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Abstract We address the prediction for the mass of the
SM-like Higgs boson in NMSSM scenarios where all BSM
particles, including the singlets, have masses at the TeV scale.
We provide a full one-loop computation of the matching con-
dition for the quartic Higgs coupling in the NMSSM, sup-
plemented with the two-loop contributions that involve the
strong gauge coupling. We discuss the impact of the one-
and two-loop corrections that are specific to the NMSSM on
the prediction for the Higgs mass, and propose a method to
estimate of the uncertainty associated with the uncomputed
higher-order terms. Finally, we illustrate how the measured
value of the Higgs mass can be used to constrain some yet-
unmeasured parameters of the NMSSM.

1 Introduction

The discovery of a Higgs boson with mass around 125 GeV
and properties compatible with the predictions of the Stan-
dard Model (SM) [1–4], combined with the negative (so far)
results of the searches for additional new particles at the LHC,
point to scenarios with at least a mild hierarchy between
the electroweak (EW) scale and the scale of beyond-the-SM
(BSM) physics. In this case, the SM plays the role of an
effective field theory (EFT) valid between the two scales.
The requirement that a given BSM model include a state that
can be identified with the observed Higgs boson can translate
into important constraints on the model’s parameter space.

One of the prime candidates for BSM physics is super-
symmetry (SUSY), which predicts scalar partners for all SM
fermions, as well as fermionic partners for all bosons. A
remarkable feature of SUSY extensions of the SM is the
requirement of an extended Higgs sector, with additional
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neutral and charged bosons. In contrast to the case of the
SM, the masses of the Higgs bosons are not free param-
eters, as SUSY requires all quartic scalar couplings to be
related to the gauge and Yukawa couplings. Moreover, radia-
tive corrections to the tree-level predictions for the quartic
scalar couplings introduce a dependence on all of the SUSY-
particle masses and couplings. In a hierarchical scenario such
as the one described above, the lightest scalar of the SUSY
model plays the role of the SM Higgs boson, and the pre-
diction for its quartic self-coupling at the SUSY scale must
coincide with the SM coupling extracted at the EW scale
from the measured value of the Higgs mass and evolved up
to the SUSY scale with appropriate renormalization group
equations (RGEs). This “matching” condition can be used
to constrain some yet-unmeasured parameters of the SUSY
model, such as, e.g., the masses of the scalar partners of the
top quarks, the stops.

In the next-to-minimal SUSY extension of the SM, or
NMSSM, the Higgs sector includes two SU (2) doublets H1

and H2 – as in the case of the minimal extension, the MSSM
– plus a complex scalar S, singlet with respect to the SM
gauge group.1 The vacuum expectation value (vev) of the
singlet, induced by the mass and interaction terms in the
soft SUSY-breaking Lagrangian, generates a superpotential
mass term for the doublets. This provides a solution to the
so-called “μ problem” of the MSSM, i.e., the question of
why the supersymmetric Higgs-mass parameter μ should be
at the same scale as the soft SUSY-breaking parameters. The
doublet–singlet interactions of the NMSSM also induce new
contributions to the prediction for the quartic self-coupling
of the SM-like Higgs boson. Depending on the considered
region of the NMSSM parameter space, these additional con-
tributions can either increase or decrease the prediction for

1 For reviews of the MSSM and of the NMSSM, we point the reader to
Ref. [5] and Refs. [6,7], respectively.
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the quartic Higgs coupling (and hence the Higgs mass) with
respect to the case of the MSSM.

The fixed-order (FO) calculation of the NMSSM Higgs
boson masses – in which the Higgs self-energies are com-
puted up to a given order in the perturbative expansion, con-
sidering the full content of heavy and light fields of the the-
ory – is quite advanced by now, albeit not yet at the level
of the corresponding calculation in the MSSM.2 After early
studies of the NMSSM Higgs sector at the tree level [9,10]
and partial calculations of the dominant one-loop correc-
tions [11–20], full calculations of the one-loop corrections –
for increasingly general versions of the NMSSM and using a
variety of renormalization schemes for the NMSSM param-
eters – were made available in Refs. [21–29]. At the two-
loop level, the corrections involving the strong gauge cou-
pling were computed in Refs. [21,30–32], those involving
only the top Yukawa coupling were computed in Ref. [33],
and those involving also the remaining superpotential cou-
plings of the NMSSM were computed in Refs. [31,34–36].
It is worth pointing out that, in all of the two-loop calcu-
lations listed above, the two-loop part of the Higgs self-
energies was computed under the approximation of van-
ishing external momentum and in the so-called “gauge-
less limit” of vanishing EW gauge couplings. These full
one-loop and partial two-loop calculations of the NMSSM
Higgs masses were implemented in various public codes,
such as NMSSMTools [37,38], SARAH/SPheno [39–45],
NMSSMCALC [46], SOFTSUSY [47,48], FlexibleSUSY
[49,50] and FeynHiggs [51–53].3 Detailed comparisons
among the predictions of these codes for the NMSSM Higgs
masses were also presented in Refs. [54,55].

Compared with the case of the FO calculation, much
less attention has been devoted so far to the calculation of
the NMSSM Higgs boson masses in the EFT approach, in
which the heavy fields are “integrated out” of the theory at
a scale comparable to their mass, leaving behind matching
conditions for the couplings of the low-energy theory. This
approach is the most appropriate to scenarios characterized
by a hierarchy between the SUSY scale and the EW scale,
where the FO calculation is plagued by large logarithms of
the ratio of the two scales. In Ref. [56] a method was proposed
to numerically obtain the boundary condition for the quartic
Higgs coupling at the SUSY scale, by matching the FO cal-
culation of the pole mass of the lightest Higgs boson in the
NMSSM, as implemented inFlexibleSUSY, with the cor-
responding calculation in the SM. A similar method was later
implemented inSARAH/SPheno in Ref. [57]. The “hybrid”

2 For details on the Higgs-mass calculation in the MSSM, as well as for
an overview of the different approaches to the Higgs-mass calculation
in SUSY models, we point the reader to Ref. [8].
3 In fact, the version of FeynHiggs that implements the NMSSM
calculations of Refs. [26–28] is not public yet.

approach to the Higgs-mass calculation in Refs. [56,57]
accounts for terms suppressed by powers of v2/M2

S – where
v stands for the EW scale and MS for the SUSY scale –
that would be neglected in a pure EFT calculation. How-
ever, this approach required successive adjustments [50,58]
to avoid the introduction of spurious large-logarithmic effects
at higher orders, and it does not provide explicit analytic
results for the matching conditions. The latter would come
in useful, e.g., to assess the relevance of the various contri-
butions, to check and compare existing calculations, or as
building blocks for further calculations.

A sensible approach to obtain explicit analytic results
for the matching conditions consists in adapting to the
NMSSM the formulas that were computed independently in
Refs. [59,60] for the one-loop matching of a general high-
energy theory (without heavy gauge bosons) on a general
renormalizable EFT. Indeed, in Ref. [60] analytic results for
the one-loop matching condition for the quartic Higgs cou-
pling were obtained in an extremely constrained NMSSM
scenario in which all of the BSM-particle masses depend
on just one parameter. Subsequently, the general formulas
of Ref. [60] were employed in Ref. [61] to study a “Split-
SUSY” scenario in which the NMSSM is matched to an EFT
that, beyond the SM fields, includes also the complex singlet
as well as the gauginos, the higgsinos and the singlino (i.e.,
the SUSY partners of the gauge bosons, the Higgs doublets
and the singlet, respectively).

