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Abstract The leading one-loop corrections to the gravita-
tional form factors of the delta resonance are calculated in the
framework of chiral effective field theory. Various contribu-
tions to the energy–momentum tensor and the renormaliza-
tion of the low-energy constants are worked out. Using the
small scale expansion, expressions for static quantities are
obtained and the real and imaginary parts of the gravitational
form factors are calculated numerically.

1 Introduction

The linear response of the effective action to the change
of the space-time metric specifies mechanical properties of
particles with various spins. Static characteristics, like the
mass, spin and the D-term correspond to the hadron grav-
itational form factors (GFFs) at zero momentum transfer
[1,2]. Determining the third mechanical characteristics (the
D-term) of a particle is a more difficult problem than the
mass and spin, which are well-studied and well-measured
quantities. The D-term of the nucleon has been related to the
distribution of the internal forces in Ref. [3] (for a review
see e.g. Ref. [4]). Poincaré covariance of the hadron states
guarantees that the leading two GFFs at zero momentum-
transfer correspond to mass and spin [5]. Adding total deriva-
tives to the energy–momentum tensor (EMT) leaves the
Poincaré group generators unaffected, i.e. it does not impact
the particle’s mass or spin. Therefore, these static charac-
teristics are well constrained. However, Poincaré symme-
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try does not protect the D-term. By adding total derivatives
to the EMT, the D-term can be significantly changed. For
example, it has been shown in Ref. [6] that even infinites-
imally small interactions (minimally coupled to gravity)
can drastically impact the D-term: while the free Klein–
Gordon theory predicts the D-term of a spin-0 particle to
be D = −1, it becomes D = −1/3 after inserting an
“improvement term” in the EMT. The improvement term is
obtained by requiring that the action respects the confor-
mal symmetry of the classical theory in the massless limit,
which is equivalent to adding a term of non-minimal coupling
− 1

12 R�2 to the action (where R is the Riemann scalar, and
� is the free Klein–Gordon field). On a quantum level, the
conformal symmetry is broken, but the improvement term
is required to remove UV divergences up to three loops
in dimensional regularization in the Klein–Gordon theory
[7].

In recent years, GFFs have attracted increasing attention
for characterizing properties of hadrons with different spins
due to their connection to generalized parton distributions
(GPDs). Parameterizations of the EMT matrix elements in
terms of GFFs for hadrons have been considered for spin-
0 [2], spin-1 [8–10], and for arbitrary-spin particles [11].
The mechanical properties, energy and spin densities as well
as spatial distributions of pressure and shear forces have been
introduced for spin-0 and spin-1/2 in Ref. [3], and later also
for systems with higher spins [10,12,13].

The nucleon gravitational form factors can be measured
experimentally in exclusive processes like deeply virtual
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Compton scattering (DVCS) [14,15] and hard exclusive
meson production [16]. The connection to GFFs can be seen
in the QCD description of these processes, where the symmet-
ric energy–momentum tensor (EMT) appears naturally in the
operator product expansion, see derivation, e.g., in Ref. [14].
The first results of measurements of the D-term in hard QCD
processes became available in Refs. [17,18] for the nucleon,
and in Ref. [19] for the pion. Profound studies of subtleties in
the extraction of the D-term from hard exclusive processes
can be found in Ref. [20]. The GFFs have also been studied
in lattice QCD, see e.g. Refs. [21–25] and references therein.

In contrast to the electromagnetic properties of the delta
resonances, which have been extensively investigated both
experimentally and theoretically [26,27], it is very difficult
to measure experimentally the GFFs of the � or to extract
them from the corresponding GPDs because of the short-
lived nature of the � resonance. Several calculations have
been done to estimate these GFFs. For example, the SU(2)
Skyrme model [13], the quark–diquark model [27] and a lat-
tice QCD approach (for the gluonic part) [28] have been
employed to calculate the GFFs of the spin-3/2 delta res-
onances and the corresponding pressure and shear forces.
Except for the constraints that the mass and spin should
be obtained from the zero momentum-transfer limits of the
leading two GFFs, the other GFFs calculated in Refs. [13]
and [27] show notable differences and even different signs
for the D-term (D = −3.53 in Ref. [13] and D = 0.986
in Ref. [27]). Notice that the negative sign of the D-term is
expected to follow from the stability condition. More system-
atic studies are thus required to investigate the properties of
the GFFs of delta resonance, e.g., to what extent the expected
stability condition holds, taking into account that the deltas
are unstable.

