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Abstract In this work we have investigated the phe-
nomenological consequences of two-zero textures of inverse
neutrino mass matrix (M−1

ν ) in light of the large mixing angle
(LMA) and large mixing angle-dark (LMA-D) solutions,
later of which originates if neutrinos exhibit non-standard
interactions with matter. Out of fifteen possibilities, only
seven two-zero textures of M−1

ν are found to be phenomeno-
logically allowed under LMA and/or LMA-D descriptions.
In particular, five textures are in consonance with both LMA
and LMA-D solutions and are necessarilyCP violating while
remaining two textures are found to be consistent with LMA
solution only. The textures with vanishing (1, 1) element of
M−1

ν are, in general, disallowed. All the textures allowed
under LMA and LMA-D solutions follow the same neu-
trino mass hierarchy. Furthermore, textures with vanishing
(2, 3) element of M−1

ν are found to be either disallowed or
are consistent with LMA description only. We have, also,
obtained the implication of the model for 0νββ decay ampli-
tude |Mee|. For most of the textures the calculated 3σ lower
bound on |Mee| is O(10−2), which is within the sensitivity
reach of 0νββ decay experiments. We have, also, proposed a
flavor model based on discrete non-Abelian flavor group A4

wherein such textures of M−1
ν can be realized within Type-I

seesaw setting.

1 Introduction

The experimental evidences accumulated in last two decades
have convincingly established that not only neutrino have
non-zero mass but its dynamical origin is beyond our cur-
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rent understanding of the standard model (SM). Despite the
best efforts to precisely decipher the structure of neutrino
mixing matrix, it still has certain unknowns, for example,
CP violating phases, octant of θ23 and neutrino mass hier-
archy, to name a few. The theoretical frameworks to explain
neutrino mass and its manifestations like neutrino oscilla-
tions have been developed assuming standard [charged (CC)
and neutral current (NC)] interactions between neutrino and
matter. These frameworks culminated in large mixing angle
(LMA) solution to the solar neutrino problem (SNP) and is
well established by the neutrino oscillation experiments. In
fact LMA has been independently confirmed as the solution
to solar neutrino problem (SNP) in solar and KamLAND
reactor experiments [1]. It has been shown that for positive
solar mass-squared difference, sin2 θ12 cannot be greater than
0.5. However, at the subdominant level, there still have pos-
sibilities for additional contributions to neutrino oscillations
such as non-standard interactions (NSI) of neutrino with mat-
ter fields [2–4]. The future hyper-technological experiments
will have the access to these unexplored regions. In pres-
ence of NSI, θ12 can be in the second octant. Thus, solar
neutrino problem may have another degenerate solution in
which sin2 θ12 ≈ 0.7. This solution is termed as large mix-
ing angle-dark (LMA-D) solution. In general, the degener-
acy between LMA and LMA-D solutions cannot be alle-
viated by oscillation experiments due to generalized mass
hierarchy degeneracy in presence of NSI. However, a com-
bined measurements from neutrino oscillation and scattering
experiments may have imperative implication with regard to
lifting of these degeneracies [5–7]. Although non-standard
interactions of neutrino with matter are severely constrained,
the latest global fit, incorporating neutrino oscillation and
COHERENT data, still allows LMA-D solution at 3σ confi-
dence level [8]. The only difference in LMA and LMA-D is in
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the octant of θ12, however, the solar mass-squared difference
remains the same.

The progress in understanding the origin of neutrino mass
centrally involves explaining the observed pattern of neu-
trino mixing which is encoded in the neutrino mass matrix
obtained after electroweak symmetry breaking. Assuming
neutrino to be Majorana particle the mass matrix contain nine
free parameters viz. three neutrino mass eigenvalues, three
mixing angles and three CP violating phases. The two mass-
squared differences and three mixing angles have been mea-
sured in neutrino oscillation experiments with high degree of
precision. Seesaw mechanism is a natural and most effective
way to explain the smallness of neutrino mass. Within Type-
I seesaw [9,10] paradigm, the low energy effective neutrino
mass matrix (Mν) is generated from Dirac neutrino mass
matrix (MD) and heavy right-handed Majorana neutrino
mass matrix (MR) using the relation: Mν ≈ MDM

−1
R MT

D .
The existence of near degeneracy in LMA and LMA-D solu-
tions have imperative implications for models of neutrino
mass and associated phenomenology. Recently, the LMA and
LMA-D phenomenology of Majorana neutrino mass matrix
has been studied assuming (i) zero textures of the neutrino
mass matrix, Mν [11–13] (ii) in presence of one-sterile neu-
trino [14]. Texture-zeros in the effective low energy Majo-
rana neutrino mass matrix may have seesaw origin in which
they can be realized from the zeros in MD and MR [15].
In literature, there have been phenomenological studies with
texture one-zero [16–19] and two-zeros [20–24] while three-
zeros or more, in neutrino mass matrix, are ruled out by
current neutrino oscillation data [25]. In Type-I seesaw, an
interesting scenario may emerge if we work in MD-diagonal
basis. In this basis, the zero(s) in M−1

ν is same as the the
zero(s) in MR i.e. M−1

ν ≈ M−1
D MRM

−1
D [26]. In Ref. [13],

the authors have investigated the phenomenological conse-
quences of one-zero texture in M−1

ν with in the context of
trimaximal mixing. The LMA phenomenology of two-zero
textures of M−1

ν has been investigated in [27]. It is to be
noted that the texture zeros in Mν and M−1

ν are, in general,
independent and may have distinguishing phenomenology.
Motivated by the capabilities of the future neutrino oscilla-
tion experiments in resolving these subdominant effects [28]
and its important model building perspective, we investigate
the phenomenological consequences of two-zero textures of
M−1

ν . Also, we have proposed a flavor model based on non-
Abelian discrete group A4 and Type-I seesaw, where such

zeros can be realized in the inverse neutrino mass matrix.
There are fifteen possibilities to have two zeros in M−1

ν . We
investigate the LMA and LMA-D phenomenology of these
fifteen textures.

The paper is organized as follows. In Sect. 2, we briefly
introduce the formalism of two-zero texture of M−1

ν and the
details of the numerical analysis. Section 3 is devoted to the
investigation and discussion of LMA/LMA-D phenomenol-
ogy of the seven allowed textures of M−1

ν . A flavor model
based on non-Abelian A4 symmetry is discussed in Sect. 4.
Finally, we brief our conclusions in Sect. 5.