In this paper we aim to improve the accuracy of the EFT
calculation of the SM-like Higgs mass in the NMSSM, and
to illustrate how the measured value of the Higgs mass can
constrain the parameter space of the model even in scenarios
where all of the BSM particles are heavy. In Sect. 2 we adapt
to the NMSSM the general formulas of Ref. [59], and obtain
the full one-loop matching condition for the quartic Higgs
coupling, for arbitrary values of all of the relevant parameters,
in the EFT setup in which the NMSSM is matched directly to
the SM. We compare our results with those of Ref. [60], in the
constrained scenario considered in that paper, and find a dis-
crepancy. We also compute directly the full two-loop-QCD
contribution to the matching condition, i.e., the contribution
of all two-loop terms that involve the strong gauge coupling.
In Sect. 3 we discuss the effect of the corrections computed in
Sect. 2 on the prediction for the mass of the SM-like Higgs
boson, including an estimate of the uncertainty associated
with uncomputed higher-order terms. We also discuss the
constraints on the NMSSM parameters that arise from the
requirement that the theory prediction for the Higgs mass
correspond to the measured value. Finally, Sect. 4 contains
our conclusions.
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2 Matching condition for the quartic Higgs coupling

In this section we describe our calculation of the full one-loop
and two-loop-QCD contributions to the matching condition
for the quartic Higgs coupling in the NMSSM. To fix our
notation, which follows the SLHA2 conventions [62], we
list here the terms in the superpotential W and in the soft
SUSY-breaking Lagrangian Lsoft that determine the Higgs
potential:

W ⊃ −λ Ŝ Ĥ1 Ĥ2 + κ

3
Ŝ3 , (1)

−Lsoft ⊃ m2
H1

H†
1 H1 + m2

H2
H†

2 H2 + m2
S S

∗S

−
(
λ Aλ S H1H2 − κ

3
Aκ S3 + h.c.

)
, (2)

where the hats denote superfields, and the SU (2) indices of
the Higgs doublets are contracted by the antisymmetric tensor
εab, with ε12 = 1. For simplicity, we take the parameters
in Eqs. (1) and (2) to be all real, and we enforce the Z3

symmetry that forbids tadpole and mass terms in W and the
corresponding SUSY-breaking terms inLsoft . We assume that
the singlet develops a vev vs ≡ 〈S〉, providing effective μ

and Bμ terms for the Higgs doublets. It is also convenient
to rotate the two doublets to the so-called Higgs basis, in
which they have the same hypercharge and only one of them
develops a vev

(
H
A

)
=

(
cos β sin β

− sin β cos β

) (−εH∗
1

H2

)
, (3)

where the rotation angle is defined by tan β ≡ v2/v1, with
vi ≡ 〈H0

i 〉. In this basis the neutral component of H has the
vev v = (v2

1 + v2
2)1/2, while A has no vev.

We consider the hierarchical scenario in which all of the
SUSY particles, as well as the Higgs doublet A and the scalar
and pseudoscalar components of the singlet, are significantly
heavier than the EW scale. We then adopt an EFT setup in
which all of the heavy particles of the NMSSM are integrated
out at a common renormalization scale Q ≈ MS , below
which the field content of the theory is just the one of the SM,
and in particular the Higgs doublet H plays the role of the SM
Higgs. In the matching of the NMSSM to the SM we work in
the limit of unbroken EW symmetry, v → 0. This amounts
to neglecting corrections suppressed by powers of v2/M2

S ,
which can be mapped to the effect of non-renormalizable,
higher-dimensional operators in the EFT Lagrangian. In this
limit we can neglect the mixing among gauginos, higgsinos
and singlino, as well as the mixing between the “left” and
“right” sfermions (i.e., the SUSY partners of the left- and
right-handed fermions of the SM).

2.1 Tree-level masses and couplings

We now discuss the tree-level masses and couplings in the
Higgs/higgsino sector. As mentioned above, we work in the
limit v → 0, as appropriate to the calculation of the matching
conditions in the EFT approach. The masses of the scalar and
pseudoscalar components of the singlet, which we decom-
pose as S = vs + (s + i a)/

√
2, are

m2
s = κ vs (Aκ + 4 κ vs) , m2

a = − 3 κ vs Aκ , (4)

where one of the minimum conditions of the tree-level scalar
potential has been used to replace the soft SUSY-breaking
mass for the singlet with a combination of the other param-
eters,

m2
S = − κ vs (Ak + 2 κ vs), (5)

and the requirement that 〈S〉 = vs be a deeper minimum
than 〈S〉 = 0 implies 3 κ vs/Aκ < −1. The mass of the
heavy Higgs doublet A is

m2
A = λ vs (Aλ + κ vs)

sin β cos β
, (6)

where again the minimum conditions have been used to
remove the dependence on m2

H1
and m2

H2
. Finally, the hig-

gsinos h̃1 and h̃2 combine into a Dirac fermion with mass
μ = λ vs , and the singlino acquires a mass ms̃ = 2 κ vs .

In the EFT approach, the calculation of the mass of the
SM-like Higgs boson H – or, alternatively, the determination
of the constraints on the NMSSM parameters that arise from
the measured value of the Higgs mass – require the calcula-
tion of the NMSSM prediction for the quartic Higgs coupling
at the matching scale.4 At the tree level, the latter reads

λtree
SM = 1

4
(g2 + g′ 2) cos2 2β + 1

2
λ2 sin2 2β − a2

hhs

m2
s

, (7)

where the first term on the r.h.s. is the D-term contribution
analogous to the one in the MSSM, the second term is the
F-term contribution specific to the NMSSM, and the third
term originates from the decoupling of the singlet scalar.
The trilinear coupling ahhs enters the NMSSM Lagrangian as
L ⊃ −(ahhs/2) h2s, where h is the neutral scalar component
of H , and at the tree level it reads

ahhs = λ√
2

[2 λ vs − (Aλ + 2 κ vs) sin 2β] . (8)

Combining Eqs. (4), (7) and (8), we remark that the contri-
bution to λtree

SM that arises from the decoupling of the singlet is
always negative, and contains a piece that does not depend
on tan β.

