + F3

r2

)−1
b = ε r(c14F4r+

√
2)

(r2−2Mr+F3)

√
F3
c14

√
M2 − F3

1
F4

2c14
< F3 ≤ M2 F4 > 0

A = 1 − 2M
r + M2

r2 a = ζ
r

√
M2(c14F4r+

√
2)2−c14(r2−2Mr+M2)

c14
ruh = M

B =
(

1 − 2M
r + M2

r2

)−1
b = ε r(c14F4r+

√
2)

(r2−2Mr+M2)

√
M2

c14

F3 = M2

(E) A = 1 − 2M
r + H3

r2 a = ε
r

√
2
√

2ζr�+2Mr(2c13−c14)+H3(c14−2)
(2c13−c14)

ruh =
B =

(
1 − 2M

r + H3
r2

)−1 √
2H3(−1+c13)
(2c13−c14)

H3 (−1 + c13) × b = εr(
√

2H3(−1−c13)+ζr
√

(2c13−c14))
(2Mr−r2−H3)

√
(2c13−c14)

(2c13 − c14) > 0

& H3 ≤ M2 � = √
H3 (−1 + c13) (2c13 − c14)

A = 1 − 2M
r + M2

r2 a = ε
r

√
(
√

2M2−r
√
c14)2−c14(r2−2Mr+M2)

c14
ruh = M

√
2
c14

B =
(

1 − 2M
r + M2

r2

)−1
b = εr

2Mr−r2−M2

(√
2M2

c14
+ r

)

c13 = 0 & H3 = M2

(1) Notice that G4 ≡ E2 of the Case (C). (2) c2 �= 0, yet black hole thermodynamics is not exactly the same as in GR, where ruh = 2M
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We have shown that the universal horizons are always situ-
ated inside than the Killing horizons. We have also computed
the surface gravity, the temperature, the entropy, and the first
law of thermodynamics for the outermost universal horizons.
The temperature of a black hole in EA theory can be higher
or lower than in GR. In Case (B), the temperature is always
lower than GR. However, in the Cases (A), (C), (D) and (E)
depend on the values of c13, c14 or c2. Besides, the Case
(D) also depends on two arbitrary constants (F3 and F4) [see
Table 3]. We also notice that the temperature tends to +∞
when c13 → 1 in Cases (C) and (E), and when F3 → M2

in Case (D) and also when c13 → −3c2 in the Case (E). See
Fig. 5 for the details.

As with temperature, the entropy of the EA black hole can
also be higher or lower than in GR. In Cases (A), (B), and (C)
the entropy is lower than the GR. However, in Case (D) this
quantity depends on the values of c14 and of the arbitrary

constant F3, with, c14 causing entropy to increase and F3

causing it to decrease, in comparison with the GR (see Table
3). The lowest value of the entropy is for the values c14 = 0
and F3 = M2, giving S = πM2. We can also notice that the
entropy tends to +∞ when c14 → 2 in this case.

Finally, we want compare our results in Schwarzschild
coordinates with those of the references [20,34,43,44] in
Eddington–Finkelstein coordinates, and show that our results
are new. In order to compare, we first transform their results in
Eddington–Finkelstein coordinates into Schwarzschild coor-
dinates. From the Eddington–Finkelstein metric, we have

ds2 = −e(r)dv2 + 2 f (r)drdv + r2dθ2 + r2 sin2 θdφ2,

(120)

with the aether vector given by

ua = [α1(r), β1(r), 0, 0] , (121)

Table 3 Summary of the temperature and entropy

Case Temperature Entropy Notes

(A)
√

6
18πM

√
1−c13

9πM2

4

(B)
√

6
18Mπ

9πM2

4

(C)
√

6
18πM

√
1−c13

9πM2

4

(D)
F3

[
2+√

2c14F4

(
M+

√
M2−F3

)]

4πc14

(
M+

√
M2−F3

)3

2π
(
M+

√
M2−F3

)2

2−c14
(1)

2+√
2F4c14M

4πc14M
2πM2

2−c14
(2)

(E) 1
8π

∣∣∣ √
2c13−c14

(−1+c13)H3

∣∣∣ × 2πH3(−1+c13)
G(2c13−c14)

(3)√
2
√

2M� + H3 (c14 − 2) + 4H3 (−1 + c13)√
c14(6−c14−2

√
2c14)

8π
2πM2

c14G
(4)

(1) See also the Fig. 5. Notice that G for the Cases (A), (B) and (C) is equal to GN = 1, since c14 = 0. (2) Solution (D) assuming F3 = M2. (3)
� = √