2 Formalism of two-zero textures of inverse neutrino
mass matrix

In charged lepton basis, the neutrino mass matrix is given by

Mν = V Mdiag
ν V T , (1)

where Mdiag
ν = diag(m1,m2,m3) is the neutrino mass

eigenvalue matrix, V = U.P is complex unitary neu-
trino mixing matrix. The matrix U is Pontecorvo–Maki–
Nakagawa–Sakata (PMNS) matrix which in the PDG rep-
resentation can be written as [29]

U =
⎛
⎝
U11 U12 U13

U21 U22 U23

U31 U32 U33

⎞
⎠

=
⎛
⎝

c12c13 s12c13 s13e−iδ

−s12c23 − c12s23s13eiδ c12c23 − s12s23s13eiδ s23c13

s12s23 − c12c23s13eiδ −c12s23 − s12c23s13eiδ c23c13

⎞
⎠ ,

(2)

where ci j = cosθi j and si j = sinθi j and δ is Dirac-type CP
violating phase. Also, P is the phase matrix given by

P =
⎛
⎝

1 0 0
0 eiα 0
0 0 ei(β+δ)

⎞
⎠ ,

where α, β are Majorana-type CP violating phases. The
inverse neutrino mass matrix can be derived from Eq. (1)
as

M−1
ν = (V Mdiag

ν V T )−1. (3)

Using Eqs. (1) and (2), six independent elements of (M−1
ν )

can be written as
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(M−1
ν )11 = 1

m1m2m3

[
c2

13e
−2iαm3(c

2
12e

2iαm2 + m1s
2
12) + e−2iβs2

13m1m2

]
,

(M−1
ν )12 = 1

m1m2m3

[
e−i(2(α+β)+δ)(c13e

2iβm1m3s12(c12c23e
iδ − s12s13s23)

+c13e
2iαm2(−c12c23e

i(2β+δ)m3s12) + (−c2
12e

2iβm3 + m1)s13s23)
]
,

(M−1
ν )13 = 1

m1m2m3

[
e−i(2(α+β)+δ)(c13c12(e

2iαm1m2 − e2iαm3(c
2
12e

2iαm2 + m1s
2
12))s13

−c12c13e
i(2β+δ)(m1 − e2iαm2)m3s12s23)

]
,

(M−1
ν )22 = 1

m1m2m3

[
e−2i(α+δ)m1m3(c12c23e

iδ − s12s13s23)
2 + m2(c

2
23m3s

2
12 + 2c12c23m3s12s13s23

+e−2i(β+δ)(c2
13m1 + c2

12e
iβm3s

2
13)s

2
23)

]
,

(M−1
ν )23 = 1

m1m2m3

[
e−2i(α+β)m1m3(c23s12s13 + c12e

iδs23)(c12c23e
iδ − s12s23s13)

+e−2i(β+δ)m2(c23(c
2
13m1 − e2i(β+δ)m3s

2
12) + c2

12c23e
iβm3s

2
13s23

+c12e
i(2β+δ)m3s12s23(c

2
23 − s2

23))
]
,

(M−1
ν )33 = 1

m1m2m3

[
e−2i(α+β+δ)c2

23(c
2
13e

2iαm1m2 + e2iβm3(c
2
12e

2iαm2 + m1s
2
12)s

2
13)

+ei(2α+δ)2c12c23(m1 − e2iαm2)m3s12s13s23 + e−2iαm3(c
2
12m1 + e2iαm2s

2
12)s

2
23

]
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4)

There are fifteen possible two-zero textures of M−1
ν which

we categorize in five classes viz. class A, B,C, D and E as
shown in Table 1. Symbolically, these 15 textures can be
represented as

A1 =
⎛
⎝

0 0 X
0 X X
X X X

⎞
⎠ , A2 =

⎛
⎝

0 X 0
X X X
0 X X

⎞
⎠ , A3 =

⎛
⎝

0 X X
X 0 X
X X X

⎞
⎠ ,

A4 =
⎛
⎝

0 X X
X X 0
X 0 X

⎞
⎠ , A5 =

⎛
⎝

0 X X
X X X
X X 0

⎞
⎠ ;

B1 =
⎛
⎝
X 0 0
0 X X
0 X X

⎞
⎠ , B2 =

⎛
⎝
X 0 X
0 0 X
X X X

⎞
⎠ , B3 =

⎛
⎝
X 0 X
0 X 0
X 0 X

⎞
⎠ ,

B4 =
⎛
⎝
X 0 X
0 X X
X X 0

⎞
⎠ ;

C1 =
⎛
⎝
X X 0
X 0 X
0 X X

⎞
⎠ ,C2 =

⎛
⎝
X X 0
X X 0
0 0 X

⎞
⎠ ,C3 =

⎛
⎝
X X 0
X X X
0 X 0

⎞
⎠ ;

D1 =
⎛
⎝
X X X
X 0 0
X 0 X

⎞
⎠ , D2 =

⎛
⎝
X X X
X 0 X
X X 0

⎞
⎠ ;

E1 =
⎛
⎝
X X X
X X 0
X 0 0

⎞
⎠ ,

where “X” denotes the non-zero element of inverse neutrino
mass matrix. In the present work, we investigate the phe-
nomenological consequences of these 15 possible two-zero
textures in M−1

ν within the paradigm of LMA and LMA-D
descriptions of neutrino oscillation phenomenon.

In general, two-zero texture of M−1
ν result in constraining

equations

(M−1
ν )pq = 0; (M−1

ν )rs = 0 (5)

where p, q, r and s can take value 1, 2, 3 such that p ≤ q,
r ≤ s.

Using Eq. (3), the constraints described by Eq. (5) can be
written as

λ1U
−1

1pU
−1

1q + λ2U
−1

2pU
−1

2q + λ3U
−1

3pU
−1

3q = 0,

(6)

and

λ1U
−1

1rU
−1

1s + λ2U
−1

2rU
−1

2s + λ3U
−1

3rU
−1

3s = 0,

(7)
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Table 1 Fifteen possible two-zero texture patterns with corresponding
first and second zero

Class Textures (M−1
ν )pq = 0 (M−1

ν )rs = 0

A A1 (M−1
ν )11 (M−1

ν )12

A2 (M−1
ν )11 (M−1

ν )13

A3 (M−1
ν )11 (M−1

ν )22

A4 (M−1
ν )11 (M−1

ν )23

A5 (M−1
ν )11 (M−1

ν )33

B B1 (M−1
ν )12 (M−1

ν )13

B2 (M−1
ν )12 (M−1

ν )22

B3 (M−1
ν )12 (M−1

ν )23

B4 (M−1
ν )12 (M−1

ν )33

C C1 (M−1
ν )13 (M−1

ν )22

C2 (M−1
ν )13 (M−1

ν )23

C3 (M−1
ν )13 (M−1

ν )33

D D1 (M−1
ν )22 (M−1

ν )23

D2 (M−1
ν )22 (M−1

ν )33

E E1 (M−1
ν )23 (M−1

ν )33

where

λ1 = 1

m1
, λ2 = e−2iα

m2
, λ3 = e−2i(β+δ)

m3
.