For systematic studies of low-energy hadronic processes
with delta resonances induced by gravity one may rely on the
effective chiral Lagrangian for nucleons, pions and delta res-
onances in curved spacetime. Effective Lagrangian of pions
in curved spacetime has been derived in Ref. [29], and the
GFFs of the pion can be found in Ref. [30]. The effective chi-
ral Lagrangian of order two for nucleons and pions in curved
spacetime, along with the calculation of the leading one-loop
contributions to the nucleon GFFs, can be found in Ref. [31].
In this work we apply chiral effective field theory (EFT) to
calculate the one-particle matrix elements of EMT for delta
resonances within the EOMS scheme to be discussed below.

Our paper is organized as follows: In Sect. 2 we specify the
relevant terms of the effective Lagrangian for pions, nucleons
and delta resonances in curved spacetime and the correspond-
ing expression for the EMT. We calculate the gravitational
form factors of the delta resonance in Sect. 3. The results of
our work are summarized in Sect. 4.

2 Effective action in curved space time and the
energy–momentum tensor

The action corresponding to the leading-order contributions
to the effective Lagrangian of pions, nucleons and delta reso-
nances interacting with an external gravitational field can be
straightforwardly obtained from the corresponding expres-
sions in the flat spacetime. It has the following form:

S(2)
π =

∫
d4x

√−g

{
F2

4
gμν Tr(DμU (DνU )†)

+ F2

4
Tr(χU † +Uχ†)

}
, (1)

S(1)
πN =

∫
d4x

√−g

{
�̄ iγ μ

↔∇μ� − m�̄�

+gA
2

�̄γ μγ5uμ�

}
, (2)

S(1)
π� = −

∫
d4x

√−g

[
gμν �̄ i

μ iγ α
↔∇α� i

ν − m� gμν�̄ i
μ� i

ν

− gλσ

(
�̄ i

μiγ
μ

↔∇λ�
i
σ + �̄ i

λiγ
μ

↔∇σ � i
μ

)

+ i�̄ i
μγ μγ αγ ν

↔∇α� i
ν + m��̄ i

μγ μγ ν� i
ν

+ g1

2
gμν�̄ i

μuαγ αγ5�
i
ν + g2

2
�̄ i

μ

(
uμγ ν + uνγ μ

)
γ5�

i
ν + g3

2
�̄ i

μuαγ μγ αγ5γ
ν� i

ν

]
,

(3)

where the delta resonance is represented by the Rarita–
Schwinger field. Note that the delta fields �

μ
i contain isospin

projectors ξ
3
2
i j = δi j − 1

3τiτ j , i.e. they satisfy the condition

�
μ
i = ξ

3
2
i j�

μ
j . Here, μ and i are the Lorenz and isospin-

indices, gμν is the metric with the signature (+,−,−,−)

and γμ ≡ eaμγa , with eaμ denoting the vielbein gravitational
fields. It follows from the consistency conditions, imposed on
the Lagrangian with Rarita–Schwinger fields, that the follow-
ing relations for the low-energy constants g1, g2 and g3 must
be satisfied: g2 = g3 = −g1 [32].1 Further,m, gA and F refer
to nucleon mass, the axial vector coupling of the nucleon and
the pion decay constant in the chiral limit, respectively (also
called bare parameters later). The action corresponding to the
leading-order chiral Lagrangian containing pions, nucleons
and deltas interacting with an external gravitational field is

1 In this work we take the off-shell parameter A equal to −1, which
removes the dependence on the spacetime dimension in the action S(1)

π�

in Eq. (3) and simplifies the free propagator of the delta resonance. See
also the discussion in Ref. [33].
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S(1)
πN� = −

∫
d4x

√−g gπN� �̄μ,i
(
gμν − γ μγ ν

)
uν,i�

+ H.c., (4)

where uμ = τi uμ,i . The pion-field dependent matrix uμ will
be specified below. From the second-order chiral Lagrangian
containing pions and deltas interacting with an external grav-
itational field we need to consider the following term [34]:

S(2)
π�,a =

∫
d4x

√−g a1 �̄ i
μ�μα(z) 〈χ+〉 gαβ�βν(z′)� i

ν,

(5)

where z and z′ are two independent parameters. Further terms
of the second order Lagrangian contributing (at tree order) to
our calculations of the GFFs of delta resonance contain only
the Riemann curvature tensor, the Ricci tensor and the Ricci
scalar. The most general second-order Lagrangian of such
terms involves either the curvature scalar or the Riemann and
Ricci tensors and reduces to the following minimal form:

S(2)
π�,b =

∫
d4x

√−g

[
h1R gαβ�̄ i

α� i
β + h2R �̄ i

αγ αγ β� i
β

+ih3R

(
gαλ�̄ i

αγ β
→∇λ�

i
β − gβλ�̄ i

αγ α
←∇λ�

i
β

)

+h4R
μν �̄ i

μ� i
ν + 2ih5R

μν gαβ�̄ i
αγμ

↔∇ν�
i
β

+ih6R
μνgαβ

(
�̄ i

αγμ

→∇β� i
ν − �̄ i

νγμ

←∇β� i
α

)

+ih7R
μν

(
�̄ i

αγ α
→∇μ� i

ν − �̄ i
νγ

α
←∇μ� i

α

)

+h8R
μν

(
�̄ i

αγ αγμ� i
ν + �̄ i

νγμγ α� i
α

)

+ih9R
μν

(
�̄ i

κγ κγ αγμ

→∇ν�
i
α − �̄ i

αγμγ αγ κ
←∇ν�

i
κ

)

+ih10R
μναβ�̄ i

ασμν�
i
β

+i
[
h11 Rμναβ + h12 Rμανβ

] (
�̄ i

αγμ

→∇ν�
i
β

−�̄ i
βγμ

←∇ν�
i
α

)
+ h13R

μανβ�̄ i
αγμγν�

i
β

+i
[
h14 Rμναβ + h15 Rμανβ

] (
�̄ i

κγ κγμγν

→∇α� i
β

−�̄ i
βγνγμγ κ

←∇α� i
κ

)]
, (6)

where the hi are coupling constants.
The various building blocks of the effective Lagrangian

are defined as follows:

DμU = ∂μU − irμU + iUlμ,

↔∇μ = 1

2
(
→∇μ − ←∇μ),

�μν(z) = gμν + zγ μγ ν,

→∇μ� i
ν = ∇ i j

μ � j
ν =

[
δi j∂μ + δi j�μ − iδi jv(s)

μ

−iεi jkTr
(
τ k�μ

)
+ i

2
δi jωab

μ σab

]
� j

ν − �α
μν�

i
α,

�̄ i
ν

←∇μ = ∇ i j
μ � j

ν = �̄ j
ν

[
δi j∂μ − δi j�μ + iδi jv(s)

μ

+iεi jkTr
(
τ k�μ

)
− i

2
δi jωab

μ σab

]
− �̄ i

α�α
μν,

→∇μ� = ∂μ� + i

2
ωab

μ σab� +
(
�μ − iv(s)

μ

)
�,

�̄
←∇μ = ∂μ�̄ − i

2
�̄ σab ωab

μ − �̄
(
�μ − iv(s)

μ

)
,

uμ = i
[
u†∂μu − u∂μu

† − i(u†vμu − uvμu
†)

]
,

χ = 2B0(s + i p),

�μ = 1

2

[
u†∂μu + u∂μu

† − i(u†vμu + uvμu
†)

]
,

ωab
μ = −1

2
gνλeaλ

(
∂μe

b
ν − ebσ �σ

μν

)
,

�λ
αβ = 1

2
gλσ

(
∂αgβσ + ∂βgασ − ∂σ gαβ

)
,

Rρ
σμν = ∂μ�ρ

νσ − ∂ν�
ρ
μσ + �

ρ
μλ�

λ
νσ − �

ρ
νλ�

λ
μσ ,

Rμν = Rλ
μλν,

R = gμνRλ
μλν,

σμν = i

2

[
γμ, γν

]
,

χ+ = u†χu† + uχ†u, (7)

where the 2 ×2 unitary matrix U represents the pion field, s,
p, lμ = vμ − aμ, rμ = vμ + aμ and v