(2c13 − c14) (−1 + c13) H3 (4) assuming H3 = M2 and c13 = 0

Table 4 Summary of the results of Eddington–Finkelstein coordinates transformed into Schwarzschild coordinates [20,34,43,44]

Cases I (c14 = 0) II (c123 = 0)

Metric functions A = 1 − 2M
r − E2

r4 A = 1 − 2M
r + ru (2M+ru )

r2

B = 1
A B = 1

A

Aether components a = −
√
E2

r2√
c13

a = − M+ru
r

b =
√

r4[c13(r4−2Mr3)+E2(1−c13)]√
c13(r4−2r3M−E2)

b = (r−M)r
r2+2Mr−2ru M−r2

u

Universal Horizon ruh = 3M
2 ruh = M

Temperature T =
√

6
18Mπ

√
1−c13

T =
√

2
√

2−c14
8Mπ

Entropy S = 9πM2

4 S = 2πM2

2−c14

Note that, using the notation of the references [43,44], we have the following relations: e(r) ≡ A; B(r) ≡ e(r)−1; r0 ≡ 2M ; r4
æ = 27

16

(
c13

1−c13

)
M4 ≡

E2
c13

; ru = M
√

1 − c14
2 , that help to make the comparison. In reference [20], the authors assume null charge. The universal horizons are reobtained

from the the transformed metrics and aether vectors

123
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when normalized we get

ua =
[
α1(r),

e(r)α1(r)2 − 1

2 f (r)α1(r)
, 0, 0

]
. (122)

We can make a coordinate transformation (dv = dt+dr/e(r)
and assuming the same radial coordinate) in order to trans-
form them into Schwarzschild coordinates (see more details
in [29]), thus we get

ds2 = −e(r)dt2 + e(r)−1dr2 + r2dθ2 + r2 sin2 θdφ2,

(123)

with the aether vector given by

ua =
[
α1(r) − β1(r)

e(r)
, β1(r), 0, 0

]
, (124)

when normalized we obtain

ua =
[

α1(r)e(r) − β1(r)

e(r)
√

α1(r)[α1(r)e(r) − 2β1(r)] ,
β1(r)√

α1(r)[α1(r)e(r) − 2β1(r)] , 0, 0

]
, (125)

and the timelike Killing vector is also given by Eq. (18).
In these previous papers, they have presented only two

analytical solutions for c14 = 0 (Case I) and c123 = 0 (Case
II). Using these coordinate transformations we can get their
results in our coordinates (Table 1). See Table 4 for the details.

Comparing the Tables 2 and 3 with the correspondent
cases in Table 4, we observe clearly from the metric func-
tions, the aether vectors and the universal horizons that they
are different from each other. However, the universal hori-
zons of the Cases (A), (B) and (C) coincide with the Case
I.

We notice that the thermodynamical quantities such as
temperature and entropy, of the Case I coincide with ours
ones of the Case A. In the rest of the cases the thermody-
namical quantities are different to each other.

Thus, we conclude that our results are completely differ-
ent from the previously published papers (albeit in a different
coordinate system), except our Case (C) coincides with Case
I. The reason that the universal horizons and their thermody-
namical properties are different is because the surface gravity
depends explicitly on the aether vector.

Acknowledgements We would like to thank Dr. Anzhong Wang
for valuable suggestions. The author (RC) acknowledges the finan-
cial support from FAPERJ (no.E-26/171.754/2000, E-26/171.533/2002
and E-26/170.951/2006). MFAdaS acknowledges the financial sup-
port from CNPq-Brazil, FINEP-Brazil (Ref. 2399/03), FAPERJ/UERJ
(307935/2018-3) and from CAPES (CAPES-PRINT 41/2017).

Data Availability Statement This manuscript has no associated data
or the data will not be deposited. [Authors’ comment: Since we did not
conduct any experiment, we do not have any data to deposit.]

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adaptation,
distribution and reproduction in any medium or format, as long as you
give appropriate credit to the original author(s) and the source, pro-
vide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indi-
cated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permit-
ted use, you will need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.
Funded by SCOAP3. SCOAP3 supports the goals of the International
Year of Basic Sciences for Sustainable Development.