We solve Eqs. (6) and (7) for two mass ratios(
m1

m2
e−2iα,

m1

m3
e−2i(β+δ)

)

m1

m2
e−2iα

= U−1
3rU−1

3sU−1
1pU−1

1q −U−1
3pU−1

3qU−1
1rU−1

1s

U−1
3pU−1

3qU−1
2rU−1

2s −U−1
2pU−1

2qU−1
3rU−1

3s
,

(8)
m1

m3
e−2i(β+δ)

= U−1
1rU−1

1sU−1
2pU−1

2q −U−1
1pU−1

1qU−1
2rU−1

2s

U−1
3pU−1

3qU−1
2rU−1

2s −U−1
2pU−1

2qU−1
3rU−1

3s
.

(9)

The absolute values of mass ratios are given by
m1

m2

=
∣∣∣∣
U−1

3rU−1
3sU−1

1pU−1
1q −U−1

3pU−1
3qU−1

1rU−1
1s

U−1
3pU−1

3qU−1
2rU−1

2s −U−1
2pU−1

2qU−1
3rU−1

3s

∣∣∣∣ ,
(10)

m1

m3

=
∣∣∣∣
U−1

1rU−1
1sU−1

2pU−1
2q −U−1

1pU−1
1qU−1

2rU−1
2s

U−1
3pU−1

3qU−1
2rU−1

2s −U−1
2pU−1

2qU−1
3rU−1

3s

∣∣∣∣ ,
(11)

and two Majorana phases are obtained as

α = − 1

2
Arg

(
U−1

3rU−1
3sU−1

1pU−1
1q −U−1

3pU−1
3qU−1

1rU−1
1s

U−1
3pU−1

3qU−1
2rU−1

2s −U−1
2pU−1

2qU−1
3rU−1

3s

)
,

(12)

β = − 1

2
Arg

(
U−1

1rU−1
1sU−1

2pU−1
2q −U−1

1pU−1
1qU−1

2rU−1
2s

U−1
3pU−1

3qU−1
2rU−1

2s −U−1
2pU−1

2qU−1
3rU−1

3s

)
− δ.

(13)

It is to be noted that the mass ratios

(
m1

m2
e−2iα,

m1

m3
e−2i(β+δ)

)

are different for each texture as they depend on the position
of zero in M−1

ν . For example, in case of A1 texture

p = 1, q = 1, r = 1, s = 2,

therefore, Eqs. (8) and (9) become

m1

m2
e−2iα

= U−1
31U−1

32U−1
11U−1

11 −U−1
31U−1

31U−1
11U−1

12

U−1
31U−1

31U−1
21U−1

22 −U−1
21U−1

21U−1
31U−1

32
,

m1

m3
e−2i(β+δ)

= U−1
11U−1

12U−1
21U−1

21 −U−1
11U−1

11U−1
21U−1

22

U−1
31U−1

31U−1
21U−1

22 −U−1
21U−1

21U−1
31U−1

32
,

while for B2 texture

p = 1, q = 2, r = 2, s = 2,

resulting in mass ratios

m1

m2
e−2iα

= U−1
32U−1

32U−1
11U−1

12 −U−1
31U−1

32U−1
12U−1

12

U−1
31U−1

32U−1
22U−1

22 −U−1
21U−1

22U−1
32U−1

32
,

m1

m3
e−2i(β+δ)

= U−1
12U−1

12U−1
21U−1

22 −U−1
11U−1

12U−1
22U−1

22

U−1
31U−1

32U−1
22U−1

22 −U−1
21U−1

22U−1
32U−1

32
.

We have analytically solved the mass ratios for all possible
two-zero textures which are shown in the Tables 2, 3 and 4.

The two mass-squared differences 	m2
21 = m2

2 −m2
1 and∣∣	m2

32

∣∣ = m2
3 −m2

2 alongwith mass ratios
m1

m2
e−2iα ≡ R12,

m1

m3
e−i(2β+δ) ≡ R13 yield two values of neutrino mass m1

given by

ma
1 = |R12|

√
	m2

21

1 − |R12|2
, mb

1 = |R13|
√

	m2
21 + |	m2

32|
1 − |R13|2

,

(14)

respectively. In order to ensure the consistency of the formal-
ism the two values (ma

1,m
b
1) must be equal which results in

mass ratio parameter

	m2
21

|	m2
32|

= |R13|2
(
1 − |R12|2

)
|R12|2 − |R13|2 ≡ Rν . (15)
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Table 2 Mass ratios for class A

Class Texture Mass ratios (R12, R13)

A A1
m1

m2
e−2iα = c12

(
c23eiδs12s13 + c12s23

)

s12
(
c12c23eiδs13 − s12s23

)

m1

m3
e−i(2β+δ) = c12c2

13c23

s13
(−c12c23eiδs13 + s12s23

)

A2
m1

m2
e−2iα = − c12

(
c12c23 − eiδs12s13s23

)

s12
(
c23s12 + c12eiδs13s23

)

m1

m3
e−i(2β+δ) = c12c2

13s23

s13
(
c23s12 + c12eiδs13s23

)

A3
m1

m2
e−2iα = −

(
c23eiδs12s13 + c12s23

) (
c23eiδs12s13 + c12(s2

13 − c2
13)s23

)

c2
12c

2
23e

2iδs2
13 − 2c12c23eiδs12s2

13s23 + s2
12(s

4
13 − c4

13)s23

m1

m3
e−i(2β+δ) = c2

13c23
(
c23eiδ(c2

12 − s2
12) − 2c12s12s13s23

)