4 We denote the quartic Higgs coupling as λSM to distinguish it from
the doublet–singlet superpotential coupling λ. In our conventions the
SM Lagrangian contains the quartic interaction term − 1

2 λSM|H |4 .
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2.2 One-loop matching

We now describe our calculation of the full one-loop contri-
bution to the matching condition for the quartic Higgs cou-
pling. This contribution can be decomposed as:

�λ1�
SM = �λ

1�,1PI
SM + 2 λtree

SM �Z1�
h − 2

ahhs
m2

s
�a1�

hhs

+ a2
hhs

m4
s

�m2 , 1�
s + �λ

1�,RS
SM . (9)

The first term on the r.h.s. of Eq. (9) originates from one-
particle-irreducible (1PI) diagrams with heavy particles in
the loop and four external Higgs legs. The second term
arises from diagrams with a wave-function renormalization
(WFR) insertion on one of the external legs, and it involves
the derivative with respect to the external momentum of the
heavy-particle (HP) contribution to the renormalized self-
energy of the Higgs field:

�Z1�
h = − d�̂

1�, HP
hh

dp2

∣∣∣∣∣
p2=0

. (10)

The third term on the r.h.s. of Eq. (9) arises from singlet-
exchange diagrams with a HP loop insertion on one of the
trilinear Higgs–singlet vertices, while the fourth term arises
from singlet-exchange diagrams with a HP loop insertion
on the singlet propagator. The exact form of the latter term
depends on the choices made for the definitions of the singlet
vev vs and of the singlet mass m2

s entering the tree-level part
of the matching condition for λSM, see Eq. (7). Assuming that
vs corresponds to the minimum of the loop-corrected scalar
potential, and using the expression in Eq. (4) for the singlet
mass, we get

�m2 , 1�
s = − �̂1�, HP

ss

∣∣∣
p2=0

+ T̂ 1�, HP
s√
2 vs

, (11)

involving the HP contributions to the renormalized self-
energy and tadpole of the singlet. We remark that the tadpole
term in Eq. (11) originates from the fact that, with our choice
for vs , the minimum condition of the scalar potential used to
remove the explicit dependence of the singlet mass on the soft
SUSY-breaking parameter m2

S includes a loop correction,

m2
S = − κ vs (Ak + 2 κ vs) + T̂ 1�, HP

s√
2 vs

. (12)

By expressing the singlet mass as in Eq. (4), we are effec-
tively moving the tadpole term from the singlet mass to the
one-loop part of the matching condition for λSM . If we were
instead to express the singlet mass entering the tree-level part
of the matching condition as m2

s = m2
S + 2 κ vs (Aκ +

3 κ vs), while still considering vs as the minimum of the
loop-corrected potential, there would be no tadpole term in
Eq. (11). If, on the other hand, we were to consider vs as the

minimum of the tree-level potential, there would still be no
tadpole term in Eq. (11), and the two expressions for the sin-
glet mass discussed above would be equivalent to each other,
i.e. m2

s = κ vs (Aκ + 4 κ vs) = m2
S + 2 κ vs (Aκ + 3 κ vs).

However, the one-loop contribution to the matching condi-
tion for λSM in Eq. (9) would receive direct contributions from
non-1PI diagrams with tadpole insertions (see Ref. [63] for
a related discussion)

�λ
1�,tad
SM =

[√
2 κ (Ak + 6 κ vs)

a2
hhs

m6
s

−2 λ (λ − κ sin 2β)
ahhs
m4

s

]
T̂ 1�, HP
s , (13)

where the first term within square brackets arises from a
diagram with a tadpole insertion on the singlet propagator,
and the second from diagrams with tadpole insertions on the
singlet-doublet vertices.

Finally, the last term on the r.h.s. of Eq. (9) includes
contributions arising from differences in the renormalization
scheme (RS) used for the couplings of the NMSSM and for
those of the EFT valid below the matching scale (i.e., the
SM). In particular, the calculation of the matching condition
for λSM is performed in the DR scheme assuming the field
content of the NMSSM, whereas in the EFT λSM is inter-
preted as an MS parameter, and we also choose to interpret
the EW gauge couplings entering Eq. (7) as MS parameters
of the SM. We remark, however, that the presence of the sin-
glet superfield does not affect these contributions at one loop,
thus they can be taken directly from the MSSM calculation
of Refs. [64,65].

To obtain the quartic- and trilinear-vertex corrections and
the self-energies entering the various contributions to Eq. (9)
we use the formulas in appendix B of Ref. [59], which dis-
cusses the one-loop matching of a general high-energy theory
(without heavy gauge bosons) on a general renormalizable
EFT. To obtain the singlet tadpole we use analogous formulas
from Ref. [66]. This saves us the trouble of actually calculat-
ing one-loop Feynman diagrams, but requires that we adapt
to the case of the NMSSM the notation of Refs. [59,66] for
masses and interactions of scalars and fermions in a general
renormalizable theory.5 We find that, once the higgsino mass
and the Higgs–sfermion interaction parameters are expressed
in terms of μ = λ vs , the threshold correction �λ1�

SM splits
neatly into a part that does not depend explicitly on λ and
coincides with the corresponding correction in the MSSM,
see Refs. [64,65], plus an NMSSM-specific, λ-dependent
part that vanishes in the limit λ → 0.

5 Note that our conventions for the signs of tadpoles and self-energies
are opposite to those in Refs. [59,66]. Also, Refs. [59,66] define vs ≡√

2 〈S〉, whereas we define vs ≡ 〈S〉 as mentioned after Eq. (2).
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Our full formulas for �λ1�
SM, valid for generic values of

all of the relevant NMSSM parameters, are lengthy and not
particularly illuminating, therefore we make them available
on request in electronic form. For later convenience, we pro-
vide here the contribution to the NMSSM-specific part of
�λ1�

SM from diagrams involving stop squarks. The sfermion
contribution to �λ

1�,1PI
SM is the same as in the MSSM once

we set μ = λ vs , and in the limit v → 0 there are no one-
loop sfermion contributions to the self-energy and tadpole
of the singlet. The NMSSM-specific stop contribution to the
one-loop matching condition for λSM thus reduces to
(
�λ

1�, t̃
SM

)
λ

= 2 (λtree
SM)λ �Z1�, t̃

h − 2
ahhs
m2

s
�a1�, t̃

hhs . (14)

In the first term on the r.h.s. of Eq. (14) above,
(
λtree

SM

)
λ

=
λ2 sin2 2β/2 − a2

hhs/m
2
s is the λ-dependent part of the tree-

level matching condition for λSM, see Eq. (7), and �Z1�, t̃
h is

the stop contribution to the Higgs WFR:

�Z1�, t̃
h = − g2

t Nc

(4π)2

X2
t

6mQ3mU3

F̃5

(
mQ3

mU3

)
, (15)

where Nc = 3 is a color factor, Xt = At − μ cot β is the
trilinear Higgs-stop interaction parameter (with At being the
corresponding soft SUSY-breaking coupling), mQ3 and mU3

are the soft SUSY-breaking masses for the left and right stop,
respectively, and the loop function F̃5(x) is defined in the
appendix A of Ref. [64]. In the second term on the r.h.s. of
Eq. (14) above, the tree-level quantitiesm2

s and ahhs are given

in Eqs. (4) and (8), respectively, while �a1�, t̃
hhs is the one-loop

stop contribution to the Higgs–singlet coupling in the limit
v → 0,

�a1�,t̃
hhs = √

2 Nc
λ g2

t

(4π)2

Xt cot β

m2
Q3

− m2
U3[

m2
Q3

(
1 − ln

m2
Q3

Q2

)
− m2

U3

(
1 − ln

m2
U3

Q2

)]
.

