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Abstract According to the common wisdom, between a
fraction of the mHz and few Hz the spectral energy den-
sity of the inflationary gravitons can be safely disregarded
even assuming the most optimistic sensitivities of the space-
borne detectors. In this analysis we show that this conclusion
is evaded if, prior to nucleosynthesis, the post-inflationary
evolution includes a sequence of stages expanding either
faster or slower than radiation. As a consequence, contrary
to the conventional lore, it is shown that below a fraction
of the Hz the spectral energy density of the relic gravitons
may exceed (even by eight orders of magnitude) the sig-
nal obtained under the hypothesis of radiation dominance
throughout the whole expansion history prior to the forma-
tion of light nuclei. Since the slopes and the amplitudes of
the spectra specifically reflect both the inflationary dynam-
ics and the subsequent decelerated evolution, it is possible
to disentangle the contribution of the relic gravitons from
other (late-time) bursts of gravitational radiation associated,
for instance, with a putative strongly first-order phase transi-
tion at the TeV scale. Hence, any limit on the spectral energy
density of the relic gravitons in the mHz range simultane-
ously constrains the post-inflationary expansion history and
the inflationary initial data.

1 Introduction

A striking prediction of the early evolution of the space-time
curvature is the formation of a stochastic background of relic
gravitons [1–4] whose frequencies may extend between the
aHz and the GHz regions. As originally pointed out in Refs.
[5,6], the spectral energy density of relic gravitons is quasi-
flat between 100 aHz and 100 MHz for the inflationary sce-
narios relying on the conventional slow-roll evolution. Since
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the quasi-flat plateau corresponds to wavelengths that left the
Hubble radius during inflation and reentered after radiation
was already dominant, the spectral energy density can only
reach its maximum in the aHz region where the signal scales
as ν−2 with the comoving frequency ν [7]. In the aHz inter-
val the temperature and the polarization anisotropies of the
cosmic microwave background are customarily employed to
infer the tensor to scalar ratio rT here assumed in the range
rT = rT (νp) ≤ 0.06, as suggested by recent determina-
tions [13–15]. For the record νp = kp/(2π) = 3.09 aHz
and kp = 0.002 Mpc−1 denotes the pivot scale at which the
scalar and tensor power spectra are conventionally assigned
when the relevant wavelengths are larger than the Hubble
radius prior to matter-radiation equality.

Depending on the value of rT , the spectral energy den-
sity in critical units1 well above 100 aHz is h2

0�gw(ν, τ0) <

O(10−17) and this estimate includes the effect of the vari-
ous damping source such as the late-dominance of the dark
energy, the evolution of the relativistic species and the free-
streaming of the neutrinos [16,17]. For all these reasons the
spectral energy density of inflationary origin is too small to
be detected by either ground based or space-borne detec-
tors even in their most advanced versions. At the moment
the only direct bounds on the relic gravitons come from the
audio band and depend upon the spectrum of the signal but we

1 Instead of working with the spectral energy density of the relic gravi-
tons in critical units (conventionally denoted by �gw(ν, τ0)) it is prac-
tical to introduce h2

0 �gw(ν, τ0) where h0 is the indetermination of
the Hubble rate. The spectral energy density of the relic gravitons
does not coincide with their energy density in critical units which is
instead frequency-independent. We also note that the frequencies are
often mentioned in the text by using the standard metric prefixes of
the international system of units. So, for instance, aHz = 10−18 Hz,
mHz = 10−3 Hz and so on. After the analysis of Refs. [5,6] suggesting
a flat slope for �gw(ν, τ0) various authors discussed the same problem
with a number of relevant additions; in this respect the interested reader
may consult Refs. [8–12].
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could anyway say that, for a nearly scale-invariant spectrum,
h2

0�gw(ν, τ0) < O(10−9) between 10 Hz and 80 Hz [18,19]
(see also [20] for a recent review including earlier bounds).
For a physical comparison between the ground-based detec-
tors and the (futuristic) space-borne interferometers the spec-
tral energy density can be usefully expressed in terms of the
chirp amplitude hc(ν, τ0) [20] when the typical frequencies
fall in the audio band:

h2
0�gw(ν, τ0) = 6.26 × 10−9

(
ν

0.1 kHz

)2[hc(ν, τ0)

10−24

]2

.

(1.1)

If we read Eq. (1.1) from left to right we can argue that
to probe h2

0�gw(ν, τ0) = O(10−9) we would need a sen-
sitivity in the chirp amplitude O(10−24) for a typical fre-
quency ν = O(100) Hz. From right to left Eq. (1.1) suggests
instead that, for the same sensitivity in hc(ν, τ0), the min-
imal detectable h2

0�gw(ν, τ0) gets comparatively smaller2.
This is why the minimal detectable spectral energy density
could be h2

0�gw(ν, τ0) = O(10−11) or even h2
0�gw(ν, τ0) =

O(10−15) under the hypothesis that the same sensitivity
reached in the audio band for the chirp amplitude can also be
achieved in the mHz range. With this hope, various space-
borne detectors have been proposed so far: the Laser Inter-
ferometric Space Antenna (LISA) [21,22], the Deci-Hertz
Interferometer Gravitational Wave Observatory (DECIGO)
[23,24], the Ultimate-DECIGO [25] (conventionally referred
to as U-DECIGO), the Big Bang Observer (BBO) [26]. This
list has been recently enriched by the Taiji [27,28] and by
the TianQin [29,30] experiments. Since these instruments
are not yet operational (but might come into operation within
the next twenty years) their actual sensitivities are difficult
to assess, at the moment. However, without dwelling on the
specific nature of the noise power spectra, Eq. (1.1) shows
that, as long as hc = O(10−23) the space-borne detectors
might probe h2

0�gw(ν, τ0) = O(10−14) for νS = O(0.01)

Hz and this is, roughly speaking, the daring expectation of
DECIGO [23,24] and of U-DECIGO [25].