−c2
12c

2
23e

2iδs2
13 + 2c12c23eiδs12s2

13s23 + s2
12(s

4
13 − c4

13)s23

A4
m1

m2
e−2iα = c2

12c
2
23(s

4
13 − c4

13) − 2c12c23eiδs12s3
13s23 + e2iδs2

12s
2
13s

2
23

c2
13c

2
23s

2
12 − s2

13

(
c23s12s13 + c12eiδs23

)2

m1

m3
e−i(2β+δ) = − c2

13s23
(
2c12c23s12s13 + eiδ(c2

12 − s2
12)s23

)

−c2
13c

2
23s

2
12 + s2

13

(
c23s12s13 + c12eiδs23

)2

A5
m1

m2
e−2iα = −c23e2iδs2

12s
2
13s23 + c2

12c23(s4
13 − c4

13)s23 + c12eiδs12s3
13(c

2
13 − s2

13)

c2
12c23e2iδs2

13s23 + c23s2
12(c

4
13 − s4

13)s23 + c12eiδs12s3
13(c

2
23 − s2

23)

m1

m3
e−i(2β+δ) = − −c2

13

(
c23eiα(c2

12 − s2
12)s23 + c12s12s13(c2

23 − s2
23)

)

c2
12c23e2iδs2

13s23 + c23s2
12(c

4
13 − s4

13)s23 + c12eiδs12s3
13(c

2
23 − s2

23)

The 3σ experimental range of parameter Rν defined in Eq.
(15) is 0.02590 < Rν < 0.03656. The allowed phenomenol-
ogy of the model is obtained by restricting Rν in the 3σ exper-
imental range. The neutrino mass eigenvaluesm2 andm3 can
be obtained using mass square differences

(
	m2

21, 	m2
32

)
as

m2 =
√
m2

1 + 	m2
21;

m3 =
√
m2

2 + 	m2
32 for normal hierarchy (NH)

(m1 < m2 < m3), (16)

and

m2 =
√
m2

1 + 	m2
21;

m1 =
√
m2

3 + 	m2
32 − 	m2

21 for inverted hierarchy (IH)

(m3 < m1 < m2). (17)

Also, the effective Majorana mass which governs the neu-
trinoless double beta(0νββ) decay process is given by

|Mee| =
∣∣∣∣∣
∑
i

V 2
eimi

∣∣∣∣∣
=

∣∣∣m1c
2
12c

2
13 + m2s

2
12c

2
13e

2iα + m3s
2
13e

2iβ
∣∣∣ . (18)

The Jarlskog CP invariant is defined as [30,31]

JCP = s23c23s12c12s13c
2
13 sin δ.

In the numerical analysis, to study LMA phenomenology
of the model, we have randomly generated the known neu-
trino oscillation parameters such as θi j (i, j = 1, 2, 3; i < j)
and 	m2

i j (i > j) using Gaussian distribution within allowed
experimental range shown in Table 5. However, in order to
study the viability of the model under LMA-D solution, θ12

is randomly generated using the uniform distribution within
the range (53.71◦-58.37◦) [32–35].

3 LMA and LMA-D phenomenology

In this section, we have investigated the phenomenology of
all possible two-zero textures of M−1

ν under the paradigm
of LMA and LMA-D solutions to the neutrino oscillation
phenomenon.

3.1 Class A

Class A is disallowed for both LMA and LMA-D solutions.
As a representative case, we have discussed the viability of
A1 texture in the following.

The mass ratios (|R12|, |R13|) for A1 texture up-to first
order in s13 can be written as

|R12| ≡ m1

m2
≈ c2

12

s2
12

+ c12c23 cos δ

s3
12s23

s13, (19)

123
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Table 3 Mass ratios for class B

Class Texture Mass ratios (R12, R13)

B B1
m1

m2
e−2iα = 1

m1

m3
e−i(2β+δ) = 1

B2
m1

m2
e−2iα = −

(
c23eiδs12 + c12s13s23

) (
c23eiδs12s13 + c12s23

)
(
c12c23eiδ − s12s23s13

) (
c12c23eiδs13 − s12s23

)

m1

m3
e−i(2β+δ) = c23

(
c23eiδs12 + c12s13s23

)

s23
(
c12c23eiδs13 − s12s23

)

B3
m1

m2
e−2iα =

(
c23eiδs12 + c12s13s23

) (
c12c23 − eiδs12s13s23

)
(
c23s12 + c12eiδs13s23

) (
c12c23eiδ − s12s13s23

)

m1

m3
e−i(2β+δ) = c23eiδs12 + c12s13s23

c23s12 + c12eiδs13s23

B4
m1

m2
e−2iα = −

(
c2

12c
2
23s13s23 + e2iδs2

12s13s3
23 + c12c23eiδs12(c2

13c
2
23 − s2

13s
2
23)

)

c2
23s

2
12s13s23 + c2

12e
2iδs13s3

23 − c12c23eiδs12(c2
13c

2
23 − s2

13s
2
23)

m1

m3
e−i(2β+δ) =

(
c12c23e2iδs12s2

23 + eiδ(c2
12 − s2

12)s13s3
23 + c12c23s12s2

13(c
2
23 + 2s2

23)
)

c2
23s

2
12s13s23 + c2

12e
2iδs13s3

23 − c12c23eiδs12(c2
13c

2
23 − s2

13s
2
23)

Table 4 Mass ratios for class C, D and E

Class Texture Mass ratios (R12, R13)

C C1
m1

m2
e−2iα = −

(
c3

23e
2iδs2

12s13 + c2
12c23s13s2

23 + c12eiδs12s23(2c2
23s

2
13 − c2

13s
2
23)

)

c2
12c

3
23s13e2iδ + c23s2

12s13s2
23 + c12eiδs12s23(−2c2

23s
2
13 + c2

13s
2
23)

m1

m3
e−i(2β+δ) = −

(
c3

23e
iδ(c2

12 − s2
12)s13 + c12c2

23e
2iδs12s23 + c12s12s2

13s23(2c2
23 + s2

23)
)

c2
12c

3
23s13e2iδ + c23s2

12s13s2
23 + c12eiδs12s23(−2c2

23s
2
13 + c2

13s
2
23)

C2
m1

m2
e−2iα =

(
c12c23s13 − eiδs12s23

) (
c23eiδs12s13 + c12s23

)
(
c23s12s13 + c12eiδs23

) (
c12c23eiδs13 − s12s23

)

m1

m3
e−i(2β+δ) = −

(−c12c23s13 + eiδs12s23
)

c12c23eiδs13 − s12s23

C3
m1

m2
e−2iα =

(
c12c23s13 − eiδs12s23

) (
c12c23 − eiδs12s13s23

)
(
c23s12s13 + c12eiδs23

) (
c23s12 + c12eiδs13s23

)

m1

m3
e−i(2β+δ) = s23

(
c12c23s13 − eiδs12s23

)

c23
(
c23s12 + c12eiδs13s23

)