(16)

The NMSSM-specific sbottom contribution
(
�λ

1�, b̃
SM

)
λ

can

be obtained from Eqs. (14)–(16) with the replacements gt →
gb, Xt → Xb, cot β → tan β and mU3 → mD3 , where gb
is the bottom Yukawa coupling, Xb = Ab − μ tan β , and
mD3 is the soft SUSY-breaking mass for the right sbottom.
Analogous replacements (with Nc = 1) yield also the stau
contribution. For simplicity, we set the tiny Yukawa cou-
plings of the first two generations to zero, hence there are
no NMSSM-specific contributions to �λ1�

SM from the corre-
sponding sfermions.

As a non-trivial check of our full one-loop calculation, we
verified that by taking the derivative of the matching condi-
tion for λSM with respect to ln Q2 we recover the correspond-
ing one-loop RGE of the SM, i.e.,

(4π)2 d

d ln Q2

(
λtree

SM + �λ1�
SM

)

= λtree
SM

(
6 λtree

SM + 6 g2
t + 6 g2

b + 2 g2
τ − 9

2
g2 − 3

2
g′ 2

)

− 6 g4
t − 6 g4

b − 6 g4
τ + 9

8
g4 + 3

8
g′ 4 + 3

4
g2g′ 2 . (17)

To this effect, we must combine the explicit scale dependence
of our result for �λ1�

SM with the implicit scale dependence of
all of the parameters entering λtree

SM. For the latter we use the
RGEs of the NMSSM as listed in Ref. [7], with the exception
of the EW gauge couplings for which our definitions require
that we use the RGEs of the SM.

As mentioned in Sect. 1, the authors of Ref. [60] obtained
the matching condition for λSM in an extremely constrained
NMSSM scenario in which all of the masses and couplings in
the singlet/singlino sector depend only on λ, tan β and a lone
mass parameter m0. After adapting our formulas for �λ1�

SM to
this constrained scenario, we compared them with those of
Ref. [60],6 but we found a discrepancy. Indeed, it appears that
in Ref. [60] the one-loop matching condition for λSM misses
a tadpole contribution analogous to the one in our Eq. (11).
This is inconsistent with the fact that the authors of Ref. [60]
appear to have defined the singlet mass entering λtree

SM as in
our Eq. (4) – thus obtaining m2

s = 2/3m2
0 in the constrained

scenario – and vs as the vev of the loop-corrected potential,
as can be inferred from the absence of direct contributions
from tadpole-insertion diagrams in their results.

2.3 Two-loop-QCD matching

As mentioned earlier, the one-loop squark contribution to
the matching condition for λSM splits into a λ-independent
part that coincides with the analogous MSSM result and a λ-
dependent part that is specific to the NMSSM. This structure
allows for a relatively economical calculation of the two-
loop contribution that involves the strong gauge coupling.
Indeed, once we identify μ = λ vs , the contribution from
two-loop 1PI diagrams that involve the strong interactions of
the squarks is the same as in the MSSM, and has already been
computed in Refs. [64,67]. Furthermore, the fact that there
are no squark contributions to the singlet self-energy and
tadpole at one loop implies that there are no two-loop con-
tributions involving the strong interactions either. In analogy
with Eqs. (9) and (14), the NMSSM-specific, λ-dependent
two-loop-QCD contribution to the matching condition for
λSM can thus be decomposed as

6 We obtained the formulas of Ref. [60] for �λ1�
SM in the constrained

NMSSM scenario from their implementation in SARAH/SPheno. We
also remark that we cannot reproduce Fig. 12 of Ref. [60] beyond the
qualitative level.
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(
�λ

2�,QCD
SM

)
λ

= 2
(
λtree

SM

)
λ

�Z2�,QCD
h

−2
ahhs
m2

s
�a2�,QCD

hhs +
(
�λ

2�,RS
SM

)
λ

.

(18)

The quantity denoted as �Z2�,QCD
h in the first term on the

r.h.s. of Eq. (18) above is the two-loop contribution to the
Higgs WFR from diagrams that involve the strong interac-
tions of the squarks. Again, once we identify μ = λ vs , this
contribution is the same as in the MSSM and has already been
computed in Ref. [67]. Explicit formulas for �Z2�,QCD

h in the
limit of degenerate squark and gluino masses can be gleaned
from Eqs. (13)–(17) in Sect. 2.2 of that paper, and the formu-
las with full dependence on all of the relevant parameters are
available on request in electronic form. It is worth noting that,
in the EFT calculation of the SM-like Higgs mass, the WFR
contribution in Eq. (18) accounts for effects that, in the corre-
sponding FO calculation, arise from the external-momentum
dependence of the two-loop self-energies; in particular, it is
related to the first-order term in the p2-expansion of �̂

2�,q̃
hh ,

the contribution to the renormalized Higgs-boson self-energy
from two-loop diagrams involving the strong interactions of
the squarks. Higher-order terms in the p2-expansion of �̂

2�,q̃
hh

are suppressed by powers of v2/M2
S and can be neglected in

our hierarchic scenario, while the momentum dependence of
the two-loop quark–gluon contribution to the self-energy is
fully accounted for in the calculation of the relation between
λSM and Mh at the EW scale, see Sect. 3. Hence, the EFT
approach allows for a straightforward inclusion of external-
momentum effects that are of the same order in the relevant
couplings as the other two-loop contributions computed in
this section. In contrast, these effects are missed by the FO
calculations of the NMSSM Higgs masses in Refs. [21,30–
32], where the two-loop part of the self-energies is computed
– whether “diagrammatically” or in the effective-potential
approach – under the approximation of vanishing external
momentum.

The quantity denoted as �a2�,QCD
hhs in the second term on

the r.h.s. of Eq. (18) is the contribution to the trilinear Higgs–
singlet coupling from two-loop, 1PI diagrams that involve the
strong interactions of the squarks. This contribution is not
available in the literature, but can be straightforwardly com-
puted with the same effective-potential techniques adopted in
Refs. [64,67] for the calculation of the two-loop-QCD con-
tributions to the matching condition for λSM. In particular, we
can write

�a2�,QCD
hhs = ∂3�V 2�, q̃

∂2h ∂s

∣∣∣∣∣
v=0

, (19)

where �V 2�, q̃ is the contribution to the NMSSM scalar
potential from two-loop diagrams involving the strong inter-
actions of the stop and sbottom squarks (the first two gen-

erations of squarks do not contribute in the limit in which
we neglect the corresponding Yukawa couplings). The stop
contribution to �V 2�, q̃ can be found, e.g., in Eq. (28) of
Ref. [64], and the sbottom contribution can be obtained from
the stop one with trivial replacements. The squark masses
and mixing angles in �V 2�, q̃ are then expressed as function
of field-dependent quark masses, and Eq. (19) becomes

�a2�,QCD
hhs

= − λ g2
t√
2

cot β
d

dXt

[(
Dtb

1 + m2
t Dt

2

)
�V 2�, t̃

]
mt→0

− λ g2
b√
2

tan β
d

dXb

[(
Db

1 + m2
b Db

2

)
�V 2�, b̃

]
mb→0

,

(20)

where we define the operators

Dq
i ≡

(
d

dm2
q

)i

. (21)