(s)
μ refer to the external

sources, χ = 2B0(s+ i p), and the parameter B0 is related to
the vacuum condensate in the chiral limit. The vielbein fields
satisfy the following relations:

eaμe
b
νηab = gμν, eμ

a e
ν
bη

ab = gμν,

eaμe
b
νg

μν = ηab, eμ
a e

ν
bgμν = ηab. (8)

Using the definition of the EMT for matter fields interact-
ing with the gravitational metric field,

Tμν(g, ψ) = 2√−g

δSm

δgμν
, (9)

we obtain in flat spacetime from the action of Eq. (1):

T (2)
π,μν = F2

4
Tr(DμU (DνU )†)

−ημν

2

{
F2

4
Tr(DαU (DαU )†) + F2

4
Tr(χU † +Uχ†)

}

+ (μ ↔ ν) , (10)

where ημν is the Minkowski metric tensor. For the fermion
fields interacting with the gravitational vielbein fields we use
the definition [35]

Tμν(g, ψ) = 1

2e

[
δS

δeaμ
eaν + δS

δeaν
eaμ

]
, (11)
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where e denotes the determinant of eaμ. The action of Eq. (2)
leads to the following expression for the EMT in flat space-
time:

T (1)
πN ,μν = i

2
�̄ γμ

↔
Dν� + gA

4
�̄ γμγ5uν�

−ημν

2

(
�̄ iγ α

↔
Dα� − m�̄� + gA

2
�̄γ αγ5uα�

)

+ (μ ↔ ν) . (12)

The actions of Eqs. (3)–(5) lead to the following expres-
sions for the EMT in flat spacetime:

T (1)
π�,μν = −�̄i

μ iγ α
↔
Dα�i

ν + �̄i
α iγ α

↔
Dμ�i

ν

+�̄i
μ iγ α

↔
Dν�i

α + m��̄i
μ�i

ν − i

2
�̄i

α γμ

↔
Dν�iα

+ i

2

(
�̄i

μ γν

↔
Dα�iα + �̄iα γν

↔
Dα�i

μ − �̄i
μ γνγ αγβ

↔
Dα�i,β

−�̄i
αγ αγνγ β

↔
Dμ�i

β − �̄i
αγ αγ βγν

↔
Dβ�i

μ

)

+ i

4
∂λ

[
�̄i,α

(
γμηλ[αηβ]μ + ηλμην[αγβ] + ημνηλ[βγα]

)
�i,β

]

−m�

2

(
�̄i

μ γνγ α�i
α + �̄i

α γ αγν�i
μ

)

− g1

4

[
2�̄i

μuαγ αγ5�i
ν + �̄i,αuμγνγ5�i

α

]

− g2

4

[
2�̄i

μuνγ αγ5�i
α + 2�̄i

αuνγ αγ5�i
μ

+ �̄i,αuαγνγ5�i
μ + �̄i

μuαγνγ5�iα
]

− g3

4

[
�̄i

μuαγνγ αγ5γ β�i
β + �̄i

βuαγ βγ αγ5γν�i
μ

+ �̄i
αuμγ αγνγ5γ β�i

β

]
+ ημν

2

[
�̄i

α iγ β
↔
Dβ�iα

−m� �̄i
α�iα − �̄i

α iγ
α

↔
Dβ�iβ − �̄iα iγ β

↔
Dα�i

β

+i�̄i
ργ ργ αγ λ

↔
Dα�i

λ + m��̄i
αγ αγ β�i

β

+ g1

2
�̄i

βuαγ αγ5�iβ + g2

2
�̄iα (

uαγβ + uβγα

)
γ5�iβ

+ g3

2
�̄i

αuβγ αγ βγ5γ λ�i
λ

]
+ (μ ↔ ν) , (13)

T (1)
πN�,μν

= 1

2
gπN� ημν

[
�̄i

αu
α
i � + �̄uα

i �i
α − �̄i

αγ αγ βuiβ�

−�̄γ βγ αuiβ�i
α

]
− gπN�

(
�̄i

μu
i
ν� + �̄uiν�i

μ

)