D D1
m1

m2
e−2iα = − s12

(
c23eiδs12 + c12s13s23

)

c12
(
c12c23eiδ − s12s23s13

)

m1

m3
e−i(2β+δ) = s13

(
c23s12 + e−iδc12s13s23

)

c12c2
13s23

D2
m1

m2
e−2iα = − s12

(
2c12c23s13s23 + eiδs12(c2

23 − s2
23)

)

c12
(−2c23s12s13s23 + c12eiδ(c2

23 − s2
23)

)

m1

m3
e−i(2β+δ) = − s13

(
c2

23s13(c2
12 − s2

12) − 2c12c23s12s23(e−iδs2
13 + eiδ) + s13s2

23(s
2
12 − c2

12)
)

c12c2
13

(
c12c2

23e
iδ − 2c23s12s13s23 − c12eiδs2

23

)

E E1
m1

m2
e−2iα = s12

(
c12c23s13 − eiδs12s23

)

c12
(
c23s12s13 + c12eiδs23

)

m1

m3
e−i(2β+δ) = s13

(−e−iδc12c23s13 + s12s23
)

c12c23c2
13

123
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Table 5 Global fit values of
neutrino oscillation parameters
[36]

Parameters Best fit ±1σ range (NH) Best fit ±1σ range (IH)

	m2
21[10−5 eV2] 7.50+0.22

−0.20 7.50+0.22
−0.20∣∣	m2

31

∣∣ [10−3 eV2] 2.55+0.02
−0.03 2.45+0.02

−0.03

θ◦
12 34.3 ± 1.0 34.3 ± 1.0

θ◦
23 49.26 ± 0.79 49.46+0.60

−0.97

θ◦
13 8.53+0.13

−0.14 8.53+0.12
−0.14

Fig. 1 Correlation between |R12| and Rν for texture A1

|R13| ≡ m1

m3
≈ c2

12c
2
23 cos δ

s2
12s

2
23

+c12c23
(
c2

12c
2
23 − 4s2

12s
2
23 + 3c2

12c
2
23 cos 2δ

)

4s3
12s

3
23

. (20)

LMA Scenario: For δ in the range 0◦ ≤ δ ≤ 90◦ or 270◦ ≤
δ ≤ 360◦, Eq. (19) results in

m1

m2
> 1. Furthermore, if δ

lie in the range 90◦ < δ < 270◦ and sin θ23 ≈ cos θ23,

solar mass hierarchy requires sin 2θ12 < 4 sin θ13, however,
from neutrino oscillation data (Table 5) sin 2θ12 > 4 sin θ13

implying that A1 texture is disallowed.

LMA-D Scenario: The parameter (Rν) up-to first order in
s13 can be written as

Rν ≈
(

−1 + c4
12

s4
12

)
+ 2c3

12c23 cos δ

s5
12s23

s13. (21)

Using θ12 = 55◦ and δ= 80◦ (190◦), numerical value of Rν

is found to be 0.74 (0.89) which lies outside the 3σ range of
Rν . The above observations are, also, evident from Fig. 1.

Similar analysis can be done for all remaining textures
in class A. Therefore, neutrino mass model, with two-zero
textures in M−1

ν , wherein one of the texture zero is at (1, 1)

place in M−1
ν is disallowed as shown in Table 6.

3.2 Class B

In class B, mass ratios for textures B1 are given by

|R12| ≡ m1

m2
= 1, |R13| ≡ m1

m3
= 1,

Table 6 Allowed/disallowed
two-zero textures of M−1

ν under
LMA and LMA-D solutions.
The � (×) mark is used to
denote allowed (disallowed)
texture

Class Texture LMA LMA-D

A A1 (NH/IH) ×/× ×/×
A2 (NH/IH) ×/× ×/×
A3 (NH/IH) ×/× ×/×
A4 (NH/IH) ×/× ×/×
A5 (NH/IH) ×/× ×/×

B B1 (NH/IH) ×/× ×/×
B2 (NH/IH) �/× �/×
B3 (NH/IH) ×/× ×/×
B4 (NH/IH) ×/� ×/�

C C1 (NH/IH) �/× �/×
C2 (NH/IH) ×/× ×/×
C3 (NH/IH) ×/� ×/�

D D1 (NH/IH) �/× ×/×
D2 (NH/IH) �/× �/×

E E1 (NH/IH) �/× ×/×

123
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Fig. 2 Correlation plots for
textures B2-NH(left panel) and
B4-IH (right panel) under LMA
scenario
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Table 7 3σ lower bound on
effective Majorana mass (|Mee|)
in eV for all allowed textures.
“×” symbolize the disallowed
hierarchy in the corresponding
texture

Allowed textures Lower bound on |Mee| (eV)

LMA LMA-D

NH IH NH IH

B2 0.02 × 0.04 ×
B4 × 0.06 × 0.06

C1 0.02 × 0.02 ×
C3 × 0.06 × 0.06

D1 0 × × ×
D2 0.01 × 0.02 ×
E1 0 × × ×

which result in degenerate neutrino masses (i.e. m1 = m2 =
m3) and are inconsistent with neutrino oscillation data. Also,
for texture B3, mass ratios are given by

|R12|

=
∣∣∣∣∣
(
c23eiδs12 + c12s13s23

) (
c12c23 − eiδs12s13s23

)
(
c23s12 + c12eiδs13s23

) (
c12c23eiδ − s12s13s23

)
∣∣∣∣∣ = 1,

(22)

|R13| =
∣∣∣∣
c23eiδs12 + c12s13s23

c23s12 + c12eiδs13s23

∣∣∣∣ = 1, (23)

resulting in degenerate neutrino masses. Therefore, textures
B1 and B3 are disallowed. In the following we have inves-
tigated the phenomenological consequences of B2 and B4

textures under LMA and LMA-D solutions.
The mass ratios (|R12|, |R13|) for texture B2, up-to first

order in s13, can be written as

|R12| ≡ m1

m2
≈ 1 + 2 cos δ

c12c23s12s23
s13, (24)

|R13| ≡ m1

m3
≈ c2

23

s2
23

+ c12c23 cos δ

s12s3
23

s13. (25)

From Eq. (24), in order to satisfy the solar mass hier-
archy i.e |R12| ≡ m1

m2
< 1, δ should be in the range

90◦ < δ < 270◦. Also, texture B2 predicts the normal hierar-
chical neutrino masses for θ23 above maximality (θ23 > 45◦)

and cos δ negative such that |R13| ≡ m1

m3
< 1. The above

observations are, also, depicted in the Fig. 2. Similar analy-
sis can also be done for texture B4.