According to the standard lore (see e.g. [21–24]) the astro-
physical sources of gravitational radiation (i.e. mostly white
dwarves and solar masses black holes) dominate the signal
below 0.1 Hz, while the bursts of gravitons from the TeV
physics are unlikely in the standard electroweak theory but
should be anyway subleading in comparison with the galactic
foregrounds. Because of the relative smallness of its spectral
energy density, the inflationary background of relic gravi-
tons is always disregarded but this conclusion is only based
on a specific expansion history and it can be evaded if, prior
to nucleosynthesis, the evolution of the background is not

2 Besides the the absence of seismic noise this is probably one of
strongest arguments in favour of space-borne detectors for typical fre-
quencies ranging between a fraction of the mHz and the Hz.

constantly dominated by radiation. Indeed, the flatness of
h2

0�gw(ν, τ0) for frequencies larger than 100 aHz is not only
determined by the inflationary evolution when the relevant
wavelengths exit the Hubble radius but also by the expansion
rate at reentry [31,32]. The high-frequency signal is maxi-
mized by a long stage expanding at a rate that is slower than
radiation [31,32] and this possibility is realized in various
classes of quintessential inflationary scenarios [33,35–37]
(see also [38,39]). The signal from a long stiff phase does
not imply a reduction of h2

0�gw(ν, τ0) in the aHz region so
that the high-frequency measurements of wide-band detec-
tors and the low-frequency determinations of rT can be simul-
taneously constrained within an accurate numerical frame-
work [40,41]. In this context the potential signal might be
sufficiently large both in the aHz region and in the audio
band.

While in the case of a stiff post-inflationary phase the spike
typically arises for frequencies between the GHz and 100
GHz it is also possible to have different profiles of the spec-
tral energy density with a number of different peaks when
the frequency is comparatively smaller or even much smaller
than the MHz. There is then a trade-off between the smallness
of the frequency and the magnitude of h2

0�gw(ν, τ0) [40,41].
Since the most general post-inflationary expansion rate con-
sists of a series of successive stages expanding at different
rates that are either faster or smaller than radiation3 [40–42],
in this paper we are going to argue that the general approach
previously explored is also applicable also to smaller fre-
quencies in the mHz region. In the presence of a modified
post-inflationary expansion rate the standard inflationary sig-
nal computed in Refs. [5–7] can be much larger below the Hz
and potentially dominant against the bursts of gravitational
radiation from strongly first-order phase transitions.

The layout of this paper is the following. In Sect. 2
the inflationary power spectra are computed after the rel-
evant wavelengths reentered the Hubble radius during a
post-inflationary stage that differs from radiation. In Sect. 3
we examine the general case where each stage of a larger
sequence of phases expands at a rate that is either faster or
slower than radiation. In this situation the spectral energy
density exhibits a succession of peaks and throughs whose
frequencies are solely determined by the curvature scale.
Since the slopes of of the humps in h2

0�gw(ν, τ0) depend both
on the inflationary stage and on the post-inflationary evolu-
tion, in Sect. 4 it is shown that the current limits from ground-
based detectors already pin down a well defined region of the

3 Incidentally, within the present approach the possibility of a signal
in the nHz band (recently suggested by the pulsar timing arrays [43–
46]) has been specifically scrutinized by considering a wide range of
possibilities including the presence of late-time stages of inflationary
expansion [42]. In this paper we are instead concerned with the mHz
range and the potential signal from pulsar timing arrays will not be
specifically discussed.
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parameter space that should be further explored by space-
borne interferometers. Section 5 contains the concluding
remarks and some comments on the future perspectives.

2 Spectral energy density of the inflationary gravitons

The effect of the post-inflationary evolution is not, as some-
times argued, a purely kinematical problem that is virtu-
ally disentangled from the dynamical evolution of the ten-
sor modes. On the contrary the enhancement of the spectral
energy density at late times is also determined by the early
expansion: it is because of the successive occurrence of an
inflationary stage and of the late post-inflationary evolution
that �gw(k, τ ) may be enhanced at high and intermediate
frequencies [31,32]. The flat spectrum of relic gravitons for
frequencies larger than 100 aHz only arises if the relevant
wavelengths exit the Hubble radius during inflation and reen-
ter in a radiation-dominated stage of expansion, as originally
assumed in Refs. [5–7]. We may consider, in this respect the
standard form of the spectral energy density in critical units
that can be written as [20]:

�gw(k, τ0) = 1

24H2 a2

[
QT (k, τ ) + k2 PT (k, τ )

]
, (2.1)

where a(τ ) is the scale factor of a conformally flat back-
ground geometry, τ is the conformal time and H is the
standard Hubble expansion rate. In Eq. (2.1) QT (k, τ ) and
PT (k, τ ) are the tensor power spectra that are defined from
the evolution of the mode functions Gk(τ ) and Fk(τ ):

QT (k, τ ) = 4�2
P

π2 k3
∣∣Gk(τ )

∣∣2
,

PT (k, τ ) = 4�2
P

π2 k3
∣∣ Fk(τ )

∣∣2
, (2.2)

where �P = √
8 π G; in what follows the notations for the

Planck mass are given by MP = MP/
√

8 π = 1/�P and
MP is the reduced Planck mass.

The rescaled mode functions fk(τ ) = a(τ )Fk(τ ) and
gk(τ ) = a(τ )Gk(τ ) obey, in the present context, the standard
evolution equations:

f ′′
k +

[
k2 − a′′

a

]
fk = 0, gk = f ′

k − H fk . (2.3)

In Eq. (2.3) the prime denotes a derivation with respect to
the conformal time coordinate τ ; we also use the standard
notation H = aH where H = a′/a and H is the conven-
tional Hubble rate. Within the WKB approximation Eq. (2.3)
is approximately solved in the two complementary regimes
where k2 is either larger or smaller than | a′′/a|. In particu-
lar when k2 � | a′′/a | the mode functions ( fk , gk) oscillate
while (Fk , Gk) are also suppressed as 1/a. In the opposite
regime (i.e. k2 � | a′′/a|) fk(τ ) is said to be superadia-
batically amplified, according to the terminology originally

introduced in Refs. [1–3]. The oscillating and the superadi-
abatic regimes are separated by a region where the solutions
change their analytic behaviour and these turning points are
defined as solutions of the approximate equation k2 � | a′′/a|
that can also be rewritten as:

k2 = a2 H2
[

2 − ε(a)

]
, ε(a) = − Ḣ

H2 . (2.4)

During the inflationary stage of expansion ε � 1 denotes
the standard slow-roll parameter; conversely in the post-
inflationary phase the background decelerates (but still
expands) and ε(a) = O(1). If ε �= 2 both turning points are
regular and this means that Eq. (2.4) can be approximately
solved by k � aH . For instance when a given wavelength
crosses the Hubble radius during inflation we have that ε � 1
and k � aex Hex that also means, by definition, kτex � 1.
Similarly if the given wavelength reenters in a decelerated
stage of expansion different from radiation we also have that
k � are Hre. Finally if the reentry occurs in the radiation
stage we have that εre → 2 and the condition (2.4) implies
that kτre � 1.

These considerations suggest that the spectral energy den-
sity of the relic gravitons depends both on the exit and on the
reentry of the given wavelength and for this purpose it is
appropriate to express the mode functions in the Wentzel–
Kramers–Brillouin (WKB) approximation under the further
assumption that are � aex : this requirement is verified as
long as the Universe expands as it is always the case through-
out the present discussion. The initial conditions for the evo-
lution of the mode functions are then assigned during the
inflationary stage and before the corresponding wavelengths
exit the Hubble radius; in this regime fk(τ ) and gk(τ ) are
simply plane waves obeying the Wronskian normalization
condition:

fk(τ ) g∗
k (τ ) − f ∗

k (τ )gk(τ ) = i, (2.5)

as required by the canonical commutation relations of the
corresponding field operators [20]. From the continuity of
the mode functions across the turning points of the problem,
the expression of Fk(τ ) becomes:

Fk(τ ) = e−ik τex

a
√

2 k
Qk(τex , τre)

(
are
aex

)

×
{Hre

k
sin [k(τ − τre)] + cos[k(τ − τre)]

}
, (2.6)

and it is valid for kτ � 1 when all the corresponding
wavelengths are shorter than the Hubble radius. In the same
approximation Gk(τ ) is:
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Gk(τ ) = e−ik τex

a

√
k

2
Qk(τex , τre)

(
are
aex

)

×
{Hre

k
cos [k(τ − τre)] − sin[k(τ − τre)]

}
.(2.7)

Equations (2.6)–(2.7) are valid in the two concurrent limits
kτ � 1 and are � aex but they are otherwise general since
the expansion rates at τex and τre have not been specified. In
Eqs. (2.6)–(2.7) Qk(τex , τre) denotes a complex amplitude
defined as:

Qk(τre, τex ) = 1 − (i k + Hex )

∫ τre

τex

a2
ex

a2(τ )
d τ. (2.8)

The integral at the right hand side of Eq. (2.8) depends on
the evolution between τex and τre but its value is always
subleading so that it is generally true4 that

∣∣Qk(τre, τex )
∣∣2 →

1.
In Eqs. (2.6)–(2.7) we may note the appearance of standing

waves that are characteristic both in the case of relic gravitons
and in the case of scalar metric fluctuations and they are often
referred to as Sakharov oscillations because they arose, for
the first time, in the pioneering contribution of Refs. [47,48]
(see also [49]). When Eqs. (2.6)–(2.7) are inserted into Eq.
(2.2) we can obtain the corresponding power spectra that
determine the final expression of the spectral energy density
in critical units through Eq. (2.1):