14 Appendix A

The aether field equations, collecting the terms c2, c13 and
c14, are given by

Gaether
tt = − 1

8A(a2B + 1)B2r2

×[ c13 (−4a′2r2A2B2 + 3a2B ′2r2A2

+3a2A′2r2B2 + 3a4A′2r2B3

−2r2AB2a4B ′A′ − 8ar2AB2A′a′

−2a2r2ABA′B ′ − 8ar2A2Ba′B ′

−8r2AB3a′A′a3 − 8r2A2B2a′a3B ′

−8r2B3A2a′′a3 − 4a2r2AB2A′′

−4r2AB3A′′a4 − 4r2A2B2a4B ′′

−4a2r2A2BB ′′ − 8ar2A2B2a′′

−4a2r2A2B3a′2 + 3a4r2A2BB ′2

−16r A2B3a3a′ − 8a4r A2B2B ′

−8a2r A2BB ′ − 16ar A2B2a′ − 8a4AB3A′r
−8B2Ar A′a2 + 8B2A2a2 + 8A2B3a4)

−c14 (8a′2r2A2B2 − 2a2B ′2r2A2

−6a2A′2r2B2 − 3a4A′2r2B3

−2B ′A′r2A + 8Ar A′B + 4A′′Br2A

+2r2AB2a4B ′A′ + 8ar2AB2A′a′

+12ar2A2Ba′B ′ + 8r2AB3a′A′a3

+8r2A2B2a′a3B ′ + 8r2B3A2a′′a3

+8a2r2AB2A′′ + 4r2AB3A′′a4

+4r2A2B2a4B ′′ + 4a2r2A2BB ′′

+8ar2A2B2a′′ + 4a2r2A2B3a′2

−3a4r2A2BB ′2 + 16r A2B3a3a′

+8a4r A2B2B ′ + 8a2r A2BB ′

+16ar A2B2a′ + 8a4AB3A′r
+16B2Ar A′a2 − 3A′2Br2)

−c2 (−32ar A2B2a′ − 8a4r A2B2B ′

123
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−4a2r2A2B3a′2 − 8ar2AB2A′a′

−32r A2B3a3a′ − 2a2r2ABA′B ′

−8r2AB3a′A′a3 − 8r2A2B2a′a3B ′

−2r2AB2a4B ′A′ − 8a2r A2BB ′

−8B2Ar A′a2 − 8a4AB3A′r
+3a4r2A2BB ′2 + 3a2A′2r2B2

−4a′2r2A2B2 + 3a2B ′2r2A2

+3a4A′2r2B3 − 8ar2A2Ba′B ′

−8ar2A2B2a′′ − 4a2r2A2BB ′′

−4a2r2AB2A′′ − 4r2A2B2a4B ′′

−4r2AB3A′′a4

−8r2B3A2a′′a3)

−(−8a2r A2BB ′ + 8B2A2a2

−8B2A2 + 8BA2 − 8B3A2a2 − 8r B ′A2) ] = 0,

(126)

Gaether
tr = ε

4B2r2A(a2B + 1)
√
A(a2B + 1)

×[ c13 (4A′2B3r2a3 + 2r2B4a5A′2

+2B ′2r2A2a − 4B2r2A2a′′

+2A′2B2r2a − 8B2r A2a′ − 4r2B4A2a′′a4

−2AB4r2a5A′′

−2B3r2A2a5B ′′ − 4Ar2B3a3A′′

−2B2r2AaA′′ − 2Br2A2aB ′′

−4B2r2A2a3B ′′ − 8B3r2A2a2a′′

−8B2r A2a3B ′ − 16B3r A2a2a′

−4Br A2aB ′ − 8B4A2ra4a′

−4B3r A2a5B ′ − 4AB4a5A′r
+2B2r2A2a5B ′2 − 8r AB3a3A′

−4r AB2aA′ − 2B2r2AA′a′

−2Br2A2a′B ′ + 4Br2A2a3B ′2

−4B2r2A2a′B ′a2 − 2AB4r2A′a4a′

−2B3r2A2a4a′B ′ − 4A′B3r2Aa′a2

+8B2A2a + 16B3A2a3

+8B4A2a5)