+ 1

2
gπN�

[
�̄i

μγνγ αuiα� + �̄i
αγ αγμu

i
ν�

+�̄γ αγνu
i
α�i

μ + �̄γμγ αuiν�i
α

]
+ (μ ↔ ν) , (14)

T (2)
π�,a,μν = a1 �̄i

μ 〈χ+〉 �i
ν + z̃

2
a1

(
�̄i

μγνγ α 〈χ+〉 �i
α

+�̄i
αγ αγμ 〈χ+〉 �i

ν

)
− a1

2
ημν

[
�̄i

α 〈χ+〉 �iα

+ z̃ �̄i
αγ αγ β 〈χ+〉�i

β

]
+ (μ ↔ ν) , (15)

where A[αBβ] = AαBβ − AβBα, A(αBβ) = A%alpha Bβ +
AβBα , z̃ = z + z′ + nzz′ and n is spacetime dimension.

The action of Eq. (6) leads to the following expression for
the EMT in flat spacetime (we have dropped terms involving

h2, h3, h7, h8, h9, h14 and h15, because they do not give any
contributions in our analysis of the delta GFFs):

T (2)
π�,b,μν = h1

(
ημν∂λ∂

λ − ∂μ∂ν

)
�̄ i

α� iα

+h4

2

[
∂λ∂λ

(
�̄ i

ν�
i
μ

)
+ ημν∂

α∂β
(
�̄ i

β� i
α

)

−∂λ∂μ

(
�̄ i

(λ�
i
ν)

) ]
+ ih5

[
∂λ∂λ

(
�̄ i

αγμ

↔
Dν�

iα
)

+ημν∂
κ∂β

(
�̄ i

αγβ

↔
Dκ� iα

)
− ∂λ∂μ

(
�̄ i

αγ(λ

↔
Dν)�

iα
)]

+ ih6

2

[
∂λ∂λ

(
�̄ iαγμ

→
Dα� i

ν − �̄νγμ

←
Dα� iα

)

+ημν∂
κ∂β

(
�̄ iαγβ

→
Dα� i

κ − �̄ i
κγβ

←
Dα� iα

)

−∂λ∂μ

(
�̄ iαγ(λ

→
Dα� i

ν) − �̄ i
(νγλ)

←
Dα� iα

)]

+ih10 ∂κ∂β
(
�̄ i

κσβν�
i
μ − �̄ i

μσβν�
i
κ

)

+ ih11

2
∂κ∂β

[
�̄ i

κγβ

→
Dμ� i

ν − �̄ i
κγν

→
Dβ� i

μ

+�̄ i
μγν

→
Dβ� i

κ − �̄ i
νγβ

→
Dμ� i

κ − �̄ i
νγβ

←
Dμ� i

κ

+�̄ i
μγν

←
Dβ� i

κ

−�̄ i
κγν

←
Dβ� i

μ + �̄ i
κγβ

←
Dμ� i

ν

]
+ ih12

2
∂κ∂β

×
[
�̄ i

μγβ

→
Dκ� i

ν − �̄ i
βγν

→
Dκ� i

μ + �̄ i
βγν

→
Dμ� i

κ

−�̄ i
μγβ

→
Dν�

i
κ − �̄ i

νγβ

←
Dκ� i

μ + �̄ i
μγν

←
Dκ� i

β − �̄ i
κγν

←
Dμ� i

β

+�̄ i
κγβ

←
Dν�

i
μ

]
+ h13

2
∂κ∂β

[
ημν�̄

i
β� i

κ − �̄ i
βγνγκ� i

μ

−�̄ i
μγβγν�

i
κ + �̄ i

μγβγκ� i
ν

]
+ (μ ↔ ν) . (16)

The covariant derivatives D acting on spin-1/2 and spin-3/2
fields in T (πN )

μν , T (π�)
μν and T (�)

μν coincide with ∇ in Eq. (7)

with gμν = ημν , i.e. �
β
μν = ωab

μ = 0.
The above expressions of the EMT can be used for the

calculations of various matrix elements between states con-
taining one nucleon and/or delta resonance and an arbitrary
number of pions at low energies. Below we consider the cor-
rections to the GFFs of the delta resonance at leading one-
loop order.