�gw(k, τ ) = k4

12 π2 a4 H2 M
2
P

∣∣Q(τex , τre)
∣∣2

×
(
are
aex

)2(
1 + H2

re

k2

)[
1 + O

(H
k

)]
. (2.9)

Equation (2.9) is valid in the limit H/k � 1 and this condi-
tion is equivalent to kτ � 1 since H = O(τ−1). If a given
wavelength exits the Hubble radius during inflation we have:

k � aex Hex � − 1

(1 − ε)τex
= − β

τex
, (2.10)

where we denoted, for the sake of convenience, β = 1/(1−ε)

and εex = ε � 1. When the same wavelength reenters during
a stage that is not dominated by radiation, εre �= 2 in Eq. (2.4)
so that, at reentry, k � Hre = are Hre.

If a given wavelength 2π/k reenters across two different
regimes characterized by a different expansion rate, the scale
factor during the i-th stage of expansion can be parametrized,
for instance, as:

ai (τ ) =
(

τ

τi

)δi

, δi > 0, δi �= 1, τ ≤ τi . (2.11)

4 Only if a2(τ ) � 1/H the contribution of the integral of Eq. (2.8) is
relevant and it corresponds to the possibility of extended stiff phases
where, for instance, the energy density is dominated by the kinetic
energy of a scalar field [31,32]; in this case the spectral energy density
and the other observables inherit a logarithmic correction.

For τ > τi the scale factor during the (i + 1)-th stage of
expansion is: modified as

ai+1(τ ) �
[

δi

δi+1

(
τ

τi
− 1

)
+ 1

]δi+1

, δi+1 > 0,

δi+1 �= 1, τ ≥ τi . (2.12)

Even if δi+1 and δi can be equal, the situation we want to
discuss now is the one where δi+1 �= δi . Let us then go back
to Eq. (2.9) and evaluate the spectral energy density for the
modes reentering for τ < τi

�(i)
gw(k, τ ) = 4

3π

(
H1

MP

)2 (
H1 a2

1

H a2

)2

×
∣∣∣∣ ai Hi

a1 H1

∣∣∣∣
4−β ∣∣∣∣ k

ai Hi

∣∣∣∣
n(i)
T

, k > ai Hi ,

(2.13)

where we took into account that k � areHre = Hre. In Eq.
(2.13) H1 is coincides with the maximal value of the Hubble
rate (e.g. at the end of inflation). We stress that, in the case
εre �= 2, the turning points of Eq. (2.4) are determined from
k2 � a2 H2; the contribution of the numerical factor (2−εex )

and (2 − εre) has been consistently neglected. The spectral
index appearing in Eq. (2.13) is given by

n(i)
T = 2(1 − β) + 2(1 − δi ), δi > 0,

β = 1

1 − ε
. (2.14)

If we now assume the validity of the consistency relations
the value of n(i)

T depends on δi and rT

n(i)
T (rT , δi ) = 32 − 4 rT

16 − rT
− 2δi = 2(1 − δi ) + O(rT ).

(2.15)

From Eq. (2.15) in the limit δi → 1 we have

lim
δi→1

n(i)
T (rT , δi ) = −rT /8 + O(r2

T ). (2.16)

Similarly, for the wavelengths reentering during the (i+1)-th
stage the spectral energy density is instead given by:

�(i+1)
gw (k, τ ) = 4

3π

(
H1

MP

)2 (
H1 a2

1

H a2

)2

×
∣∣∣∣ ai Hi

a1 H1

∣∣∣∣
4−β ∣∣∣∣ k

ai Hi

∣∣∣∣
n(i+1)
T

, k < ai Hi ,

(2.17)

where n(i+1)
T is now given by

n(i+1)
T (rT , δi+1) = 2(1 − β) + 2(1 − δi+1)

= 32 − 4 rT
16 − rT

− 2δi+1

= 2(1 − δi+1) + O(rT ). (2.18)
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From Eqs. (2.15)–(2.18) we have in fact three complemen-
tary possibilities. If the expansion rate is initially slower than
radiation (i.e. δi < 1) the spectral index for k > ai Hi is either
blue or violet (i.e. n(i)

T > 0). Then, provided δi+1 > 1 the
spectral energy density of Eqs. (2.13) and (2.17) is charac-
terized by a local minimum for k � ai Hi . We may also have
the opposite situation where the expansion rate is initially
faster than radiation (i.e. δi > 1) then it gets smaller (i.e.
δi+1 < 1) and the spectral energy density has a local maxi-
mum always for k � ai Hi . The third possibility suggests that
either δi → 1 or δi+1 → 1: in this case the spectral energy
density exhibits a quasi-flat branch either for ν < νi = ai Hi

or for ν > νi . While this result is formally correct, for the
sake of completeness it is useful to verify it directly from Eq.
(2.9). In the case δi → 1 at reentry we have that kτre � 1;
this means that the term Hre/k � 1 dominates in Eq. (2.9)
and �gw(k, τ ) is then given by:

�gw(k, τ ) = 2

3π

(
k2

a2
ex M

2
P

)(
H2
re a

4
re

H2 a4

)

= 2

3π

(
H2

1 a4
1

H2 a4

)(
H1

MP

)2 (
k

a1 H1

)nT
, (2.19)

where nT = −2ε � −rT /8. Thus Eqs. (2.16) and (2.19)
show that n(i)

T (rT , δi ) evaluated in the limit δi → 1 indeed
corresponds to nT up to corrections O(r2

T ).

