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Abstract We determine the Hausdorff dimension of a par-
ticle path, DH, in the recently proposed ‘smeared space’
model of quantum geometry. The model introduces addi-
tional degrees of freedom to describe the quantum state of
the background and gives rise to both the generalised uncer-
tainty principle (GUP) and extended uncertainty principle
(EUP) without introducing modified commutation relations.
We compare our results to previous studies of the Haus-
dorff dimension in GUP models based on modified commu-
tators and show that the minimum length enters the relevant
formulae in a different way. We then determine the Haus-
dorff dimension of the particle path in smeared momentum
space, D̃H, and show that the minimum momentum is dual
to the minimum length. For sufficiently coarse grained paths,
DH = D̃H = 2, as in canonical quantum mechanics. How-
ever, as the resolutions approach the minimum scales, the
dimensions of the paths in each representation differ, in con-
trast to their counterparts in the canonical theory. The GUP-
induced corrections increase DH whereas the EUP-induced
corrections decrease D̃H, relative to their canonical values,
and the extremal case corresponds to DH = 3, D̃H = 1.
These results show that the GUP and the EUP affect the frac-
tal properties of the particle path in fundamentally different,
yet complimentary, ways.
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1 Introduction

In canonical quantum mechanics (QM) the observed path of a
particle is everywhere continuous but nowhere differentiable,
as first noted by Feynman and Hibbs [1]. Due to Heisen-
berg’s uncertainty principle (HUP) the distance travelled by
the particle in a fixed time �t depends on the resolution of the
detecting apparatus, �x , so that the total path length l(�x)
is resolution-dependent and diverges as �x → 0. These
properties are shared by fractal curves [2] and the systematic
study of the fractal properties of particle paths in canonical
QM was inaugurated by Abbott and Wise [3]. They showed
that a modified definition of ‘length’ known as the Hausdorff
length, originally developed to analyse classical fractals [2],
can be applied to QM paths.

The Hausdorff length, LH, is defined as

LH = l . (�x)DH−1 , (1)
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where l = l(�x) is the resolution-dependent path length and
the Hausdorff dimension DH is chosen so that LH is inde-
pendent of �x . For classical particle trajectories, DH = 1,
but for 1 < DH ≤ d, where d is the topological dimen-
sion of the background space, the Hausdorff ‘length’ is no
longer a true length. When DH = 2, 3, . . . d, LH has the
dimensions of an area, volume, or d-dimensional hypervol-
ume, respectively. This corresponds to the scenario in which
the small-scale kinks in the particle path become so dense
that the path effectively fills an n-dimensional hypersurface
(n ≤ d) within the d-dimensional space.

In their pioneering work, Abbot and Wise considered
resolving the path of a free particle in canonical QM, in three
spatial dimensions, by performing a series of position mea-
surements of accuracy �x , separated by time-intervals �t .
They showed that, for �t � 4m(�x)2/h̄, the particle path
becomes self-similar, i.e., fractal, with DH = 2 [3]. However,
it is important to note that this result holds in any number of
topological dimensions. In other words, just as the classical
trajectory of a particle is one-dimensional, regardless of the
number of dimensions it propagates in, its quantum mechan-
ical path always has Hausdorff dimension 2, irrespective of
the dimensionality of the background geometry.

In recent years, many studies of phenomenological quan-
tum gravity have been conducted, in various spacetime
dimensions. Most phenomenological models incorporate a
minimum length scale, assumed to be of the order of the
Planck length, while some also include a minimum momen-
tum. (See [4] for a review.) Based on gedanken experi-
ment arguments, it is believed that introducing minimum
length and momentum scales alters the canonical HUP, giving
rise to generalised uncertainty relations (GURs) [5–10]. In
three spatial dimensions, the presence of a minimum length,
lPl = √

h̄G/c3, gives rise to the GUP

�xi � h̄

2�p j
δi j

[
1 + α0

2G

c3 (�p j )
2
]

, (2)

where α0 is a numerical constant of order unity [6,7]. For d >

3, lPl must be replaced with the D-dimensional Planck length,

l(D)
Pl = (h̄GD/c3)

1
D−2 , where GD is the D-dimensional New-

ton’s constant and D = d + 1 is the number of spacetime
dimensions [11], but the algebraic form of the GUP remains
independent of the topological dimension of the background.

The presence of a minimum momentum,mdSc = h̄
√

�/3,
gives rise to the EUP

�p j � h̄

2�xi
δi j

[
1 + 2η0�(�xi )2

]
, (3)

where η0 is of order unity [8–10]. Here, the parameter � may
be identified with the cosmological constant so that the de Sit-
ter momentum,mdSc, is the momentum of a particle whose de
Broglie wavelength is of the order of the present day radius of
the universe [12]. In higher dimensions, the D-dimensional

de Sitter momentum is m(D)
dS c = h̄

√
�D/(D − 1), but the

algebraic form of the EUP remains unaffected by the dimen-
sionality of the spacetime.

Introducing both minimum length and minimum momen-
tum scales yields the extended generalised uncertainty prin-
ciple (EGUP),

�xi�p j � h̄

2
δi j [1 + α(�p j )

2 + η(�xi )2] , (4)

where α and η are dimensionful constants [8–10]. These are
obtained by taking either α(�p j )

2 or η(�xi )2 as the sub-
dominant term in Eq. (4) and comparing the different limits
with Eqs. (2) and (3), respectively.

Given the current research interest in quantum gravity it
is natural to try to extend the work of Abbott and Wise to
include Planck-scale effects using various phenomenological
models. Naively, we may expect Planck-scale fluctuations of
the background geometry to induce additional fluctuations
in the particle path, increasing the Hausdorff dimension to
DH > 2. The presence of a minimum length should also
introduce an absolute lower bound for the resolution scale �x
and, hence, an absolute upper bound for the total path length
traversed in any time period �t . In addition, the existence of a
minimum length implies the existence of a minimum volume,
∼ (l(D)

Pl )D−1, so that the GUP-modified Hausdorff dimension
may, in principle, depend on the topological dimension of the
space, d = D−1, in contrast to its canonical QM counterpart.
As we will show in this paper, whether this is the case, or not,
depends on which GUP model we choose.

Until recently, all GUR models were assumed to arise
from modified commutation relations [13,14], which, in turn,
were derived from modified phase space volumes. In [15],
Kempf, Mangano and Mann (KMM) showed that the GUP
(2) can be obtained rigorously, from the quantum formal-
ism, by introducing the modified momentum space volume
(1 +αp2)dd p. However, in this case, the position space rep-
resentation of the theory is not well defined. Similarly, the
EUP (3) is obtained by introducing the modified position
space volume (1+ηx2)dd x , but, in this case, the momentum
space representation is not well defined.

In order to obtain the EGUP (4) from an appropriate mod-
ified commutator both the canonical position and momen-
tum space representations must be abandoned and a gener-
alised Bargman–Fock representation introduced [16]. Theo-
retically, this is not problematic, but it may also be shown that
GURs based on modified commutators suffer from a number
of unresolved pathologies, including violation of the equiva-
lence principle, the reference frame-dependence of the ‘mini-
mum’ length, and the so called soccer ball problem for multi-
particle states, among others [4,13,14]. The latter arises from
the necessity of constructing a nonlinear addition law for the
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modified momenta but an ingenious resolution of this prob-
lem was proposed by Amelino–Camelia [17]. Unfortunately,
this is not applicable to many minimum-length models.1

Furthermore, although Abbott and Wise did not con-
sider the fractal properties of the particle path in momen-
tum space, directly, it is straightforward to show that in
canonical QM the momentum space Hausdorff length can
be defined as L̃H = l̃ . (�p)D̃H−1, where l̃ = l̃(�p), and that
D̃H = DH = 2 when �t is sufficiently large. (See Sect. 2.1.)
However, using traditional GUR models, we may investigate
either the effects of a minimum length, using the GUP, or the
effects of a minimum momentum, using the EUP, but not both
using the EGUP.2 In this work we use an alternative model
of the EGUP, which successfully evades the pathologies of
existing models based on modified commutators [18–23],
and which also allows us to the analyse the effects, on the
fractal properties of a particle path, of both minimum length
and momentum scales.

The structure of this paper is as follows. In Sect. 2
we review, and extend, previous work on the Hausdorff
dimension of particle paths in canonical QM [3] and in

1 In Amelino-Camelia’s approach, the generalised momentum opera-
tors, of a given modified commutator model, are considered as the gen-
erators of ‘generalised’ spatial translations, by definition. This requires
the unitary operator Û(X′) := exp[(i/h̄)X′.P̂] to leave the modified
[X̂ i , P̂j ], [X̂ i , X̂ j ] and [P̂i , P̂j ] algebras, as well as the multi-particle
Hamiltonian of the model, invariant. If these invariances hold, in a given
model, then the corresponding Noether charge for an N -particle state is
represented by the operator P̂Total := ∑N

i=1 P̂i , where [P̂Total, Ĥ] = 0.
In this scenario, the usual law of linear momentum addition still holds
for multi-particle states but a different nonlinear addition law, which is
derived ultimately from the notion of spatial locality, holds for trans-
fers of momentum between individual particles, due to the interactions
specified by Ĥ [17]. Unfortunately for GUP models, in the example
system considered in [17], the definition of the generalised spatial trans-
lations that is required to maintain the linear addition law also requires
the relation [X̂2, P̂2] = 0 to hold. In this case, there is no Heisen-
berg uncertainty principle, let alone a GUP, even though a minimum
length-scale l still appears in the model via the position-position com-
mutator [X̂1, X̂2] = il X̂1 . This illustrates a more general point: it is
by no means certain that a particular modified momentum operator,
corresponding to a particular modification of the canonical Heisenberg
algebra, and, hence, a particular form of the GUP, is compatible with a
linear addition law derived via Amelino–Camelia’s procedure. In fact,
we may consider applying this procedure to any prospective GUP model
based on modified commutators and using it to rule out ones which give
rise to inconsistencies. In summary, although this procedure represents
a useful criterion for a physically viable theory, it is clear that arbi-
trary deformations of the canonical algebras are not consistent with the
existence of a linear momentum addition law and that further work is
required to figure out which ones truly suffer from a soccer ball problem
and which ones do not. Though some GUP models may be free from
this pathology, it may be considered as likely that a great many are still
afflicted by it.
2 In fact, it may be possible to analyse the effects of both minimum
length and minimum momentum using the Bargmann–Fock represen-
tation of the EGUP, but this is by no means clear. Due to various techni-
cal problems with this approach, it is not currently known whether the
theory is, in general, free from UV divergences [16].