We use relations such as those in Eq. (32) of Ref. [64] for the
derivatives of the field-dependent parameters with respect to
the quark masses, then we obtain the limits of vanishing quark
masses as described in that paper (note that in this calculation
we do not encounter terms that diverge formq → 0). Finally,
the derivatives with respect to the parameters Xt and Xb in
Eq. (20) account for the derivative with respect to the singlet
field in Eq. (19). In units of g2

s CF Nc/(4π)4, where gs is the
strong gauge coupling and CF = 4/3 and Nc = 3 are color
factors, we obtain for the stop contribution

(
�a2�,QCD

hhs

)t̃ =−2
√

2 λ g2
t cot β

{
Xt

[
− 2

+
(

2 − 2 (1 + xQ) ln xQ
xQ − xU

)
ln

m2
g̃

Q2 − 1

2
ln2

m2
g̃

Q2

+2 (1 + 2 xQ) ln xQ
xQ − xU

− (x2
Q + xQ − xU ) ln2 xQ

(xQ − xU )2

+ xQ xU ln xQ ln xU
(xQ − xU )2 − 2 (1 − xQ)

xQ − xU
Li2

(
1 − 1

xQ

)]

+mg̃

[
5

2
−

(
2 − 2 xQ ln xQ

xQ − xU

)
ln

m2
g̃

Q2 + 1

2
ln2

m2
g̃

Q2

−4 xQ ln xQ
xQ − xU

− (1 − xQ) ln2 xQ
xQ − xU

− 2 (1 − xQ)

xQ − xU
Li2

(
1 − 1

xQ

)]

+ (xQ ←→ xU )

}
, (22)

where mg̃ is the gluino mass, and we defined the ratios
xQ = m2

Q3
/m2

g̃ and xU = m2
U3

/m2
g̃ . Again, the sbot-

tom contribution can be obtained from the stop contribution
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in Eq. (22) with the replacements gt → gb, Xt → Xb,
cot β → tan β and mU3 → mD3 .

The third term on the r.h.s. of Eq. (18) contains in fact two
separate contributions that arise from choices of renormal-
ization scheme for the couplings involved in the matching
condition:

(
�λ

2�,RS
SM

)
λ

= g2
s CF Nc

(4π)4 (g2
t + g2

b)
(
λtree

SM

)
λ

+2 �gt
(
�λ

1�, t̃
SM

)
λ
. (23)

The first term on the r.h.s. of Eq. (23) above is the NMSSM-
specific completion of the contribution in Eq. (21) of
Ref. [67], and stems from the fact that SUSY provides a
prediction for the DR-renormalized quartic Higgs coupling,
whereas we interpret the parameter λSM in the EFT as MS.
The second term stems from the fact that we choose to express
the one-loop part of the matching condition for λSM in terms
of the MS-renormalized top Yukawa coupling of the SM
rather than the corresponding DR-renormalized coupling of

the NMSSM.7 The quantity
(
�λ

1�, t̃
SM

)
λ

is given in Eqs. (14)–

(16), while �gt denotes the one-loop, O(g2
s ) part of the dif-

ference between the MS coupling of the SM and the DR
coupling of the NMSSM,

�gt = −g2
s CF

(4π)2

[
1 + ln

m2
g̃

Q2 + F̃6

(
mQ3

mg̃

)

+ F̃6

(
mU3

mg̃

)
− Xt

mg̃
F̃9

(
mQ3

mg̃
,
mU3

mg̃

)]
, (24)

where the loop functions F̃6(x) and F̃9(x, y) are defined in
the appendix A of Ref. [64].

Finally, we verified that, by taking the derivative with
respect to ln Q2 of the NMSSM-specific part of the two-
loop-QCD matching condition for λSM, we do recover the
terms involving g2

s that we should expect from the RGE of
the quartic Higgs coupling of the SM:

(4π)4 d

d ln Q2

[
(λtree

SM)λ +
(
�λ

1�, q̃
SM

)
λ

+
(
�λ

2�,QCD
SM

)
λ

]

⊃ 40 g2
s (g2

t + g2
b) (λtree

SM)λ . (25)

To this effect, we must combine the explicit scale dependence

of our result for
(
�λ

2�,QCD
SM

)
λ

with the implicit scale depen-

dence of the parameters in (λtree
SM)λ whose RGEs have QCD

contributions at two loops (namely λ, Aλ and tan β), and of
the parameters in the one-loop stop and sbottom contribu-

tions
(
�λ

1�, q̃
SM

)
λ

whose RGEs have QCD contributions at

7 In contrast, the bottom Yukawa coupling is defined as the DR-
renormalized coupling of the NMSSM, to avoid the introduction of
spurious tan β-enhanced effects at two loops (see Ref. [65]).

one loop (namely the soft SUSY-breaking masses and trilin-
ear couplings of the squarks, and the top and bottom Yukawa
couplings).

3 Higgs-mass prediction and constraints on the
NMSSM parameters

In this section we analyze the impact of the one- and two-
loop corrections to the quartic Higgs coupling computed in
Sects. 2.2 and 2.3, respectively, on the prediction for the
mass of the lightest Higgs scalar of the NMSSM, focusing on
the scenario in which all of the SUSY particles, the heavier
SU (2) doublet, and the scalar and pseudoscalar components
of the singlet are all significantly heavier than the EW scale.
We also propose a method to estimate the so-called “theory
uncertainty” of our calculation, i.e., the uncertainty associ-
ated with uncomputed higher-order corrections. Finally, we
discuss how the prediction for the mass of the SM-like Higgs
boson can constrain the parameter space of the NMSSM even
in scenarios in which all of the BSM particles are heavy.

Our numerical calculations rely on an EFT setup analo-
gous to the one developed in Ref. [67]. We use the public
code mr [68] to extract – at full two-loop accuracy – the
MS-renormalized parameters of the SM Lagrangian from a
set of physical observables, and to evolve them up to the
SUSY scale using the three-loop RGEs of the SM. For the
physical observables other than the Higgs mass, we use as
input for the code the PDG values GF = 1.1663787 ×
10−5 GeV−2, MZ = 91.1876 GeV, MW = 80.379 GeV,
Mt = 172.76 GeV, Mb = 4.78 GeV and αs(mZ ) =
0.1179 [69]. In order to obtain a prediction for the Higgs mass
from a full set of SUSY parameters, we vary the value of the
pole mass Mh that we give as input to mr until the value of
the MS-renormalized SM parameter λSM(Q) returned by the
code at the SUSY scale Q = MS coincides with the NMSSM
prediction for the quartic coupling of the lightest scalar. In
alternative, we can treat the measured value of the Higgs
mass, Mh = 125.25 GeV [69], as an additional input param-
eter, and use the matching condition on the quartic Higgs
coupling at the SUSY scale to constrain the NMSSM param-
eter space. In this case we vary one of the SUSY parameters
until the NMSSM prediction for the quartic Higgs coupling
coincides with the value of λSM(MS) returned by mr.