3 Peaks and throughs of the spectral energy density

The previous results demonstrate that Hre and Hex are
equally essential for the late-time form of the spectral energy
density. In this sense the slopes of the humps appearing in
�gw(ν, τ0) are a simultaneous test of the expansion rate dur-
ing inflation and in the post-inflationary stage. This means
that if n(i)

T (rT , δi ) and n(i+1)
T (rT , δi+1) are observationally

assessed around a given peak, their measurement ultimately
reflects the expansion history during and after inflation.

3.1 The profile of the effective expansion rate

It is now interesting to consider the general case illustrated
in Fig. 1 where, prior to a1, an inflationary stage dominates
the evolution of the background so that the effective expan-
sion rate a H increases linearly with the scale factor. As sug-
gested in the previous section, during this stage the initial
inhomogeneities of the tensor modes are normalized to their
quantum mechanical values. While in the conventional case
we would have that, after inflation, the effective expansion
rate is immediately dominated by radiation, in the situation
illustrated in Fig. 1 we rather consider a sequence of different
stages expanding either faster or slower than radiation.

More specifically, according to Fig. 1, the post-inflationary
expansion history consists of N successive stages where, by
definition, a1 coincides with the end of inflation. Moreover,
since ar denotes the value of the scale factor at the onset
of the radiation-dominated stage of expansion, we conven-
tionally posit that aN = ar . During each of the successive
stages the expansion rate is characterized, in the conformal
time coordinate, by a(τ ) ∼ τ δi so that the spectral index
of h2

0�gw(ν, τ0) is in fact the one already determined in
Eqs. (2.15) and (2.18). During the i-th stage of expansion
the spectral energy density in critical units scales approxi-

mately as (ν/νi )
n(i)
T . The dashed lines of Fig. 1 illustrate the

values of the comoving frequencies at the transition points.
Since the current value of the scale factor is conventionally
normalized to 1 (i.e. a0 = 1) comoving and physical frequen-
cies coincide at the present time but not earlier on. Further-
more the largest frequency coincides with a1 H1 while for
ν < νr = ar Hr the spectral energy density has the standard
quasi-flat form since the corresponding wavelengths exit the
Hubble radius during inflation and reenter when the Uni-
verse is already dominated by radiation. It is important to
appreciate that while ν1 = a1 H1 = νmax depends on all
the post-inflationary expansion rates (i.e. the different δi ),
νr = ar Hr only depends on the hierarchy between H1 and
Hr . To prove this statement it is practical to introduce the
ratios of the curvature scales during two successive stages of
expansion, namely:

ξi = Hi+1

Hi
< 1, ξ =

N−1∏
i

ξi = Hr

H1
< 1, (3.1)

where ξ denotes the ratio between the Hubble rates at the
onset of the radiation-dominated stage5 (i.e. Hr ) and at the
end of the inflationary phase (i.e. H1); ξi gives instead the
ratio of the expansion rates between two successive stages.
Note that, by definition, both ξi and ξ are smaller than 1
since the largest value of the Hubble rate always appears in
the denominator. Since we conventionally choose that H1

coincides with the expansion rate at the end of inflation (i.e.
H1 ≡ Hmax ) while HN ≡ Hr , in the simplest non-trivial
situation we have that N = 3 and Eq. (3.1) implies:

ξ = ξ1 ξ2 = Hr

H1
, ξ1 = H2

H1
, ξ2 = Hr

H2
, (3.2)

where, following the conventions established established
above and illustrated in Fig. 1, a3 = ar and H3 = Hr .

5 A curvature scale Hr = O(10−44) MP correspond to a temperature
of the plasma T = O(MeV). For the present ends it is more practical
to work directly with the curvature scales.
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Fig. 1 On the vertical axis the common logarithm of a H is illustrated
as a function of the common logarithm of the scale factor. We con-
sider here the general situation where there are N different stages of
expansion not necessarily coinciding with radiation. The N -th stage
conventionally coincides with the standard radiation-dominated evolu-
tion (i.e. ar = aN ) while the first stage starts at the end of inflation

(i.e. H1 = Hmax ). Even if, in general, Hr � H1 we shall always
require Hr > 10−44 MP implying that the dominance of radiation takes
place well before big-bang nucleosynthesis. During the i-th stage of the
sequence the scale factor expands as a(τ ) � τ δi . The dashed lines
appearing in this cartoon correspond to the pivotal frequencies of the
spectrum

3.2 The typical frequencies of the spectrum

As anticipated the maximal frequency of the spectrum indeed
depends upon all the successive stages of expansion and its
the general expression is:

ν1 = νmax =
N−1∏
i=1

ξ

δi−1
2(δi+1)

i νmax . (3.3)

In Eq. (3.3) νmax denotes the maximal frequency of the spec-
trum when all the different stages of expansion appearing in
Fig. 1 collapse to a single phase expanding exactly like radi-
ation. Indeed, if δi → 1 in Eq. (3.3) for all the i = 1, . ., . N
we have that ν1 = νmax → νmax :

νmax = 269.33

(
rT

0.06

)1/4

(
AR

2.41 × 10−9

)1/4 (
h2

0 �R0

4.15 × 10−5

)1/4

MHz, (3.4)

where �R0 is the present fraction of relativistic species of
the concordance scenario and AR is the amplitude of the
scalar power spectrum that determines6 H1. In other words
νmax coincides with the maximal frequency of the spectrum
in the case considered in Refs. [5,6] where H1 → Hr and
νr → νmax = O(200) MHz. In the general case illustrated

6 We recall that (H1/MP ) = √
π ε AR. If the consistency relations are

enforced we also have that (H1/MP ) = √
π rT AR/4, where rT � 16 ε

is, as usual, the tensor to scalar ratio.

in Fig. 1 we have that:

νN = νr =
N−1∏
j=1

√
ξ j νmax = √

ξ νmax , (3.5)

where the second equality follows since, by definition,

N−1∏
j=1

ξ j = ξ1 ξ2 · · · ξN−2 ξN−1 = ξ. (3.6)

Equations (3.3) and (3.5) demonstrate, as anticipated above,
that while νmax is sensitive to the whole expansion history,
νr only depends upon

√
ξ (where ξ = Hr/H1).

For all the other intermediate frequencies between νmax

and νr , the following expression holds:

νm =
m−1∏
j=1

√
ξ j

N−1∏
i=m

ξ

δi−1
2(δi+1)

i νmax ,

m = 2, 3, . . . N − 2, N − 1. (3.7)

The different frequencies are illustrated in Fig. 1 with the
dashed lines are therefore in the following hierarchy:

νmax = ν1 > ν2 > ν3 > · · · > νN−2 > νN−1 > νN = νr .

(3.8)

Th result of Eq. (3.8) is a direct consequence of the monotonic
shape ofa H fora > a1. If the profile ofa H is not monotonic
for a > a1, the hierarchy between the different frequencies of
the spectrum is different as it happens when there is a second
inflationary stage of expansion between a1 and ar [42].
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3.3 Local maxima of the spectral energy density

Since the typical frequencies probed by space-borne inter-
ferometers are below the Hz the most interesting situa-
tion, from the practical viewpoint, involves a maximum of
h2

0�gw(ν, τ0) just before the final dominance of radiation
when aN = ar . In this case the extremum of the spectral
energy density occurs for νN−1. Further maxima can also
arise for higher frequencies and are more constrained by the
measurements of the pulsar timing arrays and by the limits
coming from wide-band detectors. Recalling the notations
of Fig. 1 together with the explicit expressions of the slopes
given in Eqs. (2.15) and (2.18), the spectral energy density
has a maximum for ν = νN−1 provided

δN−2 ≥ 1, δN−1 < 1 ⇒ n(N−2)
T ≤ 0,

n(N−1)
T > 0, (3.9)

where νN−2 > νN−1 > νN = νr . The spectral energy
density in critical units reaches therefore a maximum for
ν = νN−1 and its value is:

h2
0 �gw = N ρ(νN−1, rT )

(
νN−1

νN

)n(N−1)
T

. (3.10)

where N ρ(ν, rT ) is a function that weakly depends on the
frequency and it is typically smaller than 10−16 for rT ≤ 0.06
[13–15]. This function is explicitly determined in Sect. 5 and
it contains the dependence upon the transfer functions of the
problem. According to the results deduced so far the explicit
form of νN−1 and νN is given by:

νN−1 = √
ξ1 . . .

√
ξN−2 ξ

δN−1−1
2(δN−1+1)

N−1 νmax , (3.11)

νN = νr = √
ξ1 . . .

√
ξN−1 νmax . (3.12)

The ratio of Eqs. (3.11) and (3.12) gives exactly the term
appearing in Eq. (3.10) so that the value of the spectral energy
density at the maximum can also be written as:

h2
0 �gw(νN−1, τ0) � N ρ(νN−1, rT ) ξ

− 2(1−δN−1)

δN−1+1

N−1 . (3.13)

The function N ρ(νN−1, rT ) is weakly dependent on the fre-
quency and its explicit form is discussed in the following
section. Since the local maximum for ν = νN−1 does not
depend on different maxima possibly arising for ν < νN−1

the simplest situation, for the present purposes, is the one
where N = 3. In this case there are only two successive
stages characterized by δ1 and δ2. The maximal frequency of
the spectrum is given by:

ν1 = νmax = ξ

δ1−1
2(δ1+1)

1 ξ

δ2−1
2(δ2+1)

2 νmax . (3.14)

The frequencies ν2 and ν3 = νr are instead given by:

ν2 = √
ξ1 ξ

δ2−1
2(δ2+1)

2 νmax ,

νr = ν3 = √
ξ1

√
ξ2 νmax . (3.15)

We have just have one peak for ν = ν2 and Eq. (3.13) gives

h2
0 �gw(ν2, τ0) � N ρ(ν2, rT ) ξ

− 2(1−δ2)

δ2+1

2 . (3.16)

All in all, while the existence of an early stage of acceler-
ated expansion is motivated by general requirements directly
related to causality, the post-inflationary expansion history is
not constrained prior to big-bang nucleosynthesis. The results
obtained in this section are therefore applicable to any post-
inflationary expansion rate and do not assume the dominance
of radiation between H1 and Hr .