3 One-loop corrections to the gravitational form factors
of the delta resonances

In this section we calculate leading one-loop contributions to
the matrix elements of the EMT for the one-particle states of
the delta resonance We extract these matrix elements from
the residues of Green’s functions at complex poles of the
initial and final four-momenta squared, corresponding to the
unstable delta-states [36].
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Fig. 1 One-loop diagrams
contributing to the one-particle
matrix elements of the EMT for
the delta resonances. Dashed,
solid and double lines
correspond to pions, nucleons
and delta resonances,
respectively. The wiggly line
indicates the EMT insertion

(a) (b) (c) d)

(e) (f) (g) h)

The one-loop diagrams contributing to our calculations are
shown in Fig. 1. We apply the so called ε-counting scheme
(also called the small scale expansion),2 i.e. the pion lines
count as of chiral order minus two, the nucleon and delta
lines have order minus one, interaction vertices originating
from the effective Lagrangian of order N count also as of
chiral order N and the vertices generated by the EMT have
the orders corresponding to the number of quark mass factors
and derivatives acting on the pion fields. Derivatives acting on
the nucleon and delta fields count as of chiral order zero. The
momentum transfer between the initial and final states of the
delta resonance also counts as of chiral order one, therefore
in those terms of EMT which contain full derivatives, these
derivatives count as of chiral order one. Integration over loop
momenta is counted as of chiral order four. The delta-nucleon
mass difference also counts as of order one within the ε-
counting scheme.

Since we are interested in the delta matrix elements of
order three in the chiral expansion, we need vertices with two
delta lines, generated by the EMT, up to third order. From
the effective Lagrangian specified above, we have obtained
these vertices from the expressions of the EMT for the zeroth,
first and second chiral orders, while there are no tree-order
contributions at third order. Simple power counting argu-
ments show that for all one-loop diagrams except (f) we
only need vertices up to order one. Naively it seems that for
diagrams of topology (a) and (f) we need also pion-baryon-
baryon vertices of chiral order two, because the gravitational-
source-baryon-baryon vertices originating from the EMT
starts with chiral order zero. However, the leading contribu-
tion of the diagrams with the mentioned zeroth order vertices
is exactly canceled by the wave function renormalization con-
stant of the delta resonance multiplying the tree-order dia-
grams. Therefore, the formally zeroth order vertices in effect
start contributing as vertices of order one. As a result, the
diagrams with the pion-baryon-baryon vertex of order two
only start contributing at chiral order four. For this reason we
do not consider such diagrams in this work. It is understood

2 For an alternative power counting in an EFT with delta resonances,
see Ref. [37].

that the above described power counting for loop diagrams
is realized as the result of our manifestly Lorentz-invariant
calculations only after performing an appropriate renormal-
ization. To get rid off the divergent parts and power counting
violating pieces from the expressions of one-loop diagrams
we apply the EOMS scheme of Refs. [38,39].

3.1 Gravitational form factors of the delta resonance

The matrix element of the total EMT for the delta resonances
can be parameterized in terms of seven form factors [11,13]3:

〈p f , s f |Tμν |pi , si 〉

= −ūα′(p f , s f )

[
PμPν

m

(
ηα′αF1,0(t) − �α′

�α

2m2
�

F1,1(t)

)

+�μ�ν − ημν�2

4m

(
ηα′αF2,0(t) − �α′

�α

2m2
�

F2,1(t)

)

+ i

2m�
P{μσν}ρ�ρ

(
ηα′αF4,0(t) − �α′

�α

2m2
�

F4,1(t)

)

− 1

m�

(
ηα{μ�ν}�α′ + ηα′{μ�ν}�α − 2ημν�α�α′

−�2ηα{μην}α′)
F5,0(t)

]
uα(pi , si ), (17)

where m� is the physical mass of the delta resonances (we
work in isospin symmetric limit), (pi , si ) and (p f , s f ) are
the momenta and polarizations of the incoming and outgoing
particles, respectively, and P = (pi + p f )/2, � = p f − pi ,
t = �2.