To obtain the NMSSM prediction for the quartic cou-
pling of the SM-like Higgs boson at the SUSY scale, we
combine the tree-level prediction in Eq. (7) with the full
one-loop contribution computed in Sect. 2.2, the NMSSM-
specific, λ-dependent two-loop-QCD contribution computed
in Sect. 2.3, and the λ-independent two-loop contributions
that are in common with the MSSM, given in Refs. [64,65,
67]. As a result, our determination of the matching condi-
tion for λSM includes all of the two-loop contributions that
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involve the strong gauge coupling, whereas the remaining
two-loop contributions are included only under the approxi-
mations of vanishing EW gauge couplings and of vanishing
λ. While the first approximation is generally good in view
of the relative sizes of g, g′, gt and gs , the goodness of the
second approximation obviously depends on the considered
values of λ. In particular – similarly to what was found in
Refs. [31,34–36] in the context of the FO calculation of the
NMSSM Higgs masses – when λ is of O(1) the two-loop,
NMSSM-specific contributions that are omitted in our pre-
diction for λSM can become as large as the dominant MSSM-
like contributions that are included, i.e., those of O(g4

t g
2
s )

and O(g6
t ). We recall that, in the EFT approach, the (next-

to)n-leading-logarithmic (NnLL) resummation of the large
logarithmic corrections requires the combination of (n+1)-
loop RGEs with n-loop matching conditions at the boundary
scales. Our calculation thus provides a full NLL resummation
of the large logarithmic corrections, but, in view of the incom-
plete determination of the two-loop boundary condition for
λSM at the SUSY scale, only a partial NNLL resummation.
An estimate of the impact of the omitted contributions seems
desirable.

As was discussed already in Ref. [64], the EFT calcula-
tion of the Higgs mass in scenarios where all heavy particles
are integrated out at a common scale MS is subject to three
distinct sources of theory uncertainty: (i) a “SM uncertainty”
stemming from uncomputed higher-order corrections in the
relations between the physical observables taken as input
for the calculation and the MS-renormalized parameters of
the SM Lagrangian; (ii) a “SUSY uncertainty” stemming
from uncomputed higher-order corrections in the matching
conditions for the couplings of the SM Lagrangian at the
scale MS ; (iii) an “EFT uncertainty” associated to the cor-
rections suppressed by powers of v2/M2

S that are omitted
when the EFT Lagrangian is identified with the renormaliz-
able Lagrangian of the SM in the unbroken phase of the EW
symmetry. We neglect the third source of uncertainty in the
following, because we consider scenarios in which all BSM
particles are heavy enough to make the O(v2/M2

S) effects
fully negligible. In contrast, we aim to simulate the effects of
uncomputed higher-order corrections in the matching condi-
tions at both the EW scale and the SUSY scale.

To obtain an estimate of the SM uncertainty, we change
the accuracy of the determination of the top Yukawa coupling
in mr, removing corrections of O(g6

s ) and higher that are
implemented by default in the code. This simulates the effect
of uncomputed N3LL corrections that involve the highest
powers of the strong gauge coupling, which are expected to
be the largest among those neglected in the “SM” part of the
calculation (see, e.g., the discussion in Sect. 6.3.1 of Ref. [8]).

For what concerns the SUSY uncertainty, we combine
two estimates of different classes of higher-order effects. To
obtain our first estimate, which targets the uncomputed two-

loop and higher-order corrections that involve the top Yukawa
coupling, we change the definition of the coupling gt entering
the matching condition for λSM from the MS-renormalized
parameter of the SM to the DR-renormalized parameter of
the NMSSM. The two definitions are related by

gNMSSM
t (MS) = gSM

t (MS)

1 − �gMSSM
t − (�gt )λ

, (26)

where �gMSSM
t is the threshold correction given for the

MSSM in Refs. [64,65], and (�gt )λ is the λ-dependent con-
tribution that turns the MSSM coupling into the NMSSM
coupling. This contribution is related to the λ-dependent part
of the Higgs WFR by (�gt )λ = −(�Zh)λ/2. For the latter
we find:

(4π)2 (�Zh)λ

= − a2
hhs

2m2
s

− a2
hHs

6mA ms
F̃5

(
ms

mA

)
− a2

hAa
6mA ma

F̃5

(
ma

mA

)

+ λ2

3

[
3 ln

μ2

Q2 − sin 2β f

(
ms̃

μ

)
+ g

(
ms̃

μ

)]
, (27)

where the terms in the first line are the contributions of
diagrams involving scalars or pseudoscalars, while those in
the second line are the contributions of diagrams involving
higgsinos and singlino. The loop functions F̃5(x), f (x) and
g(x) are defined in the appendix A of Ref. [64]. The coupling
ahhs is given in Eq. (8), and the remaining trilinear couplings
are

ahHs = − λ√
2

(Aλ + 2 κ vs) cos 2β ,

ahAa = λ√
2

(Aλ − 2 κ vs) . (28)

The inclusion of this λ-dependent contribution in the redef-
inition of gt , see Eq. (26), simulates the effect of two-loop
contributions of O(g4

t λ
2) to the matching condition for λSM.

As mentioned above, these can in principle compete with
the known O(g4

t g
2
s ) and O(g6

t ) contributions when λ is large
enough. We remark that, to avoid the inclusion in our uncer-
tainty estimate of effects that are in fact accounted for by our
calculation, the redefinition of gt must be accompanied by
shifts in the known two-loop contributions to the matching
condition for λSM. In particular, in the NMSSM-specific, λ-
dependent two-loop-QCD contribution computed in Sect. 2.3
we must remove the second term on the r.h.s. of Eq. (23). The
analogous shifts for the MSSM-like two-loop contributions
can be trivially obtained from Refs. [64,65,67].

Our second estimate of the SUSY uncertainty targets
the uncomputed two-loop and higher-order corrections that
involve the highest powers of the doublet–singlet coupling
λ. We replace the definitions in Eq. (4) for the scalar and
pseudoscalar singlet masses with m2

s = m2
S + 2 κ vs (Aκ +

3 κ vs) and m2
a = m2

S + 2 κ vs (−Aκ + κ vs), respectively.
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The two sets of mass definitions are equivalent at the tree
level, but they differ at one loop, because the soft SUSY-
breaking singlet massmS is related to the other parameters as
in Eq. (12) when vs is defined as the vev of the loop-corrected
potential. As discussed in Sect. 2.2, the change in the defini-
tion of the scalar singlet mass entering the tree-level part of
the matching condition for λSM must be compensated for at
the one-loop level by removing the tadpole term in Eq. (11).
On the other hand, the change in the definition of both scalar
and pseudoscalar singlet masses entering the one-loop part
of the matching condition simulates the effect of two-loop
λ-dependent corrections that do not involve the strong gauge
coupling, and the change in the definition of the scalar singlet
mass entering the two-loop-QCD part simulates the effect of
three-loop λ-dependent corrections that do involve the strong
gauge coupling.