3.4 General requirements on the total number of e-folds

As repeatedly stressed we always considered hereunder the
possibility that Hr > 10−44 MP suggesting that the plasma is
already dominated by radiation for temperatures that are well
above the MeV as it happens, for instance, when the reheating
stage is triggered by the decay of a gravitationally coupled
massive scalar field. There are however some possibilities
where the MeV-scale reheating temperature could be induced
by long-lived massive species with masses close to the weak
scale, as suggested in Refs. [50,51]. In spite of this interesting
option we simply regard the condition Hr ≥ 10−44 MP as an
absolute lower limit on Hr . Indeed the gravitational waves
only couple to the expansion rate and our purpose here is just
to propose a framework where the early thermal history of
the plasma could be tested via the spectra of the inflationary
gravitons.

Along this perspective it is useful to remark that the
maximal number of inflationary e-folds accessible to large-
scale observations can be different [31] (see also [40,42,52])
depending on the post-inflationary expansion history. The
maximal number of e-folds presently accessible to large-
scale observation (Nmax in what follows) is computed by
fitting the (redshifted) inflationary event horizon inside the
current Hubble patch; in other words we are led to require, in
terms of Fig. 1, that H−1

1 (a0/a1) � H−1
0 . It is clear thatNmax

does not coincide with the total number of e-folds that can
easily be larger (or even much larger) than Nmax . Depending
on the various δi and ξi the same gap in a H is covered by a
different amount of redshift. In the general situation of Fig. 1
the expression of Nmax is given by:

Nmax = 61.88 − ln

(
h0

0.7

)
+ 1

4
ln

(
rT

0.06

)
+ 1

4
ln

( AR
0.06

)

+1

4
ln

(
h2

0 �R0

0.06

)
+ 1

2

N−1∑
i

(
δi − 1

δi + 1

)
ln ξi . (3.17)
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In connection with Eq. (3.17) we have three complementary
possibilities. If we conventionally set δi = 1 into Eq. (3.17)
we obtain the standard result implying that Nmax = O(60).
Recalling that all the ξi are, by definition, all smaller than
1 we have that Nmax > 60 if δi < 1. For the same reason
Nmax < 60 iff δi > 1. Let us consider, for instance, the case
of a single phase expanding slower than radiation; in this
case Nmax can be as large as 75 [40,41]. In the intermediate
situations where there are different phases expanding either
faster or slower than radiation Nmax depends on the relative
duration of the various phases and on their expansion rates.

4 The frequency range of space-borne interferometers

4.1 Approximate frequencies of the various instruments

While various space-borne interferometers have been pro-
posed so far the presumed sensitivity of these instruments is
still under debate. For this reason we adopt here a pragmatic
viewpoint based on the considerations developed after Eq.
(1.1). In short the strategy is the following:

• the fiducial frequency interval of space-borne interfer-
ometers ranges from a fraction of the mHz to the Hz
and, within this interval, the minimal detectable spectral
energy density (denoted hereunder by h2

0�
(min)
gw (ν, τ0))

defines the potential sensitivity of the hypothetical instru-
ment;

• the LISA interferometers [21,22] might hopefully probe
the following region of the parameter space:

h2
0�

(min)
gw (ν, τ0) = O(10−11.2),

10−4Hz < ν ≤ 0.1 Hz; (4.1)

• in the case of the Deci-Hertz Interferometer Gravita-
tional Wave Observatory (DECIGO) [23,24] the minimal
detectable spectral energy density could be smaller

10−17.5 ≤ h2
0�

(min)
gw (ν, τ0) ≤ O(10−13.1),

10−3Hz < ν ≤ 0.1 Hz. (4.2)

The values of Eq. (4.2) are still quite hypothetical so that
it is prudent to choose h2

0�
(min)
gw (ν, τ0) between the stan-

dard values of the hoped sensitivity of the DECIGO project
[23,24] (suggesting h2

0�
(min)
gw (ν, τ0) = O(10−13.1)) and

the optimistic figure reachable by the Ultimate-DECIGO
[25] (conventionally referred to as U-DECIGO) where
h2

0�
(min)
gw (ν, τ0) = O(10−17.5). For the record, the Big Bang

Observer (BBO) [26] might reach sensitivities

h2
0�

(min)
gw (ν, τ0) = O(10−14.2), 10−3Hz < ν ≤ 0.1 Hz.