The tree-order diagrams contributing to the matrix ele-
ment of the EMT up to third chiral order yield the following
contributions to the formfactors:

3 Straightforward calculation of the matrix elements in Eq. (17) within
chiral EFT leads to nine invariant structures. It can, however, be
shown that only seven structures are independent [11]. The two redun-
dant structures can be eliminated using on-shell identities as given in
Refs. [11,27].
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F1,0,tree(t) = 1 − t

m2
�

+ t (2h5m� + 2h10 − h13)

m�

− (−2h6 + 2h11 + h12) t2

2m2
�

,

F1,1,tree(t) = −4 − 4m� (h12m� − 2h10 + h13)

+ (4h6 − 2 (2h11 + h12)) t,

F2,0,tree(t) = −2 − 4 (2h1 − 2h10 + h13)m�

+ (2h6 − 2h11 − h12) t,

F2,1,tree(t) = 0,

F4,0,tree(t) = 3

2
− t

2m2
�

+ t

(
h10

m�

− h13

2m�

+ h5 − h6

+h11 + h12

2

)
− (−2h6 + 2h11 + h12) t2

4m2
�

,

F4,1,tree(t) = −2 − 2m� (h12m� − 2h10 + h13)

+ (2h6 − 2h11 − h12) t,

F5,0,tree(t) = −1

2
+ 1

2
(h4 + 4h10 − h13)m�

+1

4
(2h6 − 2h11 − h12) t, (18)

where the hi -terms are generated by the EMT of Eq. (16).

In the calculations of loop diagrams shown in Fig. 1, we
apply dimensional regularization (see, e.g., Ref. [40]) and use
the program FeynCalc [41,42]. The one-loop expressions of
the form factors are too lengthy to be shown explicitly. They
are available from the authors upon request.

To get rid of the power-counting violating contributions
we split the bare low-energy parameters as the renormalized
ones and counterterms. We specify the finite parts of coun-
terterms by applying the EOMS scheme with the remaining
renormalization scale chosen as μ = mN , where mN is the
mass of the nucleon. The one-loop finite parts of counter
terms δhi are given by:

δh1 = δh12mN

2
−

(
1575 g2

πN� + 172 g2
1

)
mN

207360π2F2 ,

δh4 = −2 δh10 − δh12mN − mN (45 g2
πN� + 2336 g2

1)

51840π2F2 ,

δh5 = −δh12

2
− 11(135 g2

πN� + 124 g2
1)

207360π2F2 ,

δh13 = 2 δh10 − δh12mN +
(
9 g2

πN� + 490 g2
1

)
mN

10368π2F2 . (19)

After renormalization, we obtain the following expres-
sions for the GFFs at t = 0, expanded in powers of the pion
mass and the delta-nucleon mass difference in the chiral limit
δ:

F1,0,loop(0) = 0,

F1,1,loop(0) = −5g2
1mN (3πM − 49δ)

648π2F2

+ g2
πN�mN

144π2F2
(
M2 − δ2

)
(

−53δ3 + 24δ
(
M2 − δ2

)
ln

M

mN
+ 24iπδ2

√
δ2 − M2 − 12iπM2

√
δ2 − M2

+12
(
M2 − 2δ2

) √
δ2 − M2 ln

δ + √
δ2 − M2

M
+ 53δM2

)
+ O(ε2),

F2,0,loop(0) = −g2
1mN (25πM − 1068δ)

2160π2F2

+
g2
πN�mN

(
29δ + 48δ ln M

mN
− 48iπ

√
δ2 − M2 + 48

√
δ2 − M2 ln δ+√

δ2−M2

M

)

288π2F2 + O(ε2),

F2,1,loop(0) = − g2
1m

3
N

54πF2M
+

g2
πN�Mm3

N

√
δ2

M2 − 1

(
ln

(√
δ2

M2 − 1 + δ
M

)
− iπ

)

15π2F2
(
M2 − δ2

) + O(ε0),

F4,0,loop(0) = 0,

F4,1,loop(0) = 5g2
πN�m

2
N

576π2F2 + 235g2
1m

2
N

2592π2F2 + O(ε),

F5,0,loop(0) = −g2
1mN (150πM − 3323δ)

25920π2F2

+
g2
πN�mN

(
5δ + 2δ ln M

mN
− 2iπ

√
δ2 − M2 + 2

√
δ2 − M2 ln δ+√

δ2−M2

M

)