The texture B2 (B4) is allowed for both LMA and LMA-
D solutions with normal (inverted) hierarchy. The allowed
parameter space for these textures are shown in Fig. 2 as
correlation plots amongst different parameters. Both these
textures are found to have identical phenomenology under
LMA and LMA-D solutions. In Fig. 2 we have shown the
LMA scenario for B2 (NH) and B4 (IH) textures. In the left
(right) panel we have depicted the correlation plots for B2

(B4) texture. The atmospheric mixing angle θ23 is found to
be above maximality for both the textures. The CP violating

phases α, β and δ are found to be sharply constrained. The
Dirac-type CP violating phase δ is found to be maximal
(around 90◦ and 270◦) and the Jarlskog rephasing invariant
JCP �= 0, thus, these textures are necessarily CP violating.
We can, also, appreciate the CP violating nature of these
textures analytically. For example, for texture B2 with δ = 0◦
(CP conserving scenario), we obtain Rν to the first order in
s13 using Eq. (15) and values of mass ratios given in Table 3

Rν ≈ 2c23

c12s12s23
(
c2

23 − s2
23

) s13 − 2c23s23

c12s12
(
c2

23 − s2
23

) s13.

Using the best-fit values given in Table 5, |Rν | ≈ 1.7 which
is outside 3σ range, thus, δ = 0◦ is disallowed implying B2

texture is necessarilyCP violating. Similarly, for texture B4,
taking δ = 0◦ Rν can, approximately, be written as

Rν ≈ s5
23

(
2c4

23c
2
12 − 2c2

12s
2
23c

2
23 + 2c2

23s
2
12 − s2

23

)

c12c5
23s12

(
s4

23 − c4
23

) s13,

which again result in |Rν | > 1 for best-fit values of the
mixing angles. Similar analysis can be done forCP-violating
textures of class C and D discussed in the following sections.

We have, also, obtained the implication of the model for
neutrinoless double beta (0νββ) decay amplitude |Mee|. It is
evident from Fig. 2 that there exist a lower bound on |Mee|
in both the textures. For texture B2 (B4), |Mee| < 0.03 eV
(0.06 eV). The prediction for |Mee| has, also, been tabulated
in Table 7.

3.3 Class C

For texture C2, the mass ratios |R12| and |R13| are equal to
1 resulting in degenerate neutrino masses which is in con-
tradiction with neutrino oscillation data. Therefore, texture
C2 is disallowed. For textures C1, the mass ratios |R12| and
|R13|, up-to first order in s13, are given by

|R12| ≡ m1

m2
≈ 1 − c23s13 cos δ

c12s12s3
23

, (26)

123
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|R13| ≡ m1

m3
≈ c2

23

s2
23

− c12c3
23s13 cos δ

s12s5
23

. (27)

It can be seen from Eq. (26) that δ should lie in first and
fourth quadrant to have |R12| ≡ m1

m2
< 1. Also, for θ23 above

maximality (θ23 > 45◦) and cos δ positive the model predicts
normal hierarchical neutrino masses. The above observations
are, also, supplemented by Fig. 3. Similar analysis can, also,
be done for texture C3. In fact, it is evident from Fig. 3 that
C3 admit inverted hierarchical neutrino masses. Also, it is
to be noted that the phenomenology of both the textures are
found to be similar under LMA and LMA-D solutions. In Fig.
3, we have shown the allowed parameter space considering
LMA solution. The Majorana phases are sharply correlated
and constrained to very narrow ranges giving a lower bound
on 0νββ decay amplitude |Mee|. For textureC1 (C3) |Mee| >

0.02 (0.06) eV (Table 7). The Dirac-typeCP violating phase
δ is sharply constrained around 90◦ and 270◦, thus, allowing
a maximal CP violation. The Jarlskog rephasing invariant
JCP is non-zero which is, also, shown in Fig. 3.

3.4 Class D

For textures D1, the mass ratios, up-to first order in s13, are
given by

|R12| ≡ m1

m2
≈ s2

12

c2
12

+ s12s23s13 cos δ

c3
12c23

, (28)

|R13| ≡ m1

m3
≈ tan θ12

tan θ23
s13. (29)

For texture D1, LMA-D solution is disallowed as |R12| >

1 (Eq. (28)). However, for LMA solution, it is evident that
|R13| < 1 (Eq. (29)) implying normal hierarchical neutrino
masses. The above analytical observations are, also, supple-
mented by the correlation plots in Figs. 4 and 5. In addition,
the Majorana phases are sharply constrained and correlated
in such a way giving vanishing value of 0νββ decay ampli-
tude |Mee| (Table 7).

Texture D2 is found to be consistent with both LMA
and LMA-D descriptions with normal hierarchical neutrino
masses, as shown in Figs. 6 and 7. It is evident from
(θ23 − |Mee|) correlation plot in Fig. 7 that there exist a 3σ

lower bound on 0νββ decay amplitude |Mee| > 0.02 eV (see
Table 7). Furthermore, in contrast to D1, texture D2 is found
to be necessarily CP violating as depicted in (θ13-JCP ) (Fig.
7) and (θ23-δ) (Fig. 8) correlation plots.

3.5 Class E

The mass ratios for texture E1 can be obtained from Eqs. (28)
and (29) by using the transformation c23 → s23; s23 → c23

viz.,

|R12| ≡ m1

m2
≈ s2

12

c2
12

+ s12c23s13 cos δ

c3
12s23

, (30)

|R13| ≡ m1

m3
≈ tan θ12 tan θ23s13. (31)

It can be seen from Eq. (30) that E1 is not consistent
with LMA-D solution as |R12| > 1. The allowed parameter
space for LMA with NH is shown in Figs. 9 and 10. Also,
the Majorana phases are correlated in such a way that 0νββ

decay amplitude |Mee| is found to be vanishing in this case.
Furthermore, the texture allows for both CP conserving and
violating solutions as is evident from Fig. 10.