minimum-length models based on modified phase space vol-
umes [24,25]. Section 2.1 generalises the results of Abbott
and Wise [3] to arbitrary dimensions and includes new results
in both the position and momentum space representations.
Section 2.2 reviews the work of Nicolini and Niedner [24,25]
who considered a GUP model based on a modified momen-
tum space volume, similar to that defined in the KMM model
[15], and discusses a potential loophole in their analysis.
Crucially, in their work, DH was found to depend on d, the
topological dimension of the background space. In Sect. 3,
we review the smeared space model. Section 3.1 reviews
the basic formalism and a number of important differences
between smeared space and previous minimum-length mod-
els, that are especially relevant for the analysis of the Haus-
dorff dimension, are highlighted in Sect. 3.2. In Sect. 4, we
derive our main results. The fractal properties of paths obey-
ing the smeared space GUP are investigated in Sect. 4.1 and
the Hausdorff dimension of the paths in the position space
representation, DH, is determined. The fractal properties of
particle paths obeying the smeared space EUP are investi-
gated in Sect. 4.1 and the Hausdorff dimension of the path in
the momentum space representation, D̃H, is derived. Finally,
in Sect. 4.3, we consider the implications of our model for the
fractal properties of the dark energy field. Section 5 contains
a summary of our main conclusions and a brief discussion of
prospects for future work.

2 The fractal properties of particle paths in canonical
quantum mechanics and previous minimum-length
models

In this section, we review and extend previous work on the
Hausdorff dimension of particle paths in canonical QM [3]
and in models with a minimum length [24,25].

2.1 Canonical quantum mechanics

In [3], Abbott and Wise considered canonical quantum parti-
cles propagating in three spatial dimensions. Here, we give an
outline of their work, but modify their original calculations
slightly, in order to generalise them to an arbitrary number
of dimensions, d. Our purpose is to show, explicitly, that the
dimensionality of the background space has no effect on their
main result, i.e., that the Hausdorff dimension of the path of
a free particle is DH = 2, for any d.

To this end, we consider resolving the path by performing a
series of position measurements, each with resolution (�x)d ,
separated by fixed time intervals of �t . The average distance
traversed in a single time interval is

〈�l〉ψ = 〈ψ |Û †(�t)|x̂|Û (�t)|ψ〉 =
∫

|ψ�t (x)|2|x|dd x,
(5)
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where

Û (t) = exp

[
− p̂2

2m
t

]
(6)

is the time-evolution operator and ψ�t (x) = 〈x|Û (�t)|ψ〉 is
the state at �t . For simplicity, we assume that each measure-
ment collapses the wave function to a d-dimensional Gaus-
sian, of width �x in each Cartesian direction, and that the
initial wave function ψ0(x) is prepared in a similar way, so
that

|ψ0(x)|2 =
(

1√
2π�x

)d

exp

[
− x2

2(�x)2

]
. (7)

This allows us to compute the integral (5) exactly, yielding

〈�l〉ψ ∝ σψ(�t) = h̄

2m

�t

�x

√

1 + 4m2

h̄2

(�x)4

(�t)2 . (8)

where σψ(�t) denotes the standard deviation of the probabil-
ity distribution |ψ�t (x)|2, given the initial Gaussian distribu-
tion (7). However, even for non-Gaussian initial profiles, the
quantitive results are similar, differing only to within numer-
ical factors of order unity [3].

For this reason, the definition of 〈�l〉ψ (5) is somewhat
arbitrary and we may instead use

〈�l〉ψ = 〈ψ |Û †(�t)x̂2Û (�t)|ψ〉1/2

=
(∫

x2|ψ�t (x)|2dd x

)1/2

, (9)

as also noted in [3]. Since each measurement effectively
resets the coordinate origin to the centre of the newly resolved
probability distribution, which is equivalent to |ψ0(x)|2 (7)
in the new coordinates, using the definition (9) in place of
(5) gives 〈�l〉ψ = �ψ x . Here, we use �ψ x to denote the
standard deviation of a general wave function, which is not
necessarily a Gaussian.

For Gaussian distributions, Eq. (9) gives 〈�l〉ψ =
σψ(�t), resulting in exact equality, rather than just propor-
tionality, in Eq. (8). After N measurements, corresponding
to a total time interval T = N�t , the total distance travelled
by the particle is then

〈l〉ψ = N 〈�l〉ψ = Nσψ(�t). (10)

Finally, combining �E � (�p)2/(2m), where �p =
h̄/(2�x) is the width of the initial momentum space Gaus-
sian |ψ̃0(p)|2, with the uncertainty relation for energy and
time, �E�t � h̄/2, gives

�t � 4m(�x)2

h̄
. (11)

Substituting (11) into (8) and (8) into (10) yields

〈l〉ψ � Nh̄

2m

�t

�x
. (12)

This shows that the path of the particle is self-similar, i.e.,
fractal, since changing the resolution such that �x → �x ′ =
γ�x simply rescales the observed length of the path by a
factor of γ −1 [2,3].

By analogy with Eq. (1), Abbott and Wise defined the
Hausdorff length of a QM particle path as [3]

〈LH〉ψ = 〈l〉ψ . (�x)DH−1. (13)

Substituting from (12) into (13) it is easy to see that 〈LH〉ψ
is independent of �x if DH = 2, giving

〈LH〉ψ ∝ N
h̄�t

2m
. (14)

Let us now switch to the momentum space picture and
define the momentum space path length as

〈l̃〉ψ = N 〈�l̃〉ψ = N σ̃ψ (�t), (15)

where σ̃ψ (�t) is the width of the momentum space Gaussian,
|ψ̃�t (p)|2, and σ̃ψ (0) = �p = h̄/(2�x). In the limit �t �
h̄m/(�p)2, which is equivalent to the condition (11), we then
have

σ̃ψ (�t) = h̄

2σψ(�t)
� m�x

�t
= h̄

2

m

�p�t
. (16)

Defining the momentum space Hausdorff length as

〈L̃H〉ψ = 〈l̃〉ψ . (�p)D̃H−1, (17)

we see that D̃H = 2, since 〈l̃〉ψ ∝ (�p)−1. Hence, in
canonical QM, the Hausdorff dimensions of the particle
path in both the position and momentum space represen-
tations are equal, at least for relatively large time-intervals,
�t � 4m(�x)2/h̄ = h̄m/(�p)2, for which DH = D̃H = 2.

Note that these results also hold if we choose to resolve the
path of the particle in momentum space directly, by perform-
ing successive momentum measurements, rather than mea-
surements of position. In fact, in the experimental scenario
considered here, a position measurement with finite accuracy
∼ (�x)d constitutes a de facto measurement of momentum,
with accuracy ∼ (�p)d , where �p = h̄/(2�x), and vice
versa.

Before concluding this section, we now return to the posi-
tion space representation, in order to perform a more careful
analysis of the condition d 〈LH〉ψ /d(�x) = 0 (*). As we
will now show, this allows us to derive an important result
that was not presented in Abbott and Wise’s original analysis
[3].

Treating �x and �t as independent variables, and com-
bining (8), (10) and (13) with (*), gives rise to the polynomial
equation

(�x)DH−2 + (DH − 2)

DH

h̄2

4m
(�t)2(�x)DH−6 = 0 . (18)
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Clearly, this equation can be solved by allowing �t → ∞
and setting DH = 2. However, it may also be solved another
way, by parameterising �t in terms of (�x)2 as

�t = ξ .
4m(�x)2

h̄
, (19)

where ξ � 1. Substituting into (18) then gives

DH(ξ) = 2

1 + 1
4ξ2

, (20)

together with

〈LH〉ψ ∝ 2N

(
1 + 1

4ξ2

)1/2

ξ
−

(
DH(ξ)−2

2

)√
h̄�t

4m

DH(ξ)

. (21)

These results follow from imposing d 〈LH〉ψ /d(�x)
|�x=√

h̄�t/4mξ = 0, rather than simply d 〈LH〉ψ /d(�x) =
0, but the former is the most physically relevant condition for
the experimental scheme considered in [3].

This analysis reflects the fact that, although the resolution
�x and time-interval �t can be chosen independently by the
experimenter tracking the path of the particle, any value of
�t must, necessarily, be some multiple of the minimum value
4m(�x)2/h̄ (11). The result (20) suggests that which multi-
ple is chosen affects the fractal properties of the path, with
shorter sampling times yielding lower values of the Haus-
dorff dimension. This has a clear physical interpretation and
reflects the fact that sampling the path disrupts the process
of free quantum diffusion.

The quantum diffusion is akin to Brownian motion [26]
which, over time, builds up the self-similar fractal path of the
particle. To build a totally self-similar path, i.e., one which
is self-similar on all scales from �x → 0 up to �x → ∞,
requires infinite time. If left undisturbed, the quantum motion
of the particle will eventually cause its path to cover a two-
dimensional hypersurface, embedded as a fractal within the
d-dimensional background space. Only for �t → ∞ is the
free-particle path fractal complete, giving DH = 2.

In the real world process of sampling the path, each mea-
surement effectively resets the diffusion process back to its
initial conditions. The ‘true’ late-time fractal path remains
only partially constructed at any finite time-interval, which
manifests as a decrease in the Hausdorff dimension. This is
the physical meaning of Eq. (20).