+c14 (−4A′2B3r2a3 − 2r2B4a5A′2

−2A′2B2r2a + 4B3r2A2aa′2

+4r2B4A2a′′a4 + 2AB4r2a5A′′

+2B3r2A2a5B ′′ + 4Ar2B3a3A′′

+2B2r2AaA′′ + 2B2r2A2a3B ′′

+4B3r2A2a2a′′ + 4B2r A2a3B ′

+8B3r A2a2a′ + 8B4A2ra4a′

+4B3r A2a5B ′ + 4AB4a5A′r
−2B2r2A2a5B ′2 + 8r AB3a3A′

+4r AB2aA′ − Br2A2a3B ′2

+6B2r2A2a′B ′a2 + 2AB4r2A′a4a′

+2B3r2A2a4a′B ′

+2A′B3r2Aa′a2 − Br2AaA′B ′ − B2r2AA′a3B ′)
+c2 (4A′2B3r2a3 + 2r2B4a5A′2

+2B ′2r2A2a − 4B2r2A2a′′

+2A′2B2r2a − 8B2r A2a′

−4r2B4A2a′′a4 − 2AB4r2a5A′′

−2B3r2A2a5B ′′ − 4Ar2B3a3A′′

−2B2r2AaA′′ − 2Br2A2aB ′′

−4B2r2A2a3B ′′ − 8B3r2A2a2a′′

−16B3r A2a2a′ − 8B4A2ra4a′

+2B2r2A2a5B ′2 − 2B2r2AA′a′

−2Br2A2a′B ′ + 4Br2A2a3B ′2

−4B2r2A2a′B ′a2 − 2AB4r2A′a4a′

−2B3r2A2a4a′B ′ − 4A′B3r2Aa′a2

+8B2A2a + 16B3A2a3 + 8B4A2a5) = 0, (127)

Gaether
rt = 0, (128)

Gaether
rr = − 1

8A2Br2(a2B + 1)

×[ c13 (a4r2A2BB ′2 + 4a2r2A2B3a′2

+4ar2A2Ba′B ′ + 4r2AB3a′A′a3

+4r2A2B2a′a3B ′ + 2r2AB2a4B ′A′

+4ar2AB2A′a′ + 2a2r2ABA′B ′

+8B2A2a2 + 8A2B3a4 + 4a′2r2A2B2

+a2B ′2r2A2 + a2A′2r2B2

+a4A′2r2B3)

−c14 (−4a2r2A2B3a′2 − a4r2A2BB ′2

−2a2r2ABA′B ′ − 4r2AB3a′A′a3

−2r2AB2a4B ′A′ − 4r2A2B2a′a3B ′

−4ar2AB2A′a′ − A′2Br2

−a4A′2r2B3 − 2a2A′2r2B2)

−c2 (16ar A2B2a′ + 8a2r A2BB ′

+8B2Ar A′a2 + 8a4AB3A′r
+a4r2A2BB ′2 + 16r A2B3a3a′

+8a4r A2B2B ′ + 4a2r2A2B3a′2

+4ar2AB2A′a′ + 4ar2A2Ba′B ′

+2a2r2ABA′B ′ + 4r2AB3a′A′a3

+4r2A2B2a′a3B ′ + 2r2AB2a4B ′A′

+16B2A2a2 + 16A2B3a4

+a2A′2r2B2 + 4a′2r2A2B2

+a2B ′2r2A2 + a4A′2r2B3)

−(8B2A2 − 8BA2 + 8A2B3a2 − 8Ar A′B
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−8B2Ar A′a2 − 8B2A2a2) ] = 0, (129)

Gaether
θθ = − r

8B2Ar2(a2B + 1)

×[ c13 (−A2r Ba4B ′2 − 4A2r B3a2a′2

−4ar A2Ba′B ′ − 4Ar B3a3a′A′

−4A2r B2a3a′B ′ − 2B ′A′r Aa2B

−2Ar B2a4B ′A′ − 4Ar B2aa′A′

+4A′B2Aa2 + 4B3AA′a4 − r B3A′2a4

−A′2B2ra2 + 16aA2B2a′

+4B ′A2a2B + 16A2B3a3a′ + 4A2B2a4B ′

−4a′2r A2B2 − a2B ′2r A2)

−c14 (A′2Br + 4A2r B3a2a′2

+A2r Ba4B ′2 + 4Ar B3a3a′A′

+4Ar B2aa′A′ + 4A2r B2a3a′B ′

+2Ar B2a4B ′A′ + 2B ′A′r Aa2B

+r B3A′2a4 + 2A′2B2ra2)

−c2 (8ar A2B2a′′ + 4a2r A2BB ′′

+4A′′B2r Aa2 + 4A2r B2a4B ′′

+4Ar B3a4A′′ + 8A2r B3a′′a3

−3A2r Ba4B ′2 + 4A2r B3a2a′2

+8Ar B2aa′A′ + 8ar A2Ba′B ′

+2B ′A′r Aa2B + 8Ar B3a3a′A′

+8A2r B2a3a′B ′ + 2Ar B2a4B ′A′

+32aA2B2a′ + 8B ′A2a2B

+8A′B2Aa2 + 8B3AA′a4 + 32A2B3a3a′

+8A2B2a4B ′ − 3A′2B2ra2

+4a′2r A2B2 − 3a2B ′2r A2 − 3r B3A′2a4)