4 Symmetry realization

In this section, we discuss the minimal realization of two-zero
texture of M−1

ν . Motivated by the pivotal character played
by the discrete flavor symmetry groups in explaining the
observed neutrino oscillation data [37,38], we obtain the A4

flavor group based symmetry realisation of inverse neutrino
mass matrix (M−1

ν ) by extending the standard model par-
ticle content in the lepton sector. A4 is a non-Abelian dis-
crete group of even permutations. A4 group is a orientation-
preserving symmetry of a regular tetrahedron. It has four
irreducible representations 1, 1′, 1′′ and 3 and can be gener-
ated using S and T generators satisfying the relations

S2 = T 3 = (ST )3 = 1.

Here, we choose basis for A4 group in which T generator
takes the diagonal form. The reason behind choosing this par-
ticular representation is that it facilitates the diagonal mass
matrix for charged leptons. In T-diagonal basis, one dimen-
sional unitary representation 1, 1′ and 1′′ with generator S
and T can be written as

1 : S = 1, T = 1,

1′ : S = 1, T = ω,

1′′ : S = 1, T = ω2,

such that ω= ei2π/3 whereas three-dimensional unitary rep-
resentation is given by

T =
⎛
⎝

1 0 0
0 ω 0
0 0 ω2

⎞
⎠ , S = 1

3

⎛
⎝

−1 2 2
2 −1 2
2 2 −1

⎞
⎠ .

The multiplication rules for the representations of A4 are
as follows

1′ ⊗ 1′ = 1′′, 1′′ ⊗ 1′′ = 1′,
1′ ⊗ 1′′ = 1, 1′′ ⊗ 1 = 1′′,
1 ⊗ 1′ = 1′, 3 ⊗ 1′ = 3, 3 ⊗ 1′′ = 3,

123
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Fig. 3 Correlation plots for
textures C1-NH (left panel) and
C3-IH (right panel) under LMA
scenario
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Fig. 4 Correlation plots
between (θ23 − δ) (left) and
(|R12| − Rν) (right) for D1
texture under LMA solution
with NH

Fig. 5 Correlation plots for D1
texture under LMA solution
with NH

Fig. 6 Correlation between
(|R12| − Rν ) for D2 texture

3 ⊗ 3 = 1 ⊕ 1′ ⊕ 1′′ ⊕ 3s ⊕ 3a .

In the T -diagonal basis, the Clebsch–Gordan decomposition
of two triplets, a = (a1, a2, a3) and b = (b1, b2, b3) is given
as

(a ⊗ b)1 = a1b1 + a2b3 + a3b2,

(a ⊗ b)1′ = a3b3 + a1b2 + a2b1,

(a ⊗ b)1′′ = a2b2 + a1b3 + a3b1,

(a ⊗ b)3s = 1

3
(2a1b1 − a2b3 − a3b2, 2a3b3 − a1b2

−a2b1, 2a2b2 − a1b3 − a3b1) ,

(a ⊗ b)3a = 1

2
(a2b3 − a3b2, a1b2 − a2b1, a1b3 − a3b1) .

(32)

Here, we have worked in the framework of Type-I seesaw.
In addition, we have minimally extended the standard model
by adding three right-handed neutrino fields (νi R ; i = 1, 2, 3)
and one scalar field (χ ), having singlet representation under
A4 symmetry as shown in the Table 8. In general, for any
Yukawa coupling to be non-zero, its Yukawa Lagrangian term
must be in singlet-invariant representation of A4 with mass
dimension four at tree level.

Texture B4:
Using the tensor products in Eq. (32), the invariant Yukawa

Lagrangian is given by

−L = ........ + ye D̄eLφeR + yμ D̄μLφμR + yτ D̄τ LφτR

+y1 D̄eL φ̃νeR + y2 D̄μL φ̃νμR + y3 D̄τ L φ̃νμR

+1

2

[
M1(ν

T
1RC

−1ν1R) + M2(ν
T
2RC

−1ν3R + νT3RC
−1ν2R)

]

123
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Fig. 7 Correlation plots for D2
texture under LMA solution
with NH

Fig. 8 Correlation between
(θ23 − δ) for D2 texture with
NH under LMA (left) and
LMA-D (right)

Fig. 9 Correlation between (|R12| − Rν ) for texture E1 under LMA
solution with NH

+1

2

[(
yχ1 (ν

T
2RC

−1ν2R) + yχ2 (ν
T
1RC

−1ν3R + νT3RC
−1ν1R)

)
χ

]
,

(33)

where yk, yi (k = e, μ, τ ; i = 1, 2, 3) are Yukawa coupling
constants, M1,2 are bare mass terms for right-handed Majo-
rana neutrinos, yχ1,2 denotes Yukawa coupling constant for
interaction terms with scalar field χ and φ̃ = iτ2φ

∗; τ2 being
Pauli matrix.

The dots in the Lagrangian represents the other kinetic
and scalar potential terms. We have restricted up to Yukawa

interactions pertaining to mass terms. Spontaneous symme-
try breaking (SSB) occurred with vacuum expectation values
(vev’s) v and w for the Higgs doublet and scalar singlet field,
respectively. The Yukawa Lagrangian (Eq. (33)) leads to the
mass matrices as

Ml =
⎛
⎝
yev 0 0
0 yμv 0
0 0 yτ v

⎞
⎠ , MD =

⎛
⎝
y1v 0 0
0 y2v 0
0 0 y3v

⎞
⎠ (34)

and

MR =
⎛
⎝

M1 0 yχ2w

0 yχ1w M2

yχ2w M2 0

⎞
⎠ , (35)

where Ml , MD and MR corresponds to charged lepton mass
matrix, Dirac mass matrix and right-handed Majorana mass
matrix, respectively (Table 8).