It is important to realise that, by sampling the path with
nonzero �x at finite �t , we are not sampling a perfect frac-
tal, i.e., an infinitely self-similar path, with finite resolution.
Instead, we are sampling an imperfect fractal that has not
had time to develop self-similarity on all scales. Nonethe-
less, when �t is several orders of magnitude larger than
4m(�x)2/h̄, the particle has had sufficient time to generate
self-similarity on scales up to ∼ (�x)d , yielding the ‘correct’
measured value of the path-fractal Hausdorff dimension. In

this way, the QM path can be thought of as a fractal created
‘in reverse’, being built up from self-similar patterns on the
smallest scales, over the smallest time-intervals, and achiev-
ing self-similarity up to very large scales only at late times.

Hence, from Eq. (20) it is clear that the result obtained
by Abbott and Wise, DH = 2, corresponds to the large time-
interval limit, ξ → ∞ (�t → ∞). In this regime, the general
expression for the Hausdorff length, Eq. (21), reduces to Eq.
(14). However, as �t approaches its smallest permissible
value, i.e., for ξ → 1 (�t = 4m(�x)2/h̄), we obtain DH =
8/5 = 1.6. As the parameter ξ varies in the range 1 ≤ ξ <

∞, the Hausdorff dimension of the path varies in the range
8/5 ≤ DH < 2, according to (20). We stress that, strictly,
the result obtained in [3] corresponds only to the asymptotic
limit, �t → ∞, and that the Hausdorff dimension of the
particle path in real space may drop somewhat below DH =
2, if the time-interval between successive measurements is
short enough.

In the momentum space picture we use Eqs. (8), (17) and
(19), together with the fact that σ̃ψ (�t) = (h̄/2)σ−1

ψ (�t)
and σ̃ψ (0) = �p = h̄/(2�x), to impose the condition
d 〈L̃H〉ψ /d(�p) = 0 (**). This leads to the polynomial
equation

(�p)D̃H−2 + 4(D̃H − 2)

D̃H

(�t)2

h̄2m2
(�p)D̃H+2 = 0 . (22)

Substituting �t = ξ .mh̄/(�p)2 then gives

D̃H(ξ) = 2

1 + 1
4ξ2

, (23)

which is equivalent to imposing the condition d 〈L̃H〉ψ /

d(�p)|�p=√
ξmh̄/�t = 0.

From Eqs. (18) and (22) we see that, for all values of
the parameter ξ , the Hausdorff dimensions of the particle
path in the position and momentum space representations
are equal, DH = D̃H, and vary within the range [8/5, 2).
The upper limit corresponds to the result obtained by Abbott
and Wise but the lower limit, which is valid for the short-
est possible time-intervals, was previously unknown. In the
following sections, we will show how the presence of GUP-
and EUP-induced corrections alters these results.

2.2 Previous GUP models

In [24,25], Nicolini and Niedner analysed a GUP model
based on the modified momentum space volume

dṼ = exp

[
− P2

2(h̄/ l)2

]
dd P , (24)
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where l is the minimum length. To first order in the expansion
of the Gaussian, this corresponds to the modified commutator

[X̂ i , P̂j ] = i h̄ δi j

(

1 + P̂2

2(h̄/ l)2

)

1̂ (25)

where

P̂j =
∫

Pj |P〉 〈P| exp

[
− P2

2(h̄/ l)2

]
dd P (26)

is the modified momentum-measurement operator and

〈P|P′〉 = exp

[
P2

2(h̄/ l)2

]
δd(P − P′) ,

×
∫

|P〉 〈P| exp

[
− P2

2(h̄/ l)2

]
dd P = 1̂. (27)

Throughout the rest of this paper we use capital letters to refer
to modified position and momentum operators that give rise
to GURs and lower case letters to refer to their canonical
QM counterparts. Thus, in this section, X̂ i and P̂j denote the
position and momentum operators of the modified commu-
tator model (25), whereas, in Sect. 4, the same symbols are
used to denote the modified smeared space operators derived
in [18,20,23]. Clearly, when the minimum length is set equal
to the (3+1)-dimensional Planck length, l ≡ lPl = √

h̄G/c3,
Eq. (25) yields the GUP (2).

In this model, the Hausdorff dimension is determined by
following steps analogous to those outlined in Sect. 1, substi-
tuting the modified momentum-measurement operator (26)
in place the the canonical operator p̂ j = ∫

p j |p2〉 〈p2| dd p.
This gives rise to a modified free-particle Hamiltonian and,
hence, to the modified time-evolution operator

Û(t) = exp

[

− P̂2

2m
t

]

, (28)

where the components of P̂ are obtained from Eq. (26). The
path length traversed in time �t may then be defined as

〈�L〉ψ = 〈ψ |Û†(�t)|X̂|Û(�t)|ψ〉 , (29)

or

〈�L〉ψ = 〈ψ |Û†(�t)X̂2Û(�t)|ψ〉1/2
, (30)

by analogy with the canonical theory. Here, we choose the
definition (30), for convenience. Again, since each measure-
ment effectively resets the coordinate origin to the centre of
the newly resolved wave function, adopting (30) gives

〈�L〉ψ = �ψ X. (31)

It may then be shown that, for an initially Gaussian wave
packet with standard deviation �ψ X (0) ≡ σψ(0) = �X ,
the total path length traversed in T = N�t is [24,25]

〈L〉ψ = Nh̄

m

�t

�X

(
1 + l2

(�X)2

)− d+1
2

×
√

1 +
(

1 + l2

(�X)2

)2 4m2(�X)4

h̄2(�t)2
. (32)

For �t � 4m(�X)2/h̄ and �X � l, this gives

〈LH〉ψ ∝ (�X)DH−2
(

1 + l2

(�X)2

)− d+1
2

. (33)

Nicolini and Niedner then claimed that imposing d 〈LH〉ψ
/d(�X) = 0 yields [24,25]

DH = 2 − d + 1

1 + (�X)2/ l2
. (34)

Next, they showed that the spectral dimension of a proba-
bility density obeying the classical diffusion equation, with
diffusion coefficient s, and in the presence of a minimum
length l in d spatial dimensions, is

D = s

s + l2
D , (35)

where D = d + 1. Taking |ψ�t |2(X) = | 〈X|Û(�t)|ψ〉 |2 as
the probability density, Wick rotating the diffusion equation
to obtain the canonical Schrödinger equation, and identifying
the diffusion coefficient with (�X)2 then gives

DH = 2 − (D − D) . (36)

This is a very nice result, which neatly connects the Haus-
dorff and spectral dimensions of the path of a non-relativistic
particle with the topological dimension of the spacetime it
propagates in. However, its validity depends on the validity
of Eq. (34). It is straightforward to show that this formula is
derived by treating DH as a constant when taking the derivate
of 〈LH〉ψ with respect to �X . This leads to a contradiction,
since DH in Eq. (34) is a function of �X . Indeed, by inspec-
tion, it is clear that the expression for 〈LH〉ψ given in Eq.
(33) satisfies the condition d 〈LH〉ψ /d(�x) = 0 only in the
limit �X � l. In this regime, the particle path is too coarse
grained for the GUP-induced corrections to alter its observ-
able characteristics, and the Hausdorff dimension is DH = 2,
as in canonical QM.

Nonetheless, assuming DH = DH(�X), it is also
straightforward to show that Eq. (34) satisfies the condition
d 〈LH〉ψ /d(�X) = 0, at least approximately for �X � l,
since ln(�X) . dDH/d(�X) � 0 in this regime. Therefore,
taking the limits �X = l and �X � l, separately, this
analysis still suggests that the Hausdorff dimension of the
particle path in the GUP model (25) varies within the range
DH ∈ [2−(d+1)/2, 2), as claimed in [24,25]. However, it is
important to note that Eq. (36) can be derived from the condi-
tion d 〈LH〉ψ /d(�x) = 0 only when the spatial resolution is

set close to the D-dimensional Planck scale, �X � l � l(D)
Pl .
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Finally, we must also account for the fact that the self-
similar path takes time to develop by parameterising the time-
interval as

�t = ξ .
4m(�X)2

h̄
, (37)

where ξ � 1, as in the canonical theory. Similarly, we can
parameterise the minimum length in terms of the width of
the detecting apparatus, such that

l = ε .�X , (38)

where ε � 1. To analyse the smallest possible resolutions,
�X � l, over the smallest possible time-scales, �t �
4ml2/h̄, we must first treat �X , �t and l as independent vari-
ables when applying d 〈LH〉ψ /d(�X) = 0. We then impose
the parameterisations (37) and (38), which is equivalent to
applying the condition d 〈LH〉ψ /d(�X)|�X=√

h̄�t/4mξ=l/ε
= 0.

The first step leads to the polynomial equation

(�X)DH−2 + (DH − 2)
h̄2(�t)2

8m2

(�X)DH−4

[(�X)2 + l2]
+ (DH − 2)

2
[(�X)2 + l2](�X)DH−4

+ (d + 1)l2

[(�X)2 + l2]2

h̄2(�t)2

8m2 (�X)DH−4

×
[

1 + 4m2

h̄2

[(�X)2 + l2]2

(�t)2

]
, (39)

which reduces to Eq. (18) when l → 0. Substituting from
Eqs. (37) and (38) then gives

DH(ζ, ε) = 2

−(d + 1)
ε2

1 + ε2

[
1 + 2

4ξ2 + (1 + ε2)2 .
(1 + ε2)2

(d + 1)ε2

]
.

(40)

For ε → 0, Eq. (40) reduces to Eq. (20), as required, but
taking the limit ξ → ∞ with ε > 0 gives

DH(ξ, ε) = 2 − (d + 1)
ε2

1 + ε2 . (41)

This is equivalent to Eq. (34), expressed in terms of our
new parameter ε = l/�X (38). However, here, there is no
contradiction, since Eq. (41) is derived from the condition
d 〈LH〉ψ /d(�X)|�X=√

h̄�t/4mξ=l/ε = 0 rather than simply
d 〈LH〉ψ /d(�X) = 0.