−(4B ′A2a2B − 4A′B2Aa2

+2A′2B2ra2 − 4A′′Br A + 2B ′A′r A
+4B ′A2 + 2B ′A′r Aa2B − 4A′BA

−4A′′B2r Aa2 + 2A′2Br) ] = 0, (130)

Gaether
φφ = Gaether

θθ sin2 θ, (131)

where Gaether
μν = T aether

μν and the symbol prime denotes the
differentiation with respect to r . We can notice here that when
c13 = 0, c14 = 0 and c2 = 0 we obtain the same field
equations of the GR.

15 Appendix B

The aether field equations, collecting the terms c123, c14 and
c2, are given by

Gaether
tt = 1

8A(a2B + 1)B2r2

×[ c14 (−8a3r2AB3A′a′

−8a3r2A2B2a′B ′ − 12ar2A2Ba′B ′

−2a4r2AB2A′B ′ − 8ar2AB2A′a′

−8a2r A2BB ′ − 4a2r2A2B3a′2

−4A2r2Ba2B ′′ − 8a2r2AB2A′′

−8B2r2A2aa′′ − 4a4r2A2B2B ′′

−4a4r2AB3A′′ − 8a3r2A2B3a′′

+3a4r2A2BB ′2 − 8a4r A2B2B ′

−8a4AB3A′r − 16r A2B3a3a′

−16ar A2B2a′ − 16B2Ar A′a2

+2B ′A′r2A − 8Ar A′B + 3r2B3a4A′2

+6a2A′2r2B2 − 8a′2r2A2B2

+2a2B ′2r2A2 − 4A′′Br2A + 3A′2Br2)

+c2 (16ar A2B2a′ + 16r A2B3a3a′

+8A2B3a4 + 8B2A2a2)

+c123 (8a3r2AB3A′a′ + 8a3r2A2B2a′B ′

−8B2A2a2 + 8ar2A2Ba′B ′

+2a4r2AB2A′B ′ + 8ar2AB2A′a′

+2a2r2ABA′B ′ + 8a2r A2BB ′

+4a2r2A2B3a′2 + 4A2r2Ba2B ′′

+4a2r2AB2A′′ + 8B2r2A2aa′′

+4a4r2A2B2B ′′ + 4a4r2AB3A′′

+8a3r2A2B3a′′ − 3a4r2A2BB ′2

+8a4r A2B2B ′ + 8a4AB3A′r
+16r A2B3a3a′ + 16ar A2B2a′

+8B2Ar A′a2 − 3r2B3a4A′2

−3a2A′2r2B2 + 4a′2r2A2B2

−3a2B ′2r2A2 − 8A2B3a4)

+(8a2r A2BB ′ − 8B2A2a2 + 8A2B3a2

−8BA2 + 8B2A2 + 8r B ′A2) ] = 0 (132)

Gaether
tr = ε

4B2r2A(a2B + 1)
√
A(a2B + 1)

×[ c14 (2B2r2A2a3B ′′ + 4B3r2A2a2a′′

+2B4r2Aa5A′′ + 2B3r2A2a5B ′′

+4B4r2A2a′′a4 + 4Ar2B3a3A′′

+2B2r2AaA′′ + 4B3A2ra5B ′

+4B3r2A2aa′2 + 4B2r A2a3B ′

−Br2A2a3B ′2 + 8B3A2ra2a′

+8B4A2ra4a′ − 2B2r2A2a5B ′2

+8r AB3a3A′ + 4r AB2aA′

+4a5AB4r A′ + 6B2r2A2a′B ′a2

+2B4r2AA′a4a′ + 2B3r2A2a4a′B ′

+2A′B3r2Aa′a2 − Br2AaA′B ′
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−B2r2AA′a3B ′ − 4A′2B3r2a3