To assess the impact of the different contributions to the
matching condition for the quartic Higgs coupling computed
in Sect. 2, we plot in Fig. 1 the prediction for the mass of
the SM-like Higgs boson as a function of λ. We consider
an NMSSM scenario in which all sfermions of the first and
second generations have degenerate masses of 2 TeV, while
those of the third generation (namely stops, sbottoms and
staus) have degenerate masses MS = 5 TeV. The trilinear
Higgs-stop interaction parameter is fixed as Xt = √

6 MS ,
which maximizes the one-loop stop contribution to λSM. For
given values of μ and tan β this determines the soft SUSY-
breaking coupling At , and the corresponding sbottom and
stau couplings are fixed as Ab = Aτ = At . For consistency
with our calculation of the two-loop contributions to λSM,
all sfermion masses and trilinear couplings are interpreted
as DR-renormalized parameters, at a scale that we choose
as Q = MS . The soft SUSY-breaking masses of bino, wino
and gluino are fixed as M1 = 1 TeV, M2 = 2 TeV and
M3 = 2.5 TeV, respectively.

In contrast to the case of the MSSM, in which the tree-
level masses of the heavy Higgs bosons and of the higgsinos
in the limit of unbroken EW symmetry are determined by the
three parameters μ, Bμ and tan β (with m2

A = 2 Bμ/ sin 2β),
the Higgs/higgsino sector of the NMSSM depends on the six
parameters λ, κ , vs , Aλ, Aκ and tan β. In the plots of Fig. 1
we choose to vary the doublet–singlet coupling λ, because
that parameter determines the size of the NMSSM-specific
contributions to the quartic Higgs coupling, and in the limit
λ → 0 we recover the MSSM prediction. For the remaining
parameters, we choose: κ = λ; a tree-level higgsino mass
μ = λ vs = 1.5 TeV, which determines vs for a given value
of λ; a tree-level heavy-Higgs-doublet mass mA = 3 TeV,
which determines Aλ via Eq. (6) for a given value of tan β;
and Aκ = −2 TeV. Finally, we fix tan β = 3 in the left
plot of Fig. 1 and tan β = 5 in the right plot. For consis-
tency with our calculation of the one-loop contributions to
λSM, all of these six parameters – which enter the boundary

condition for λSM already at the tree level – are interpreted
as DR-renormalized parameters, also at the scale Q = MS .
Our choices of parameters correspond to a tree-level mass
of 3 TeV for the singlino, and to tree-level masses of about
2.45 TeV and 3 TeV for the scalar and pseudoscalar compo-
nents of the singlet, respectively.

In all of the lines in the plots of Fig. 1, the Higgs-mass
prediction includes all of the contributions to the matching
condition for λSM that are in common with the MSSM, so that
the left edge of the plot where λ = 0 corresponds to our best
prediction for Mh in the so-called “MSSM limit”. The three
lines in each plot correspond to different accuracies for the
inclusion of the NMSSM-specific contributions. The green,
dot-dashed line corresponds to the inclusion of the tree-level
contribution

(
λtree

SM

)
λ

= λ2 sin2 2β/2 − a2
hhs/m

2
s alone; the

blue, dashed line corresponds to the inclusion of the full
one-loop, λ-dependent contribution computed in Sect. 2.2;
the red, solid line corresponds to the additional inclusion of
the two-loop-QCD, λ-dependent contribution computed in
Sect. 2.2. The band around the red, solid line corresponds
to our total estimate of the theory uncertainty of the Higgs-
mass prediction, obtained by summing linearly the absolute
values of the three estimates described above. Comparing
the different contributions, we find that the SM uncertainty
estimate alone is generally larger than the combination of the
two SUSY uncertainty estimates.

The comparison between the left and right plots in Fig. 1
shows that, in our scenario, the λ-dependent contributions
increase the prediction for Mh for lower values of tan β,
and decrease it for higher values of tan β. This behavior is
driven already at the tree level by the tan β dependence of(
λtree

SM

)
λ
, whose first, positive-definite term is suppressed at

larger tan β, whereas the second, negative-definite term con-
tains a tan β-independent piece, as remarked after Eq. (8).
The comparison between the dot-dashed and dashed lines in
each plot shows that the full one-loop, λ-dependent contribu-
tion to the matching condition for λSM can become substan-
tial when λ � 0.5, changing the prediction for Mh by several
GeV. Finally, the comparison between the dashed and solid
lines shows that the effect on the Higgs-mass prediction of
the two-loop-QCD, λ-dependent contribution is quite mod-
est, and it is much smaller than our estimate of the uncom-
puted higher-order effects. This is likely related to the fact
that, with our choices of parameters, the λ-dependent stop
contribution is suppressed already at the one-loop level. In
particular, the second term in Eq. (14) vanishes for degener-
ate stop masses and Q = MS , and the first term only amounts
to a 2% shift of the tree-level contribution.

The knowledge of the mass of the SM-like Higgs
boson can be used to constrain the parameters of the yet-
undiscovered SUSY sector. For example, Fig. 3 of Ref. [67]
showed the values of MS and Xt – i.e., the two parameters
that most affect the stop contribution to the matching con-
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Fig. 1 Higgs-mass prediction as a function of λ, for tan β = 3 (left)
or tan β = 5 (right), in the NMSSM scenario described in the text.
The three lines in each plot correspond to different accuracies of the

NMSSM-specific contribution to the matching condition for λSM. The
band around the red, solid line is our estimate of the theory uncertainty

dition for λSM – that are selected by the requirement that
the prediction for Mh coincide with its measured value in
an MSSM scenario with moderately large tan β. Here we
keep the parameters in the stop sector fixed, and exploit the
Higgs-mass prediction to constrain two of the parameters that
determine the NMSSM-specific contribution to the matching
condition for λSM already at the tree level. In Fig. 2 we show
the values of tan β and λ that yield the required prediction
Mh = 125.25 GeV in a representative NMSSM scenario with
heavy BSM particles. We adopt the same choices of SUSY
parameters as in Fig. 1, except that i) we set MS to 3 TeV (red
lines), 5 TeV (blue lines) or 10 TeV (green lines), and i i) we
set either κ = λ (left plot) or κ = 2 λ (right plot).8 Each of
the lines in Fig. 2 is obtained with our full one-loop and par-
tial two-loop calculation of the matching condition for λSM,
and is accompanied by an uncertainty estimate obtained as
described earlier.9

The behavior of the different lines in the plots of Fig. 2
can be qualitatively understood by considering the depen-
dence on tan β and λ of the three terms entering the tree-
level matching condition for λSM, see Eq. (7). The first term,
which is in common with the MSSM, vanishes for tan β = 1
and increases for increasing tan β, reaching a constant posi-
tive value at large tan β. With our choices for the parameters
that determine ahhs andms , the remaining, NMSSM-specific
contribution

(
λtree

SM

)
λ

= λ2 sin2 2β/2 − a2
hhs/m

2
s scales as

λ2, with a coefficient that is positive at low values of tan β,
decreases for increasing tan β, eventually turns negative, and

8 For κ = 2 λ the tree-level masses of the singlet fields become ms ≈
5.5 TeV, ma ≈ 4.2 TeV and ms̃ = 6 TeV.
9 The kinks in Fig. 2 are artifacts induced by the symmetrization of the
uncertainty bands in the tan β–λ plane.

finally reaches a constant negative value at large tan β. In each
of the plots of Fig. 2, the line corresponding to a given value
of MS is split into a left branch at lower tan β, where the
NMSSM-specific contribution to the matching condition for
λSM is positive, and a right branch at higher tan β, where the
NMSSM-specific contribution is negative. The point where
each line meets the x axis corresponds to a value of tan β

that we denote as (tan β)MSSM, for which the required predic-
tion for Mh is obtained in the “MSSM limit” λ → 0. This
depends on the value of MS , because heavier stops induce
a larger positive contribution to the matching condition for
λSM and thus allow for lower tan β in the MSSM limit.