The former is the most physically relevant condition,
for the experimental scenario considered, and our analysis
reflects the fact that �t and �X may be chosen indepen-
dently, as in canonical QM, as well as the fact that both are
independent of the minimum length l. It also accounts for the
fact that the chosen value of �t must be a multiple of the min-
imum possible time-interval, (�t)min = 4m(�X)2/h̄ (37),

and that the chosen value of �X must be a multiple of l.
Equation (41) may then be combined with Eq. (35) to give
Eq. (36), which is thereby shown to be valid on all scales,
without introducing contradictory assumptions.

Finally, we note that, for ε → 1, Eq. (41) becomes
DH = 2 − (d + 1)/2. Imposing DH > 1, i.e., requiring
that the Hausodorff dimension of the fractal strictly exceed
the topological dimension of a classical particle path [2], then
yields d < 1. This suggests that the fractal properties of the
particle path can only be probed on the smallest scales in at
most one spatial dimension. In higher-dimensional spaces,
the path of the particle does not exhibit fractal properties
at the minimum length scale. Similarly, imposing DH > 0
requires d < 3.

How can we interpret this result? In [24], it was proposed
that DH → 0 corresponds to the trans-Plankian regime in
which the path of the particle completely disintegrates due
to Planck-scale fluctuations induced by the GUP. This is
physically reasonable since negative values of the Hausdorff
dimension correspond to empty sets [2]. Therefore, we com-
bine the condition DH ≥ 0 with Eq. (41), which implies that
ε2 ≤ 2/(D + 2) or, equivalently, �X ≥ √

(D + 2)/2 l.
In other words, in the GUP model based on the modified

phase space volume (24) there exists a fundamental limit
to the scale at which a particle path can be meaningfully
resolved (as expected). For d > 1, this is somewhat above
the actual minimum volume, ld , and its exact value is deter-
mined by the dimensionality of the background, such that
�Vmin � (

√
(D + 2)/2 l)D−1. Hence, although the analysis

presented here differs somewhat from that given by Nicolini
and Niedner [24,25], we validate their claim that, in the GUP
model (25), the fractal properties of the particle path depend
on the dimensions of the spacetime, D.

3 Recap of the smeared space model

In this section, we review the basic formalism of the smeared
space model, originally presented in [18,20,23]. We then
highlight important differences between smeared space and
previous GUR models based on modified commutation rela-
tions.

3.1 Basic formalism

In [18], a new model of quantum geometry was proposed in
which each point x in the classical background is associated
with a vector in a Hilbert space,

|gx〉 =
∫

g(x′ − x) |x′〉 ddx′ , (42)

where 〈gx|gx〉 = 1. This is used to describe a form of nonlo-
cal geometry that is intrinsically quantum in nature, so that
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the width of |g(x′ − x)|2 is assumed to be of the order of the
Planck length [18,20,23].

It is well-known that classical nonlocal geometries, such
as (24), can be generated by first identifying each point in the
classical manifold with a Dirac delta function, δd(x − x′).
Nonlocality is then introduced by smearing each delta into
a finite-width probability distribution P(x − x′). (For exam-
ple, a normalised Gaussian in the model considered by Nicol-
ini and Niedner [24,25].) In this case, no new degrees of free-
dom are introduced, beyond those present in canonical QM,
since x′ is simply a parameter that determines the position of
P .

The smeared space model introduced in [18,20,23] is
different in that it first associates each point x′ with a
rigged basis vector of a Hilbert space, |x′〉. The latter is
then smeared to produce the normalised state (42). In this
case, 〈x′|gx〉 = g(x′ − x) is a genuine quantum mechanical
amplitude not a probability distribution. It has dimensions
of (length)−d/2 not (length)−d and, in principle, can pos-
sess nontrivial phase information. In this model, |gx〉 rep-
resents the state of a Planck-scale localised ‘point’ in the
quantum geometry. Each point in the classical geometry is
then smeared into a Planck-volume localised superposition
of all points in the background space by imposing the map

S : |x〉 �→ |x〉 ⊗ |gx〉 . (43)

The smearing map (43) may be visualised as follows: for
each point x ∈ R

d in the classical geometry it generates one
whole ‘copy’ ofRd , thereby doubling the size of the classical
phase space. The resulting smeared geometry is represented
by a 2d-dimensional volume in which each point (x, x′) is
associated with a quantum probability amplitude, g(x′ − x).
This is interpreted as the amplitude for the transition x ↔ x′
and the higher-dimensional space is interpreted as a super-
position of d-dimensional geometries [18,20,23].

In the nonrelativisitc limit, each geometry in the smeared
superposition of geometries is Euclidean, but differs from
all others by the pair-wise exchange of at least two points
[20,23]. It is assumed that the interchange x ↔ x′ exchanges
the canonical amplitudes, ψ(x) ↔ ψ(x′), which leads to
additional fluctuations in the observed position of the parti-
cle, over and above those obtained in canonical QM. We now
review, briefly, how these fluctuations give rise to GURs.

For simplicity, we may take |g(x′−x)|2 to be a normalised
Gaussian centred on x′ = x, but, here, x′ is no longer just a
parameter. By introducing the tensor product structure (43)
we have doubled the number of degrees of freedom of the
theory, vis-à-vis canonical QM. Those in the left-hand sub-
space, labelled by x, represent the degrees of freedom of a
canonical quantum particle, whereas those in the right-hand
subspace, labelled by x′, determine the influence of fluctu-
ations in the background geometry. The action of S on |x〉
(43) then induces a map on the canonical quantum state,

|ψ〉 = ∫
ψ(x) |x〉 d3x, such that

S : |ψ〉 �→ |�〉 , (44)

where

|�〉 =
∫ ∫

ψ(x)g(x′ − x) |x, x ′〉 ddxddx′ . (45)

The square of the smeared-state wave function, |�(x, x′)|2
= |ψ(x)|2|g(x′−x)|2, represents the probability distribution
associated with a quantum particle propagating in a quantum
superposition of geometries [18]. Because |ψ(x)|2 represents
the probability of finding the particle at the fixed classical
point x in canonical QM, |ψ(x)|2|g(x′ − x)|2 represents the
probability that it will now be found, instead, at a new pointx′.
If g(x) is a Gaussian centred on the origin, x′ = x remains the
most likely value, but fluctuations within a volume of order
∼ σ d

g , where σg is the standard deviation of |g(x)|2, remain
relatively likely [18,20,23]. Furthermore, since an observed
position ‘x′’ cannot determine which point(s) underwent the
transitionx ↔ x′ in the smeared superposition of geometries,
we must sum over all possibilities by integrating the joint
probability distribution |�(x, x′)|2 over ddx, yielding

dd P(x′|�)

dx′d =
∫

|�(x, x′)|2ddx = (|ψ |2 ∗ |g|2)(x′) , (46)

where the star denotes a convolution. In this formalism, only
primed degrees of freedom represent measurable quantities,
whereas unprimed degrees of freedom are physically inac-
cessible [18,20,23].

The variance of a convolution is equal to the sum of the
variances of the individual functions, so that the probability
distribution (46) gives rise to the GUR

(��Xi )2 = (�ψ x
′i )2 + (�gx

′i )2 . (47)

It is straightforward to verify that (47) is obtained from the
standard braket construction (��Xi )2 = 〈�|(X̂ i )2|�〉 −
〈�|X̂ i |�〉2

, where

X̂ i =
∫

x ′i dd P̂x′ = 1̂ ⊗ x̂ ′i (48)

is the generalised position-measurement operator and dd P̂x′
= 1̂ ⊗ |x′〉 〈x′| ddx′.

Next, we note that the HUP, expressed here in terms of the
physically accessible primed variables,

�ψ x
′i�ψ p′

j ≥ h̄

2
δi j , (49)

holds independently of Eq. (47). Combining the two and
identifying the standard deviation of |g(x)|2 with the D-
dimensional Planck length such that

�gx
′i = σ i

g = 2
1

D−2 l(D)
Pl , (50)
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then yields

��Xi � h̄

2�ψ p′
j
δi j

[
1 + α(�ψ p′

j )
2
]

, (51)

where α = 4(m(D)
Pl c)−2, to first order in the expansion [18].

For �ψ x ′i � σ i
g � l(D)

Pl , we have ��Xi � �ψ x ′i , so that,
in this limit, Eq. (51) reduces to the GUP (2) when D = 3+1.

In the momentum space picture, the composite matter-
plus-geometry state |�〉 is expanded as

|�〉 =
∫ ∫

ψh̄(p)g̃β(p′ − p) |pp′〉 ddpddp′ , (52)

where

ψ̃h̄(p) =
(

1√
2π h̄

)d ∫
ψ(x)e− i

h̄ p.xddx , (53)

as in canonical QM, and

g̃β(p′ − p) =
(

1√
2πβ

)d ∫
g(x′ − x)e− i

β
(p′−p).(x′−x)d3x′ ,

where β � h̄ is a new fundamental quantum of action. In
the smeared space model β, rather than h̄, determines the
quantum properties of the background geometry. The latter
is treated as a quantum reference frame (QRF) [27] which
allows existing no-go theorems for the existence of multiple
Planck’s constants to be circumvented [28]. (The interested
reader is referred to [18,20,23] for a fuller discussion of this
point.).

Note that, in Eq. (52), the basis |pp′〉 is entangled and can-
not be separated into a simple tensor product, i.e., |pp′〉 �=
|p〉 ⊗ |p′〉. We emphasise this by not writing a comma in
between p and p′, by contrast with the position space basis,
|x, x′〉 = |x〉 ⊗ |x′〉. Nonetheless, g̃β(p′ − p) can be inter-
preted as the probability amplitude for the transition p ↔ p′
in smeared momentum space, by analogy with the position
space representation [18,20,23].

The consistency of Eqs. (45) and (52) requires

〈x, x′|pp′〉 =
(

1

2π
√
h̄β

)d

e
i
h̄ p.xe

i
β
(p′−p).(x′−x)

, (54)

which is equivalent to implementing the modified de Broglie
relation

p′ = h̄k + β(k′ − k) . (55)

This holds for particles propagating in the smeared back-
ground and the non-canonical term may be interpreted,
heuristically, as an additional momentum ‘kick’ induced by
quantum fluctuations of the geometry [18,20,23]. Next, we
fix the value of β from physical considerations and show how
it is related to the minimum length and momentum scales.