Type-I seesaw contribution to effective Majorana neutrino
mass matrix is given by

Mν = MDM
−1
R MT

D. (36)

Also, the inverse neutrino mass matrix can be written as

M−1
ν = M−T

D MRM
−1
D . (37)
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Fig. 10 Correlation plots for
texture E1 under LMA solution
with NH

Table 8 Field content and
charge assignments in the model
under SU (2)L and A4
symmetries

Symmetry DeL DμL Dτ L eR μR τR ν1R ν2R ν3R φ χ Obtained two-zero textures

SU (2)L 2 2 2 1 1 1 1 1 1 2 1

A4 1 1′′ 1′ 1 1′ 1′′ 1 1′ 1′′ 1 1′ B4=

⎛
⎝
X 0 X
0 X X
X X 0

⎞
⎠

1 1′′ 1′ 1 1′ 1′′ 1 1′ 1′′ 1 1′′ C1=

⎛
⎝
X X 0
X 0 X
0 X X

⎞
⎠

In MD-diagonal basis, the peculiar feature of implemen-
tation of type-I seesaw for M−1

ν is that the zero(s) in MR

corresponds to zero(s) in M−1
ν . Using the Eqs. (34) and (35),

the M−1
ν is given by

M−1
ν =

⎛
⎜⎜⎜⎜⎜⎜⎝

M1

v2y2
1

0
yχ1w

v2y1y3

0
yχ2w

v2y2
3

M2

v2y2y3
yχ1w

v2y1y3

M2

v2y2y3
0

⎞
⎟⎟⎟⎟⎟⎟⎠

, (38)

which symbolically can be written as

M−1
ν =

⎛
⎝
X 0 X
0 X X
X X 0

⎞
⎠ (39)

corresponding to texture B4.
Texture C1:
For the realization of textureC1, we change the irreducible

representation of scalar field χ to be 1′′. The relevant Yukawa
Lagrangian is

− L = ........ + ye D̄eLφeR + yμ D̄μLφμR + yτ D̄τ LφτR

+y1 D̄eL φ̃νeR + y2 D̄μL φ̃νμR + y3 D̄τ L φ̃νμR

+1

2

[
M1(ν

T
1RC

−1ν1R) + M2(ν
T
2RC

−1ν3R

+νT3RC
−1ν2R)

]

+1

2

[(
yχ1(ν

T
3RC

−1ν3R) + yχ2(ν
T
1RC

−1ν2R

+νT2RC
−1ν1R)

)
χ

]
(40)

where yk, yi (k = e, μ, τ ; i = 1, 2, 3) are Yukawa coupling
constants, M1,2 are bare mass terms for right-handed Majo-
rana neutrinos, yχ1,2 denotes Yukawa coupling constant for
interaction terms with scalar field χ and φ̃ = iτ2φ

∗; τ2 being
Pauli matrix.

After SSB, charged lepton mass matrix and Dirac mass
matrix remains diagonal as shown in Eq. (34). But Majorana
mass matrix gets modified and takes the form

MR =
⎛
⎝

M1 yχ2w 0
yχ2w 0 M2

0 M2 yχ1w

⎞
⎠ . (41)
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In MD-diagonal basis, the inverse neutrino mass matrix is
given by

M−1
ν =

⎛
⎜⎜⎜⎜⎜⎜⎝

M1

v2y2
1

yχ2w

v2y1y2
0

yχ2w

v2y1y2
0

M2

v2y2y3

0
M2

v2y2y3

yχ1w

v2y2
3

⎞
⎟⎟⎟⎟⎟⎟⎠

, (42)

which symbolically can be written as

M−1
ν =

⎛
⎝
X X 0
X 0 X
0 X X

⎞
⎠ , (43)

corresponding to texture C1.

5 Conclusions

In conclusion, we have investigated the phenomenological
implications of two-zero textures in inverse neutrino mass
matrix M−1

ν . In the basis where Dirac neutrino mass matrix
MD is diagonal, zeros in right-handed Majorana neutrino
mass matrix MR corresponds to zeros of M−1

ν . We have,
also, proposed symmetry realization, based on discrete fla-
vor group A4, wherein such texture zeros can emerge in M−1

ν .
Further, we investigate the viability of all two-zero textures
in M−1

ν under LMA and LMA-D solutions. We have cat-
egorized the possible textures in five classes viz. class A,
B, C, D and E. Out of fifteen possible two-zero textures of
M−1

ν , seven are found to be in consonance with LMA and/or
LMA-D scenario. The general remarks about the obtained
phenomenology are as under:

• The textures in class A are all disallowed as they do
not reproduce the correct neutrino phenomenology. Thus,
texture with

(
M−1

ν

)
11 = 0 is disallowed, in general.

• In class B, B2 and B4 textures are consistent with both
LMA and LMA-D solutions. B2 (B4) predicts normal
(inverted) hierarchical neutrino masses. For texture B2,
the 3σ lower bound on 0νββ decay amplitude |Mee| is
found to be 0.02 eV (0.04 eV) under LMA and LMA-D,
respectively. For B4 texture, it is about 0.06 eV for both
LMA and LMA-D solutions.

• In class C, C2 is disallowed. C1 and C3 textures are con-
sistent with both LMA and LMA-D solutions. C1 (C3)
predicts normal (inverted) hierarchical neutrino masses.
For texture C1 (C3), the 3σ lower bound on |Mee| is 0.02
eV (0.06) eV under both LMA and LMA-D solutions.

• For textures B2, B4, C1 and C3, the Dirac and Majorana-
type CP violating phases are sharply constrained and
these textures are found to be necessarily CP violating.

• Textures D1 and E1 predict normal hierarchical neutrino
masses and are found to be consistent with LMA solu-
tion. LMA-D solution is disallowed by these textures.
Also, |Mee| is vanishing in these textures. In general, we
conclude that the textures for which LMA-D is disal-
lowed, |Mee| is vanishing. Similar inference is observed
in Ref. [11] wherein the authors analyzed phenomenol-
ogy of Majorana neutrino textures in the light of LMA-D
solution.

• Texture D2 predicts normal hierarchical neutrino masses
and is consistent with both LMA and LMA-D phe-
nomenology. In LMA (LMA-D) scenario, there exist a
3σ lower bound on |Mee| > 0.01 eV (0.02 eV).

• The generic feature of the class of model, discussed in
the present work, is the existence of neutrino mass hier-
archy degeneracy in a particular texture. For example, if
a texture is allowed by LMA solution with “X” neutrino
mass hierarchy then, if LMA-D is allowed, it is allowed
with the same hierarchy “X”.

The allowed two-zero texture of M−1
ν viz. B2, B4, C1, C3,

D1, D2 and E1 has imperative predictions for |Mee| [33].
Except for D1 and E1 textures, the predicted 3σ lower
bound on 0νββ decay amplitude |Mee| is O(10−2) which is
within the sensitivity reach of 0νββ decay experiments like
SuperNEMO [39], KamLAND-Zen [40], NEXT [41,42],
and nEXO [43]. For example, the non-observation of 0νββ

decay down to these high sensitivities will refute all the tex-
tures except D1 and E1. Also, we have shown that the allowed
M−1

ν textures can be accommodated in an extension of the
SM with three right-handed neutrinos and one scalar sin-
glet field. As representative realizations, we have obtained
two such textures B4 and C1 within Type-I seesaw scenario
using A4 discrete flavor symmetry.
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