−2A′2B2r2a − 2B4r2a5A′2)
+c2 (4B3A2ra5B ′ + 4Br A2aB ′

+8B2r A2a3B ′ + 8r AB3a3A′

+4r AB2aA′ + 4a5AB4r A′)
+c123 (−4B2r2A2a3B ′′

−8B3r2A2a2a′′ − 2B4r2Aa5A′′ − 2B3r2A2a5B ′′

−4B4r2A2a′′a4 − 4Ar2B3a3A′′

−2B2r2AaA′′ − 4B3A2ra5B ′

−8B2r A2a3B ′ + 4Br2A2a3B ′2

−16B3A2ra2a′ − 8B4A2ra4a′

+2B2r2A2a5B ′2 − 8r AB3a3A′

−4r AB2aA′ − 4a5AB4r A′ − 4Br A2aB ′

−4B2r2A2a′B ′a2 − 2B4r2AA′a4a′

−2B3r2A2a4a′B ′

−4A′B3r2Aa′a2 − 8B2r A2a′

+2B ′2r2A2a − 4B2r2A2a′′

+4A′2B3r2a3 + 2A′2B2r2a

+2B4r2a5A′2 + 8B2A2a + 16B3A2a3

+8B4A2a5 − 2B2r2AA′a′

−2Br2A2a′B ′ − 2Br2A2aB ′′) ] = 0, (133)

Gaether
rt = 0, (134)

Gaether
rr = − r

8A2Br2(a2B + 1)

×[ c14 (−4a2r2A2B3a′2

−a4r2A2BB ′2 − 2a4r2AB2A′B ′

−4a3r2AB3A′a′ − 4a3r2A2B2a′B ′

−4ar2AB2A′a′ − 2a2r2ABA′B ′

−A′2Br2 − r2B3a4A′2 − 2a2A′2r2B2)

−c2 (16ar A2B2a′ + 8a2r A2BB ′

+8B2Ar A′a2 + 8a4AB3A′r
+16r A2B3a3a′ + 8a4r A2B2B ′

+8B2A2a2 + 8A2B3a4)

−c123 (4a2r2A2B3a′2

+a4r2A2BB ′2 + 4ar2AB2A′a′ + 2a2r2ABA′B ′

+4ar2A2Ba′B ′ + 4a3r2AB3A′a′

+4a3r2A2B2a′B ′ + 2a4r2AB2A′B ′

+8B2A2a2 + 8A2B3a4 + 4a′2r2A2B2

+a2B ′2r2A2 + a2A′2r2B2

+r2B3a4A′2)
−(−8Ar A′B − 8B2A2a2 − 8BA2 + 8B2A2

−8B2Ar A′a2 + 8A2B3a2) ] = 0, (135)

Gaether
θθ = − r

8B2A2(a2B + 1)

×[ c14 (A′2Br + 4r A2B2a′a3B ′

+2Ar B2a4B ′A′ + 2B ′A′r Aa2B

+4Ar B3a3a′A′ + 4Ar B2aa′A′

+4r A2B3a2a′2 + r A2Ba4B ′2

+r B3A′2a4 + 2A′2B2ra2)

−c2 (12Ar B2aa′A′ + 12ar A2Ba′B ′

+4B ′A′r Aa2B + 12Ar B3a3a′A′

+12r A2B2a′a3B ′ + 4Ar B2a4B ′A′

+8ar A2B2a′′ + 4Ar B3a4A′′

+4r A2B2a4B ′′ + 8r A2B3a′′a3

−2r A2Ba4B ′2 + 8r A2B3a2a′2

+4a2r A2BB ′′ + 4A′′B2r Aa2 + 16aA2B2a′

−2A′2B2ra2 + 8a′2r A2B2

−2a2B ′2r A2 − 2r B3A′2a4 + 4B ′A2a2B

+4A′B2Aa2 + 4B3AA′a4

+16A2B3a3a′ + 4A2B2a4B ′)
−c123 (−2B ′A′r Aa2B − 2Ar B2a4B ′A′

−4Ar B2aa′A′ − 4ar A2Ba′B ′

−4Ar B3a3a′A′ − 4r A2B2a′a3B ′

−r A2Ba4B ′2 − 4r A2B3a2a′2

+4A′B2Aa2 + 4B3AA′a4 − r B3A′2a4

−A′2B2ra2 + 16A2B3a3a′

+4A2B2a4B ′ + 16aA2B2a′ + 4B ′A2a2B

−4a′2r A2B2 − a2B ′2r A2)

−(4B ′A2a2B − 4A′B2Aa2

+2A′2B2ra2 − 4A′′Br A + 2B ′A′r A
+2A′2Br − 4A′BA + 2B ′A′r Aa2B

+4B ′A2 − 4A′′B2r Aa2) ] = 0, (136)

Gaether
φφ = Gaether

θθ sin2 θ. (137)
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