The general properties of the Fourier transform [29]
ensure that the ‘wave-point’ uncertainty relation,

�gx
′i�g p

′
j ≥ β

2
δi j , (56)

holds in addition to Eq. (47) and the HUP (49), and that the
inequality is saturated for Gaussian distributions. We may
then identify the standard deviation of |g̃β(p)|2 with the D-
dimensional de Sitter momentum,

�g p
′
j = σ̃g j = 1

2
m(D)

dS c , (57)

which yields the definition of β:

β := (2/d)σ i
gσ̃gi = 2

1
D−2 d−1l(D)

Pl m(D)
dS . (58)

In (3 + 1) spacetime dimensions, Eq. (58) gives

β = 2h̄
√

ρ�

ρPl
� h̄ × 10−61 , (59)

where ρPl � 1093 g . cm−3 is the Planck density and ρ� =
�c2/(8πG) � 10−30 g . cm−3 is the observed dark energy
density [12].

By analogous reasoning to that presented above, the prob-
ability of obtaining the observed value ‘p′’ from a smeared
momentum measurement is

dd P(p ′|�̃)

dp′d =
∫

|�̃(p,p′)|2ddp = (|ψ̃h̄ |2 ∗ |g̃β |2)(p′),

(60)

which gives rise to the momentum space GUR

(�� Pj )
2 = (�ψ p′

j )
2 + (�g p

′
j )

2 . (61)

This can be obtained from the standard braket construction
(�� Pj )

2 = 〈�|(P̂i )2|�〉 − 〈�|P̂j |�〉2
using

P̂j =
∫

p′
j dd P̂p ′ , (62)

where dd P̂p′ = (∫ |pp′〉 〈pp′| ddp
)

ddp′ is the generalised
projector in momentum space [18]. Substituting the HUP
(49) into Eq. (61) and Taylor expanding to first order then
gives

�� Pj � h̄

2�ψ x ′i δ
i
j

[
1 + η(�ψ x

′i )2
]

, (63)

where η = (1/2)(l(D)
dS )−2 [18]. For �ψ p′

j � �g p′
j � mdSc,

we have �� Pj � �ψ p′
j (61) so that, in this limit, Eq. (63)

reduces to the EUP (3) when D = 3 + 1.
Having obtained both the GUP and EUP from the smeared

space formalism, we now show how they can be combined
to derive the EGUP. Combining Eqs. (47), (49) and (61),
directly, gives
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(��Xi )2(�� Pj )
2 ≥ (h̄/2)2(δi j )

2 + (�gx
′i )2(�� Pj )

2

+(��Xi )2(�g p
′
j )

2

−(�gx
′i )2(�g p

′
j )

2 . (64)

Substituting for�gx ′i and�g p′
j from Eqs. (50) and (57), tak-

ing the square root and expanding to first order, then ignoring
the subdominant term of order ∼ l(D)

Pl m(D)
dS c, yields

��Xi�� Pj �
h̄

2
δi j

[
1+α(�� Pj )

2+η(��Xi )2
]
. (65)

This is equivalent to the heuristic EGUP (4) but with �xi and
�p j replaced by well defined standard deviations, ��Xi

and �� Pj . These represent the width of the composite
matter-plus-geometry state |�〉 in the position and momen-
tum space representations, respectively [18,20,23]. Hence,
the smeared-space formulation of the EGUP allows us to
analyse the path of a QM particle in both spaces.

Furthermore, it is straightforward to show that the prod-
uct of generalised uncertainties, ��Xi�� Pj , is minimised
when �ψ x ′i and �ψ p′

j take the values

(�ψ x
′i )opt =

√
h̄

2

�gx ′i
�g p′

i
, (�ψ p′

j )opt =
√
h̄

2

�g p′
j

�gx ′ j , (66)

yielding

��Xi �� Pj ≥ (h̄ + β)

2
δi j . (67)

This result can also be obtained directly from the Schrödinger–
Robertson relation, ��O1��O2 ≥ (1/2) 〈�|[Ô1, Ô2]|�〉,
since the commutator of the generalised position and momen-
tum observables is simply a rescaled version of the canonical
position-momentum commutator, with h̄ → h̄ + β:

[X̂ i , P̂j ] = i(h̄ + β)δi j 1̂ . (68)

The remaining commutators of the model are

[X̂ i , X̂ j ] = 0 , [P̂i , P̂j ] = 0 . (69)

Equations (68) and (69) show that GURs, including
the GUP, EUP and EGUP, may be obtained without non-
canonical modifications of the Heisenberg algebra [18–
20,22,23]. (See also [30,31] for a similar result.) This allows
the smeared space model to evade the problems that plague
existing modified commutator models, including violation of
the equivalence principle, the reference frame-dependence of
the ‘minimum’ length, and the soccer ball problem for multi-
particle states [18,19,23], though it is worth noting that these
advantages come with corresponding loss of phenomenolog-
ical freedom.3

3 For example, in this approach to GURs, we do not have the free-
dom to choose negative parameters for either the GUP or the EUP.
This is in stark contrast to approaches based on modified commutators.
(See [32–39] and references therein for applications of GUP and EUP

Finally, before concluding our review of the smeared space
formalism, we note that the model has important implications
for the description of measurement in quantum mechanics.
Clearly, any implications of this kind are relevant to the exper-
imental scheme for resolving the particle path, proposed in
[3]. We now illustrate these by considering a generalised
position measurement, in detail.

Applying the generalised position operator X̂ (48) to an
arbitrary pre-measurement state |�〉 returns a random mea-
sured value, x′, and projects the state in the fixed background
subspace of the tensor product onto

|ψx′ 〉 = 1

(|ψ |2 ∗ |g|2)(x′)

∫
ψ(x)g(x′ − x) |x〉 ddx , (70)

with probability (|ψ |2 ∗ |g|2)(x′) [18,23]. The total state is
then |ψx′ 〉 ⊗ |x′〉, which is non-normalisable, and therefore
unphysical. This is analogous to the action of the canonical
position measurement operator on |ψ〉 which projects onto
the unphysical state |x〉 with probability |ψ(x)|2.

However, in the smeared space formalism, we must reap-
ply the fundamental ‘smearing’ map (43) to complete our
description of the measurement process [18,20,23]. In this
way, a smeared measurement is split into two parts. In the
first, a perfect projective measurement is performed on the
second subspace of the tensor product, yielding the observed
value of the position, x′. Re-applying the map (43) to |ψx′ 〉
(70) then re-smears the ket |x〉, giving rise to a normalised
post-measurement state with finite width ��Xi � σ i

g
[18,20,23].

Hence, although smeared space measurements yield pre-
cise measured values, the post-measurement states are
always physical, with well defined norms. Their position
uncertainties, which may be determined by performing mul-
tiple measurements on ensembles of identically prepared
states, never fall below the fundamental smearing scale,
σ i
g � l(D)

Pl . Analogous considerations hold for generalised
momentum measurements, with the corresponding minimum
uncertainty σg j � m(D)

dS c.

Footnote 3 continued
models with negative parameters to open problems in cosmology and
astrophysics.) The reason is that the non-canonical terms are derived
from the standard deviations of probability distributions, in this case,
|g(x− x)|2 for the GUP and |g̃β(p− p)|2 for the EUP. Therefore, they
are positive by definition and construction. This remains true, even in
anti-de Sitter space, in which we must set σ̃g � h̄/

√−�, as opposed
to σ̃g � h̄/

√
� for an asymptotically de Sitter Universe. In short, it is

not possible to derive negative GUP or EUP parameters from the spa-
tial ‘smearing’ described in our model. As an immediate corollary we
see that, if negative GUP or EUP parameters become strongly favoured
by observational data, even if their exact values remain only loosely
bounded, then the smeared space GUR model will be effectively ruled
out.
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In this section, we have presented only a brief overview
of the smeared space formalism. The interested reader is
referred to references [18,20,23] for further details.

3.2 Important differences between smeared space and
previous minimum-length models

We now consider how the unique features of the smeared
space model, vis-à-vis previous models of nonlocal geome-
try, affect the distribution of particle paths. Our analysis is
qualitative but sets the stage for the quantitative analysis that
follows in Sect. 3. The important points may be summarised
as follows:

• By introducing degrees of freedom corresponding explic-
itly to the spatial background we introduce quantum paths
for spatial ‘points’, in addition to the usual paths of quan-
tum particles on a fixed classical geometry.

• The paths of spatial points are characterized by the
smearing function, g, in the same way that ψ deter-
mines the paths of point-particles on a fixed background.
(Note, however, that the quantisation scales for matter
and geometry differ significantly.)

• The resulting smeared geometry may be interpreted as an
infinite superposition of Euclidean spaces in which each
individual space differs from the original classical back-
ground by pair-wise exchanges of points, x ↔ x ′. Coher-
ent transitions between pairs of points then introduce
additional stochastic fluctuations in the motion of mate-
rial particles propagating in the smeared background.

• The net motion of a particle in the smeared geometry
is therefore determined by both ψ and g. It is the net
result of two sets of paths. The first are the paths the
particle would have had in classical Euclidean space due
to canonical quantum diffusion. The second represent
additional stochastic fluctuations in position due to the
relative motion of ‘points’ in the spatial background.

• The smearing scales, σg and σ̃g , determine the width
of the smearing function in the position and momentum
space representations, respectively. These represent the
characteristic diffusion scales for delocalised ‘points’ in
the phase space of the theory. In order to recover the
expected quantum gravity phenomenology, namely, the
GUP and EUP, we set σg � l(D)

Pl and σ̃g � m(D)
dS c, where

l(D)
Pl is the Planck length and m(D)

dS is the de Sitter mass
in D spacetime dimensions.4

4 Note that, unless g has compact support, the additional diffusion
induced by smearing the geometry can occur over any length- or
momentum-scale. However, the associated probability amplitudes are
vanishingly small for paths with lengths much larger than l(D)

Pl in real

space, or much larger than m(D)
dS c in momentum space, so that these do

not contribute significantly to the overall motion.