In the left plot of Fig. 2, where we set κ = λ, the NMSSM-
specific contribution to the matching condition for λSM turns
negative for a value of tan β that is lower than (tan β)MSSM.
At the left edge of the plot, where tan β = 1, the MSSM
prediction for the Higgs mass is too low, and the required
prediction Mh = 125.25 GeV is obtained thanks to the posi-
tive NMSSM-specific contribution. Moving to higher values
of tan β, the value of λ that yields the required prediction
for Mh decreases at first, as the tree-level, MSSM-like con-
tribution to λSM increases. However, the coefficient of λ2 in
the tree-level,10 NMSSM-specific contribution decreases for
increasing tan β, and as it approaches zero the value of λ

that yields Mh = 125.25 GeV shoots up. In the gap between
the value of tan β for which the NMSSM-specific contri-
bution turns negative and (tan β)MSSM there is no value of λ

that yields the required Higgs-mass prediction. Finally, when

10 We refer only to the tree-level contribution for a qualitative interpre-
tation of the plots. The presence of the radiative corrections, some of
which scale as λ4 in our scenario, does not alter the overall behavior
described here.
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Fig. 2 Regions of the tan β–λ plane that yield Mh = 125.25 GeV, for
κ = λ (left) or κ = 2 λ (right), in the NMSSM scenario described in the
text. The three sets of lines in each plot correspond to different values

of the common mass term for the third-generation sfermions. The band
around each line is our estimate of the theory uncertainty

tan β is larger than (tan β)MSSM the MSSM prediction for Mh

is too high, and the required prediction is obtained thanks
to the negative NMSSM-specific contribution. As both the
coefficient of λ2 in

(
λtree

SM

)
λ

and the MSSM prediction for Mh

reach a plateau at large tan β, so does the value of λ that
brings the Higgs mass down to 125.25 GeV.

In the right plot of Fig. 2, where we set κ = 2 λ, the quali-
tative behavior of the red line corresponding to MS = 3 TeV
is the same as in the left plot. However, the blue and green
lines corresponding to higher values of MS behave differ-
ently. In this case, the value of tan β for which the NMSSM-
specific contribution to the matching condition for λSM turns
negative is higher than (tan β)MSSM. Consequently, as tan β

approaches (tan β)MSSM from the left, the requirement that
Mh = 125.25 GeV drives λ to zero. On the right of
(tan β)MSSM there is a gap in which the MSSM prediction
for Mh is too high but the NMSSM-specific contribution
remains positive, so there is no value of λ that yields the
required Higgs-mass prediction. Finally, when the NMSSM-
specific contribution does turn negative, the value of λ that
brings the prediction for Mh down to 125.25 GeV decreases
with increasing tan β, and eventually reaches a plateau as in
the left plot.

4 Conclusions

If SUSY is realized in nature, there appears to be at least a
mild hierarchy between the scale of the superparticle masses
and the EW scale. In this kind of hierarchical scenario the
prediction for the mass of the SM-like Higgs boson is best
obtained in the EFT approach, which allows for the all-orders

resummation of potentially large corrections enhanced by
powers of the logarithm of the two scales. The EFT calcu-
lation of the Higgs masses in the MSSM is by now quite
advanced, with full one-loop and partial two-loop results for
the matching conditions for the Higgs self-couplings under a
variety of mass hierarchies (see Ref. [8] for a review). In con-
trast, in the case of the NMSSM analytic calculations of the
matching conditions have been performed so far only at the
one-loop level, in an extremely constrained scenario where
all BSM particles are heavy and their masses depend on just
one parameter [60], and in a Split-SUSY scenario where the
low-energy EFT includes also the scalar and pseudoscalar
components of the singlet plus all of the SUSY fermions [61].

In this paper we obtained a full one-loop result, valid for
arbitrary values of all relevant parameters, for the match-
ing condition for the quartic coupling of the Higgs boson,
in the NMSSM scenario where all BSM particles are heavy
and the EFT valid below the SUSY scale is just the SM.
To this purpose, we adapted to the NMSSM the results of
Ref. [59], which provides the one-loop matching of a gen-
eral high-energy theory (without heavy gauge bosons) on a
general renormalizable EFT. We compared our results with
those of Ref. [60] – in the constrained scenario discussed in
that paper – and found a discrepancy related to the definition
of the singlet mass entering the tree-level part of the matching
condition for λSM. In addition to the full one-loop calculation
of the matching condition, we directly computed the two-
loop contributions that involve the strong gauge coupling.
Our result includes also terms associated with the external-
momentum dependence of the two-loop Higgs self-energy
that are missed by the FO calculations of the corresponding
corrections in Refs. [21,30–32]. Finally, we proposed a way
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to extend to the NMSSM the estimates of the theory uncer-
tainty associated with uncomputed higher-order effects that
had previously been developed for the MSSM.

We found that, in the NMSSM scenario with heavy BSM
particles, the matching condition for the quartic Higgs cou-
pling splits neatly into a part that is in common with the
MSSM, and an NMSSM-specific part which vanishes for
λ → 0. We studied the numerical impact on the Higgs-
mass prediction of the different contributions to the NMSSM-
specific part of the matching condition, and found that
the one-loop and two-loop-QCD contributions modify only
moderately, and only for quite large values of λ, the leading
behavior driven by the tree-level contribution. We stress that
the smallness of these effects is in fact a desirable feature
of the EFT calculation of the Higgs mass, in which the log-
arithmically enhanced corrections are accounted for by the
evolution of the parameters between the SUSY scale and the
EW scale, and high-precision calculations at the EW scale
can be borrowed from the SM.

Turning to the modern approach of treating the Higgs mass
as an input rather than an output of the calculation, we illus-
trated how the requirement of a correct prediction for Mh can
be used to constrain some of the yet-unmeasured parameters
of the NMSSM. Focusing on the tan β–λ plane, we noticed
how the shape of the allowed regions can change drastically
depending on the choice of the remaining parameters. This
is a well-known aspect of the NMSSM, in which the Higgs
sector depends on a relatively large number of parameters
already at the tree level. However, a systematic phenomeno-
logical study of the constraints that the Higgs-mass predic-
tion imposes on the parameter space of the NMSSM goes
beyond the scope of this paper. What we provide here is a set
of fully analytic formulas for the matching condition for λSM,
available on request in electronic form. Our results can be
used to implement the resummation of the large logarithmic
corrections in the existing public codes for the Higgs-mass
calculation in the NMSSM [37–53], bringing the accuracy
of those codes closer to what has already been attained for
the MSSM.
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