96π2F2 + O(ε2). (20)
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Next, we define the slopes of the GFFs by writing the form
factors as:

Fi, j (t) = Fi, j (0) + sFi, j t + O(t2). (21)

Calculating loop contributions to these quantities and expand-
ing in powers of the pion mass and δ we obtain

sF1,0 = g2
1(8δ − 255πM)

10368π2F2mN

+ g2
πN�

576π2F2mN
(
M2 − δ2

)
(

25δ(δ2 − M2) + 24δ
(
δ2 − M2

)
ln

M

mN
− 12iπ(2δ2 − M2)

√
δ2 − M2

−12
(
M2 − 2δ2

)√
δ2 − M2 ln

δ + √
δ2 − M2

M

)
+ O(ε2),

sF1,1 = g2
1mN

432πF2M
+

g2
πN�mN

(
δ3 + M2

(
−δ + iπ

√
δ2 − M2

)
− M2

√
δ2 − M2 ln δ+√

δ2−M2

M

)

120π2F2
(
M2 − δ2

)2 + O(ε0),

sF2,0 = − g2
1mN

108πF2M
+

g2
πN�mN

(
ln δ+√

δ2−M2

M − iπ
)

60π2F2
√

δ2 − M2
+ O(ε0),

sF2,1 =
g2
πN�m

3
N

(
−δ3 + M2

(
δ − iπ

√
δ2 − M2

)
+ M2

√
δ2 − M2 ln δ+√

δ2−M2

M

)

140π2F2M2
(
M2 − δ2

)2 − g2
1m

3
N

504πF2M3 + O(ε−2),

sF4,0 =
g2
πN�

(
163δ2 − 96

(
M2 − δ2

)
ln M

mN
− 96iπδ

√
δ2 − M2 + 96δ

√
δ2 − M2 ln δ+√

δ2−M2

M − 163M2
)

4608π2F2
(
M2 − δ2

)

+
g2

1

(
877 − 150 ln M

mN

)

25920π2F2 + O(ε),

sF4,1 = 0 + O(ε−1),

sF5,0 = g2
1mN

3456πF2M
+

g2
πN�mN

(
ln δ+√

δ2−M2

M − iπ
)

960π2F2
√

δ2 − M2
+ O(ε0). (22)

Note that the tree-order contributions to slopes are included
in Eq. (18). Notice further that these expressions as well as
the expressions in Eq. (20) contain (unphysical) singularities
in the M → δ limit, which is due to effect first uncovered, to
the best of our knowledge, in Ref. [43] for the electromag-
netic interaction. In particular, in this limit, the one-photon
exchange approximation fails completely and one needs to
resum the series of multiphoton exchange diagrams. The
same is also true for the gravitational interaction manifested
in the above mentioned singularities.

The full one-loop contributions to GFFs consist of real and
imaginary parts also for spacelike transfer momenta. This is
because of the deltas being unstable particles. Due to the lack
of empirical data, from which we could fix the free param-
eters contributing at tree order in Fig. 2, we plot the contri-
butions of renormalized (subtracted) one-loop diagrams as
functions of Q2 = −t .

4 Summary

In the framework of chiral EFT for pions, nucleons and delta
resonances interacting with an external gravitational field,
we calculated the leading one-loop contributions to the one-
particle matrix elements of the EMT for delta resonances and
extracted the corresponding contributions to the gravitational
form factors. To get rid of the UV divergences and power

counting violating pieces from the loop diagrams we applied
the EOMS renormalization scheme of Refs. [38,39]. Since
the delta resonances are unstable particles, the loop contri-
butions to the gravitational form factors are complex valued
quantities also for space-like momentum transfers. This is
manifested in contributions of one-loop diagrams to the real
and imaginary parts of the GFFs, see Fig. 2. Unfortunately,
no empirical data are available, from which we could deduce
the low-energy constants contributing at tree order. We also
give analytic expressions of GFFs at zero transfers and slope
parameters in the form of expansions in small parameters.
Notice that the value as well as the sign of the D-term of
delta resonances cannot be predicted/calculated within chi-
ral EFT.
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Fig. 2 Contributions of renormalized (subtracted) one-loop diagrams to the GFFs of the delta resonances. Solid and dashed lines correspond to
real and imaginary parts, respectively
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