Fig. 1 Operational definition of a quantum mechanical path, in canon-
ical QM, in the limit 〈�l〉ψ > �x . Note that, because the background
space is fixed and classical, the localisation radius �x is sharp. This
remains the case in standard minimum length models, based on mod-
ified commutation relations, in which modification of the momentum
space volume measure imposes the condition �x ≥ l. Taken from [25]

The operational definition of a particle path in canonical
QM, as determined by the measurement scheme devised in
[3], is illustrated in Fig. 1. The operational definition of a par-
ticle path in the smeared background is illustrated in Fig. 2,
for comparison. Unlike GUP models based on modified com-
mutators, the presence of smearing affects the observed char-
acteristics of the path in two ways. First, it alters the asymp-
totic properties of the path, which are obtained in the late-time
limit, by introducing additional fluctuations in position and
momentum [18,20,23]. Second, these fluctuations affect the
resolution scale, ‘smearing’ a sharp sphere of radius �x into

a fuzzy sphere with average radius �X =
√

(�x)2 + σ 2
g .

In modified commutator models, the second effect does not
occur and the resolution scale remains sharp, even if it is
bounded from below by the minimum length [24,25].

4 The fractal properties of particles path in smeared
space

In this section, we determine the fractal properties of a parti-
cle path in smeared space, which incorporates both minimum
length and momentum scales. To do this, we must first con-
sider the time evolution of the composite state |�〉 that deter-
mines the effects of the nonlocal geometry on the canonical
quantum diffusion.

Unfortunately, the dynamics of the smeared space model
are not known with certainty since it is not clear how the
smearing function g(x′ − x), which was assumed to be
static in the generalised-measurement formalism developed
in [18,20,23], should evolve if generalised further to depend
on the ‘smeared time’ coordinate t ′ − t . However, this may
simply be an artifact of the nonrelativistic regime. We recall
that in canonical QM t is a parameter rather than a genuine
quantum observable. For this reason, it cannot be smeared in
the same way as x, by using a map of the form (43). Nonethe-
less, as we will now show, we may make reasonable physical
assumptions that allow us to model the time evolution of
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Fig. 2 Operational definition of a quantum mechanical path, in the

smeared space model, in the limit 〈�L〉� > �X =
√

(�x)2 + σ 2
g .

Because the background on which the particle wave function lives
is no longer classical, the localisation volume undergoes stochastic
fluctuations due to the relative motion of delocalised spatial ‘points’.
As a result, its average radius cannot drop below the smearing scale,
σg � l(D)

Pl , which corresponds to the the characteristic diffusion length
for a delocalised ‘point’ in the smeared background. This is analogous to
the Compton wavelength in the matter sector, λC(m) = h̄/(mc), which
gives the characteristic diffusion scale for a point-particle propagating in
a fixed classical geometry. Note that this heuristic diagram is inadequete
in an important respect: the surface of the fluctuating resolution-volume
is depicted as smooth, whereas, in fact, it too is fractal-like, according to
our model. In a more realistic depiction, zooming in on a small section
of the surface would show its discontinuous, fractal, nature. (See Fig
7.1 in Feynman and Hibbs [1], for comparison.)

the composite matter-plus-geometry state. Though not yet a
fundamental theory, the resulting phenomenological model is
compatible with canonical QM in the limit �ψ xi (t) � σ i

g ,
�ψ p j (t) � σ̃g j , and with the GUP, EUP and EGUP for
�ψ xi (t) � σ i

g , �ψ p j (t) � σ̃g j .
We begin by assuming that, in the relativistic regime, the

total energy of the composite particle-plus-background sys-
tem is

E =
√

(p′ + p′
recoil)

2c2 + m2c4 . (71)

Here, m is the mass of the particle and p′ = h̄k + β(k′ − k)

(55) is its observed momentum, which includes the additional
momentum ‘kicks’ provided by fluctuations of the geome-
try. Conservation of momentum then implies the existence
of a recoil term, p′

recoil = −β(k′ − k). This is the addi-
tional momentum carried by the background, as a result of it
imparting the ‘kick’ β(k′ − k) to a material body.

The total energy of the particle-plus-geometry system is
then E = √

p2c2 + m2c4, where p = h̄k is the canonical
particle momentum. In this scenario, the observed energy of
a non-relativistic free quantum particle, E ′, is given by the
smeared Hamiltonian

Ĥ = P̂2

2m
, (72)

where the components of P̂ are given by Eq. (62), but the time
evolution of the composite particle-plus-geometry state is
generated by the canonical Hamiltonian, Ĥ = p̂2/(2m). This
observation may be reconciled with the formalism presented

in Sec. 3 by performing a unitary change of basis [20,23],

〈x, x′|pp′〉 �→ 〈x′ − x|p′ − p〉 . (73)

In this basis the smeared state (45) / (52) becomes sepa-
rable yielding |�〉 = |ψ〉 ⊗ |g〉, where |g〉 = ∫

g(x′ −
x) |x′ − x〉 dd x ′ is the quantum state associated with the
whole background geometry, rather than a single delocalised
‘point’, i.e., |g〉 �= |gx〉 [20,23].

In the new basis (73) the Hamiltonian that drives the time-
evolution of the system then takes the form p̂2/(2m)⊗1̂. This
implies that |ψ〉 evolves according to the laws of canonical
QM whereas |g〉 does not evolve in time. This model treats the
smearing introduced in Eq. (43) as a simple fact of nature: in
this scenario, there are no true points in the quantum geom-
etry, only delocalised ‘points’, whose associated quantum
amplitudes effectively smear them over Planck-sized vol-
umes.

The form of |�t 〉 is therefore determined as follows. First,
we take an initial canonical QM state |ψ0〉 = ∫

ψ0(x) |x〉 dd x
and evolve this using the canonical time-evolution operator
(6), giving |ψt 〉 = Û (t) |ψ0〉. We then set |�t 〉 = |ψt 〉⊗ |g〉,
with |g〉 = ∫

g(x′ − x) |x′ − x〉 dd x ′, before performing the
inverse basis change 〈x′ − x|p′ − p〉 �→ 〈x, x′|pp′〉 [20,23].
This gives

|�t 〉 =
∫

ψt (x)g(x′ − x) |x, x′〉 dd xdd x ′

=
∫

ψ̃t (p)g̃β(p′ − p) |pp′〉 dd pdd p′ , (74)

where ψt (x) is obtained by solving the canonical time-
dependent Schrödinger equation. Here, we have omitted the
subscript h̄ on ψ̃ , for the sake of notational simplicity.

Physically, this is equivalent to assuming that the canoni-
cal quantum state |ψ〉, which is defined only with respect to
a fixed classical background, evolves according to the usual
laws of canonical QM in each Euclidean space embedded
within the smeared superposition of geometries. The addi-
tional fluctuations in position and momentum, which give
rise to the GUP, EUP and EGUP, are due entirely to coherent
transitions of the form x ↔ x′,p ↔ p′, induced by smearing.
The probability densities for these transitions, |g(x′ − x)|2
and |g̃β(p′ − p)|2, are independent of |ψ(x)|2 and |ψ̃(p)|2.
In this sense, the back-reaction of the quantum matter on the
quantum geometry is neglected.

4.1 The position space representation

We now have all the tools we need to determine the fractal
properties of the path of a free particle in the smeared space
model. The path length traversed in time �t is defined as

〈�L〉� = 〈�|Û †(�t)X̂2Û (�t)|�〉1/2
, (75)
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where Û (�t) is given by Eq. (6), |�〉 is given by Eqs. (45)
and (52), and X̂ is given by Eq. (48). The total path length
traversed in N steps, corresponding to the total time interval
T = N�t , is

〈L〉� = N 〈�L〉� . (76)

Taking |ψ0(x)|2 to be a Gaussian with width σψ(0) = �x ,
as in Eq. (7), and setting

|g(x′ − x)|2 =
(

1√
2πσg

)d

exp

[

− (x′ − x)2

2σ 2
g

]

, (77)

then gives

〈�L〉� =
√

σ 2
ψ(�t) + σ 2

g

= h̄

2m

�t

�x

√

1 + 4m2

h̄2

(�x)2[(�x)2 + σ 2
g ]

(�t)2 . (78)

Here, (�x)d is the position uncertainty that the experimenter
aims for but is unable to achieve with absolute precision.
Instead, the particle is localised to within a region of space
with average volume (�X)d , where

�X =
√

(�x)2 + σ 2
g . (79)

The experimentalist has no control over σg , which we
assume is given by Eq. (50), but their choice of �x effectively
fixes the average uncertainty in each measurement to �X =
��X (0). We therefore define the smeared-space Hausdorff
length as

〈LH〉� = 〈L〉� . (�X)DH−1. (80)

This can be written in terms of �x , �t and σg as

〈LH〉� = Nh̄

2m

�t

�x

×
√

1 + 4m2

h̄2

(�x)2[(�x)2 + σ 2
g ]

(�t)2 [(�x)2 + σ 2
g ]DH−1 (81)

or, equivalently, in terms of �X , �t and σg as

〈LH〉� = Nh̄

2m

�t
√

(�X)2 − σ 2
g

×
√

1 + 4m2

h̄2

(�X)2[(�X)2 − σ 2
g ]

(�t)2 . (�X)DH−1. (82)

Treating �x , �t and σg as independent variables in Eq. (81)
and imposing the condition d 〈LH〉� /d(�x) = 0 yields the
polynomial equation

(�x)DH−2 + (DH − 2)

DH

h̄2

4m
(�t)2(�x)DH−6

+σ 2
g

[
(�x)DH−2 − h̄2

4m

(�t)2

DH
(�x)DH−8

]
= 0 . (83)

Immediately we see that, in the limit �t → ∞, this
reduces to the condition DH � 2 + (σg/�x)2, unlike Eq.
(18). However, this is also a contradiction, since (83) was
derived under the assumption that DH is independent of
�x . As before, these results can be reconciled by setting
�t = ξ . 4m(�x)2/h̄ (37) and

σg = ε .�x , (84)

by analogy with Eq. (38). This is equivalent to imposing
d 〈LH〉� /d(�x)|�x=√

h̄�t/4mξ=σg/ε
= 0, giving

DH(ξ, ε) = 2 + ε2

1 + 1+ε2

4ξ2

. (85)

It is straightforward to show that, using Eq. (82) instead of
(81), and imposing the conditions d 〈LH〉� /d(�X) = 0
and d 〈LH〉� /d(�X)|

�X=
√
h̄2(�t)2/16m2ξ2+σ 2

g =√
1+ε2σg/ε

=
0, respectively, yields exactly the same results.

From (85) we see that, as ξ → ∞, DH > 2. For ξ ∈
[1,∞), the Hausdorff dimension varies in the range DH ∈
[(8/5)(1 + ε2/2), 2 + ε2), where the lower limit is given
to first order in ε2. Hence, in the smeared space model, the
presence of the minimum length σg always increases DH,
relative to its canonical QM value.

Moreover, Eq. (85) implies

DH ≷ 2 ⇐⇒ ξ ≷

√
1 + ε2

2ε2 . (86)

This is condition always satisfied when ε = 1 since ξ ≥ 1
(11). However, for ε � 1, which is the most physically
reasonable scenario when σg � l(D)

Pl , ξ must take increas-
ingly large values in order to ensure that DH > 2. In other
words, the larger the spatial resolution �x , as compared to
the minimum length σg � l(D)

Pl , the longer it takes for the
Hausdorff length of the smeared particle path to rise above
the upper bound set by canonical QM. For σg/�x → 0,
this bound cannot be breached, even as �t → ∞. Con-
versely, for σg/�x → 1, the canonical QM bound DH = 2
is automatically obtained by taking the minimum possible
time-interval, �t = 4m(�x)2/h̄, while taking longer time
intervals between measurements yields DH > 2.

For clarity, the limiting values of the Hausdorff dimension
DH(ξ, ε) (85) are shown in Table 1 below. The limiting values
of ε are given in the top row whereas the limiting values of
ξ are given in the first column.

ε/ξ 0 1

1 1.6 2
∞ 2 3

123



928 Page 14 of 19 Eur. Phys. J. C (2022) 82 :928

We note that the extremal case DH = 3 is obtained in
the asymptotic limit, �t → ∞, when �x = σg . This
makes intuitive sense. On this scale, the self-similar structure
induced by the motion of delocalised ‘points’ in the smeared
background is exactly comparable to the self-similar struc-
ture induced by the motion of the point-particle particle due
to canonical quantum diffusion. On a fixed background, the
latter increases the dimension of the path from its classical
value, 1, the topological dimension of a line, to 2. Super-
imposing the addition self-similar structure induced by the
diffusion of nonlocal points increases this value, in like man-
ner, from 2 to 3.

4.2 The momentum space representation

In the momentum space picture we define the path length
traversed in the interval �t as

〈�L̃〉� = 〈�|Û †(�t)P̂2Û (�t)|�〉1/2
, (87)

yielding

〈�L̃〉� =
√

σ̃ 2
ψ(�t) + σ̃ 2

g =
√√√√ h̄2

4σ 2
ψ(�t)

+ β2

4σ 2
g

. (88)

The total path length traversed in T = N�t is

〈L̃〉� = N 〈�L̃〉� , (89)

and the momentum-space Hausdorff length is defined as

〈L̃H〉� = 〈L̃〉� . (�P)D̃H−1, (90)

where

�P =
√

(�p)2 + σ̃ 2
g =

√

(�p)2 + β2

4σ 2
g

. (91)

Imposing the condition d 〈L̃H〉� /d(�p) = 0 yields a
polynomial equation that can be written in the form

dσψ(�t)

d(�p)
σψ(�t)(�p)D̃H−1

−(D̃H − 1)σ 2
ψ(�t)(�p)D̃H−2

+ δ2

σ 2
g

{(
h̄

2

)2 dσψ(�t)

d(�p)

σψ(�t)

�p
− (D̃H − 1)σ 4

ψ(�t)

}

×(�p)D̃H−2 , (92)

where σψ(�t) is expressed in terms of �p,

σψ(�t) = h̄

2�p

√

1 + 4(�p)4(�t)2

m2 , (93)

and the parameter δ is defined as

δ := β/h̄ . (94)

Using the minimum length and momentum scales given in
Eqs. (50) and (57) gives δ2 = 4ρ�/ρPl � 10−122 but taking
the limit δ → 0 (β → 0), which is equivalent to setting
σg → 0 and σ̃g → 0 simultaneously, yields the canonical
QM limit of the smeared space model [18]. In this case, Eq.
(92) reduces to Eq. (22), as required.

We now parameterise the time interval between measure-
ments such that

�t = ξ .
4m(�x)2

h̄
= ξ .

mh̄

(�p)2 , (95)

with ξ � 1, as before, so that (92) becomes
[

4ξ2 − 1 − (D̃H − 1)(4ξ2 + 1)](�p)D̃H−4

+ δ2

σ 2
g

(
h̄

2

)2

[4ξ2 − 1 − (D̃H − 1)(4ξ2 + 1)2
]

×(�p)D̃H−6 = 0 . (96)

Next, we use the fact that

σ̃g = β

2σg
= β

2ε�x
= β

h̄

�p

ε
= δ

�p

ε
(97)

to parameterise the resolution of the momentum measure-
ments in terms of the minimum scale as

σ̃g = ε̃ . �p = (δ/ε) .�p , (98)

where ε̃ � 1 requires ε � δ � 10−61. This condition is
physically reasonable since it is equivalent to setting �x �
σg/δ � l(D)

dS , where l(D)
dS is the asymptotic de Sitter horizon

in a D-dimensional universe. Substituting from Eqs. (95) and
(98), Eq. (92) can then be solved to give

D̃H(ξ, ε) = 1 +
(

4ξ2 − 1

4ξ2 + 1

) [
1 + (δ/ε)2

1 + (δ/ε)2(4ξ2 + 1)

]
. (99)

Equation (99) results from imposing the condition d〈L̃H〉�
/d(�p)|�p=√

ξmh̄/�t=(ε/δ)σ̃g
= 0, or, equivalently, imposing

d 〈L̃H〉� /d(�P)|
�P=

√
ξ2m2h̄2/(�t)2+σ̃ 2

g=
√

1+(δ/ε)2σ̃g/(δ/ε)
=

0. It reduces to Eq. (23) in the limit δ → 0, but for nonzero δ

the factor in square brackets is always less than one, giving
D̃H < 2/(1 + 1

4ξ2 ).
For clarity, the limiting values of the momentum space

Hausdorff dimension, D̃H(ξ, ε) (99), are shown in Table 2.
The limiting values of ε̃ = δ/ε are given in the top row and
the limiting values of ξ are given in the first column.

ε̃ / ξ 0 1

1 1.6 1
∞ 2 1.2
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It is immediately clear that D̃H � 1 when �p � σ̃g , irre-
spective of the chosen time-interval �t . However, it is impor-
tant to recognise that the extremal case D̃H � 1, �p � σ̃g
does not correspond to the classical regime. The particle path
remains embedded as a fractal in the d-dimensional space,
but its Hausdorff dimension is significantly reduced, com-
pared to its canonical QM value, by the corrections induced
by the EUP.

4.3 Fractal properties of the dark energy field and
astrophysical black holes

In this section, we consider the possible implications of our
previous analysis for the fractal properties of the dark energy
field.

We begin by noting that, for ξ � ε/(2δ), we may expand
the terms in square brackets in Eq. (99) as

D̃H(ξ, ε) � 2 − (δ/ε)2ξ2

1 + 1
4ξ2

. (100)

This condition is always valid, in any realistic experimental
scenario, since it is equivalent to setting �t � 4m�x l(D)

dS /h̄.
Combining this inequality with Eq. (95) gives �x � σg/δ �
l(D)
dS , which ensures that ε � δ (�p � σ̃g � m(D)

dS c), as
discussed above.

Interestingly, Eqs. (85) and (100) indicate the existence
of a critical case, which occurs when ξ � ε2/(2δ). This is
equivalent to setting �t � (m/h̄)l(D)

Pl l(D)
dS . For time-intervals

of this duration, we have

DH � 2 + ε2 D̃H � 2 − ε2 , (101)

so that the momentum space Hausdorff dimension is decreased
by the same amount that the position-space Hausdorff dimen-
sion is increased. By contrast, both shorter and longer
time-intervals introduce further asymmetry. For �t �
(m/h̄)l(D)

Pl l(D)
dS , DH is increased by the GUP more than D̃H

is decreased by the EUP, whereas the reverse is true for
�t � (m/h̄)l(D)

Pl l(D)
dS .

What is the physical significance of this critical time-
interval? To answer this question, we must return to the condi-
tions (66). We recall that these give the position and momen-
tum space resolutions required to minimise the product of
the generalised uncertainties, ��Xi�� Pj . This saturates
the inequality in the smeared-space GUR, giving rise to the
Schrödinger-Robertson bound (67). It is straightforward to
show that imposing Eqs. (66) corresponds to setting ε2 � δ.
Combining this with ξ � ε2/(2δ), the critical condition for
symmetry between the GUP- and EUP-induced corrections
to DH and D̃H, then gives

ε2 � δ , ξ � 1 , (102)

to within numerical factors of order unity.

For simplicity, we restrict our attention to (3 + 1) dimen-
sions from here on. In this case, Eq. (102) implies

(�x)opt � l� , (�p)opt � 1

2
m�c , (103)

where

l� = 2
1
4
√
lPlldS � 0.1 mm ,

m� = 2− 1
4
√
mPlmdS � 10−3 eV/c2 , (104)

by Eqs. (50) and (57). For m � m�, we then have

�t � t� = l�/c , (105)

and the associated energy density of the generalised particle
wave function � is comparable to the dark energy density,

ρ� = 3

4π

(�p)opt

(�x)3
optc

� �c2

8πG
� 10−30 g . cm−3 . (106)

In [40–44] it was conjectured that a space-filling ‘sea’ of
weakly interacting fermions of mass mDE � m�, existing
in a critical Hagedorn state, could give rise to the present-
day accelerated expansion of the universe. In this model,
the dark energy density is approximately constant over large
distances but appears granular over length scales of order 0.1
mm, as tentatively suggested by recent observations [45–47].
Here, we have shown that such a sea of dark energy particles
exhibits interesting fractal properties, and corresponds to a
critical case in which the GUP- and EUP-induced corrections
to to the Hausdorff dimensions in the position and momentum
space representations are symmetric, i.e., equal in magnitude
but opposite in sign, according to Eq. (101), with ε2 � δ �
10−61.

Practically, this is likely to be indistinguishable from
the canonical quantum regime. Nonetheless, the existence
of such a critical fractal state, corresponding to the criti-
cal energy density of the present-day universe [12], hints
at a deeper connection between the microscopic dynamics
induced by quantum gravity corrections to canonical QM
and the large-scale structure of the universe.

Finally, before concluding this section, we briefly consider
the implications of our model for another important type of
astrophysical system: black holes. Treating quantum fluctu-
ations of space-time ‘points’ as random walks that gradually
build up fractal structure should imply the fractalisation of
the black hole horizon. This is akin to Barrow’s notion of
a fractal-like ‘wrinkled’ black hole, leading to a modified
entropy-area law, S ∝ A1+�/2, � ∈ [0, 1] [48]. The cos-
mological implications of such a model, as applied to the
apparent cosmological horizon, are also profound (see [48–
53] for recent works) and could help to relieve the Hubble
tension [54,55].

How to derive the Barrow entropy index � remains an
open problem in quantum gravity research and it may be

123



928 Page 16 of 19 Eur. Phys. J. C (2022) 82 :928

hoped that, with future study, one possible form of � could be
predicted from within the smeared space model. In his semi-
nal paper [48], Barrow worked within canonical QM, though
he also considered what implications GUP-style modifica-
tions of the uncertainty principle could have for his proposal,
stating that “An interesting extension of these calculations is
to replace the HUP by its extension when gravitational forces
are included”. What if, instead of adding GUP effects to a
fractal Barrow entropy model, we could instead derive both
the GUP and the Barrow entropy index from a single under-
lying formalism? We will address this issue in depth in a
future work.

5 Discussion

We have investigated the fractal properties of the path of
a quantum particle in three models: canonical QM, the
minimum-length model considered previously by Nicolini
and Niedner [24,25], and the model of quantum geometry
known as ‘smeared space’, which was recently proposed in
[18–23]. In canonical QM, the fractal properties of the par-
ticle path are determined by the HUP, whereas the other two
models employ GURs.

The Nicolini-Niedner model implements the GUP by
introducing modified commutation relations and a modified
phase space volume. In this respect, it is representative of
a large class of similar GUP models proposed in the exist-
ing literature [13,14]. This approach allows us to analyse the
effects of introducing a minimum length, but not a minimum
momentum, since the momentum space representation is not
well defined [24,25]. By contrast, the smeared space model
allows us to analyse the effects of both minimum length and
momentum scales, since both the position and momentum
space pictures are well defined. The former gives rise to the
GUP, whereas the latter gives rise to the EUP. These may
then be combined to give the EGUP.

In this work, we have presented new results in all three
formalisms. In canonical QM, we extended the pioneering
analysis of Abbot and Wise [3] in two ways. First, we showed
that their estimate of the Hausdorff dimension of the fractal
particle path, DH = 2, corresponds to the asymptotic limit
�t → ∞. In this scenario, the path of the particle is sam-
pled by series of measurements that resolve its position to
within a finite volume ∼ (�x)d , in d spatial dimensions, and
successive measurements are separated by very large time-
intervals, �t � 4m(�x)2/h̄. We showed that, for smaller
time-intervals, �t � (�t)min = 4m(�x)2/h̄, where the
minimum bound follows from the energy-time uncertainty
relation, DH can be significantly reduced.

This has a clear physical interpretation and is due to the
fact that sampling interrupts the process of free quantum dif-
fusion, which is akin to Brownian motion [26]. The stochastic

motion gradually builds up the fractal structure giving rise to
self-similarity on small scales over short time-intervals and
self-similarity on larger scales at later times. Thus, at any
finite time, the quantum path-fractal is incomplete. This is
manifested as a decrease in the Hausdorff dimension, rela-
tive to its asymptotic value of DH = 2.

Second, we extended the analysis presented in [3] by
defining the Hausdorff dimension for the particle path in
momentum space, D̃H. This makes physical sense, since
any measurement that localises the particle to within a vol-
ume of order (�x)d in position space also localises it to
within a momentum space volume of order (�p)d , where
�p � h̄/(2�x). Finite-precision position measurements
therefore constitute de facto momentum measurements, and
vice versa. Our analysis showed that, in canonical QM, the
paths of the particle in the position and momentum space
representations are isomorphic, with equal Hausdorff dimen-
sions, DH = D̃H.

In the modified commutator model [24,25], Nicolini and
Niedner also analysed the late-time limit, �t → ∞. We
extended their analysis by considering shorter sampling
times, �t � (�t)min, and determined the exact depen-
dence of the Hausdorff dimension on both the sampling time-
interval and the value of the minimum length l. In this way,
DH was determined to be a function of two dimensionless
parameters, ξ = �t/(�t)min and ε = l/�x . In addition,
we addressed a loophole in their derivation of the relation
between the Hausdorff and spectral dimensions of the GUP-
modified particle path. Our analysis showed that their results
remain valid, even though a number of subtleties must be
considered, in order to derive them rigorously.

Finally, we considered both GUP-induced modifications
of the path-fractal in the position space representation and
EUP-induced modifications of the path-fractal in the momen-
tum space representation, using the smeared space model
[18–23]. In (3 + 1) spacetime dimensions the minimum
length was assumed to be of the order of the Planck length,
lPl = √

h̄G/c3, and the minimum momentum was assumed
to be of the order of the de Sitter momentum, mdSc =
h̄
√

�/3, where � is the cosmological constant, in order to
ensure consistency with the gedanken experiment derivations
of the GUP and EUP.

Drawing on our analyses of previous models, we deter-
mined the exact form of DH = DH(ξ, ε) and D̃H =
D̃H(ξ, ε̃), where ε̃ is the ratio of the minimum momentum
to the momentum-measurement resolution scale set by the
experimental apparatus that is used to resolve the quantum
path, �p. Our main results can be summarised as follows:

(i) The path-fractals in the position and momentum space
representations are no longer isomorphic, so that their
Hausdorff dimensions are no longer equal, DH �= D̃H.
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(ii) GUP-induced modifications to the position space path-
fractal increase DH whereas EUP-induced modifica-
tions to the momentum space path-fractal decrease D̃H,
relative to their canonical values.

(iii) In position space, the extremal case corresponds to set-
ting �t → ∞ and �x � lPl, giving DH � 3. This
is in accordance with our intuition that the additional
stochastic motion induced by quantum fluctuations of
the background should increase the Hausdorff dimen-
sion of the particle path in real space. The maximum
effect is observed when the path is probed at the Planck
scale, as expected.

(iv) In momentum space, the extremal case corresponds to
setting �t → ∞ and �p � mdSc, giving D̃H � 1.
This appears counter-intuitive, at first, but is the logi-
cal corollary of the increase in DH. In this model, the
momentum space picture is again dual to the position
space representation. Therefore, an increase in stochas-
tic motion in the latter, relative to canonical QM, results
in a decrease in stochastic motion in the former. We
note, however, that D̃H � 1 does not correspond to the
classical regime. The particle path remains embedded as
a one-dimensional fractal within the three-dimensional
bulk space of the smeared background.

(v) The HUP forbids us to realise the extremal cases in the
position and momentum space representations, simul-
taneously, since �x � h̄/(2�p). Roughly speaking,
fractal formation in position space is ‘bottom up’, with
self-similarity forming on small scales over short time
periods and building up on large scales over longer time-
periods. By contrast, the fractal structure of the particle
path in momentum space is formed from the ‘top down’,
beginning at large scales over short time-periods and
extending to smaller scales at late times. In canonical
QM, the self-similarity of the particle path in position
space on scales (0,�x) mirrors that on scales (�p,∞)

but the implementation of different mass/length scales
in the GUP and the EUP, i.e., the Planck scales versus
the de Sitter scales, breaks this isomorphism.

(vi) There exists a critical case in which DH and D̃H are mod-
ified symmetrically, such that DH � 2+δ, D̃H � 2−δ,
where δ2 � ρ�/ρPl � 10−122 is the ratio of the dark
energy density to the Planck density. In this case, the
energy density of the particle wave function is com-
parable to ρ� ∝ m4

�, where m� � √
mPlmdS �

10−3 eV/c2, and the sampling resolutions are chosen
such that �p � h̄/�x � h̄/(c�t) � m�c. Though
practically indistinguishable from the canonical quan-
tum regime, the existence of this critical case hints at
a deeper connection between the microscopic fractal
properties of the dark energy field and its macroscopic
influence on the present-day Universe.

Finally, we note that the present analysis contains several
limitations and could be extended in various ways to provide
a more complete picture of minimum-length and minimum-
momentum induced modifications to the fractal properties
of particle paths. In particular, it would be useful to study
the Hausdorff and spectral dimensions of paths when the
particles are confined within potentials. To the best of the
authors’ knowledge, such as study has not been attempted,
even in canonical QM. It would be interesting to consider a
simple particle-in-a-box, in all three models investigated in
this work, and to investigate the limiting scenarios in which
the box width tends to lPl or ldS.

The latter may be seen as a naive model of a quantum
particle confined within the de Sitter horizon of the present
day Universe, whereas the former represents confinement on
the smallest possible scales, corresponding to the horizon
of the Universe immediately after the big bang. It would be
interesting to see how both DH and D̃H change over cosmic
time-scales and how the they are related to the probe time �t
at different epochs.
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