(4.3)

There finally exist also recent proposals such as Taiji [27,28]
and TianQin [29,30] leading to figures that are roughly com-
parable with the LISA values. In summary for the typical
frequency of the space-borne detectors we consider the fol-
lowing broad range:

0.1 mHz < νS < 0.1 Hz (4.4)

and suppose that in the range (4.4) h2
0�

(min)
gw (ν, τ0) may take

the following two extreme values.

h2
0�

(min)
gw (νS, τ0) = O(10−11),

h2
0�

(min)
gw (νS, τ0) = O(10−14). (4.5)

While the two values of Eq. (4.5) are both quite optimistic,
they are customarily assumed by the observational proposals
and, for this reason, they are used here only for illustration.

4.2 The profile of the spectral energy density

The exclusion plots characterizing the parameter space of
the model are separately considered for the two illustrative
values of h2

0�
(min)
gw (νS, τ0) given in Eq. (4.5). For instance in

Fig. 2 we require that

νN−1 = O(νS), h2
0�gw(νN−1, τ0) ≥ 10−11. (4.6)

The first requirement of Eq. (4.6) implies that the frequency
range of the maximum is comparable with νS while the sec-
ond condition just comes from Eq. (4.5) and it also demands,
incidentally, that the inflationary signal is larger than the
spectral energy density produced by the gravitational waves
associated with a putative strongly first-order phase tran-
sition, as we shall briefly discuss later on. The condition
(4.6) can also be relaxed by assuming the second value of
h2

0�gw(νS, τ0):

νN−1 = O(νS), h2
0�gw(νN−1, τ0) ≥ 10−14. (4.7)

Equation (4.7) is justified by the nominal sensitivity of other
space-borne interferometers such as DECIGO [23,24] or U-
DECIGO [25]. To investigate the phenomenological impli-
cations the simplest choice is to posit N = 3. In this case
we just have one maximum for νr < ν < νmax and the
discussion of the parameters is therefore simpler even if, as
already mentioned, the essential features remain the same
also in more complicated situations. For N = 3 the spectral
energy density of the model is:

h2
0 �gw(ν, τ0) = Nρ rT (νp)

(
ν

νp

)nT (rT )

×T 2
low(ν/νeq) T 2

high(ν, ν2, νr , n
(1)
T , n(2)

T ),

(4.8)

where nT (rT ) has been computed in Eqs. (2.16) and (2.19);
nT is the spectral index associated with the wavelengths leav-
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ing the Hubble radius during the inflationary phase and reen-
tering during the radiation stage. In Eq. (4.8) νp andνeq define
the lowest frequency range of the spectral energy density:

νp = kp
2π

= 3.092

(
kp

0.002 Mpc−1

)
aHz,

νeq = keq

2π
= 15.97

(
h2

0 �M0

0.1411

)(
h2

0 �R0

4.15 × 10−5

)−1/2
aHz, (4.9)

where we used that keq = 0.0732 h2
0 �M0 Mpc−1 (as usual,

�M0 is the present fraction in dusty matter). The spectral
slopes n(1)

T and n(2)
T are instead determined by Eqs. (2.15)

and (2.18); up to corrections O(rT ) we have

n(1)
T = 2(1 − δ1) + O(rT ),

n(2)
T = 2(1 − δ2) + O(rT ), (4.10)

where n(1)
T < 0 and n(2)

T > 0 since during the first stage the
Universe expands faster than radiation (i.e. δ1 > 1) while in
the second stage it is slower than radiation (i.e. δ2 < 1). In the
simplest case where the consistency relations are enforced we
have that

nT (rT ) = −rT
8

+ O(r2
T ),

Nρ = 4.165 × 10−15
(

h2
0 �R0

4.15 × 10−5

)
. (4.11)

In Eq. (4.9) Tlow(ν/νeq) is the low-frequency transfer func-
tion of the spectral energy density [20]:

Tlow(ν, νeq) =
√

1 + c1

(
νeq

ν

)
+ c2

(
νeq

ν

)2

,

c1 = 0.5238, c2 = 0.3537. (4.12)

The high-frequency transfer function Thigh(ν, ν2, νr , δ1, δ2)
appearing in Eq. (4.8) depends on ν2 and νr and it is given
by:

T 2
high(ν, νr , ν2, n(1)

T , n(2)
T ))

=
√

1 + b1(ν/νr )
n(2)
T + b2(ν/νr )

2n(2)
T√

1 + d1(ν/ν2)n
(2)
T +|n(1)

T | + d2(ν/ν2)2(n(2)
T +|n(1)

T |)
,

(4.13)

where bi and di (with i = 1, 2) are numerical coefficients
of order 1 that depend on the specific choice of δ1 and δ2

and cannot be written in general terms. We recall that the
explicit expressions of ν2 and νr have been given in Eq. (3.15)
and they depend explicitly upon ξ1 and ξ2. Since Eq. (4.13)
depends on two different scales, there are three relevant limits
of T 2

high(ν, νr , ν2) that must be considered. The first limit
stipulates that:

T 2
high(ν, νr , ν2, n

(1)
T , n(2)

T )

→
√
b2

d2

(
ν2

νr

)n(2)
T

(
ν

ν2

)−|n(1)
T |

, ν � ν2, (4.14)

and it corresponds to the high-frequency branch where the

spectral energy density is suppressed as ν−|n(1)
T |:

h2
0 �(ν, τ0) = N ρ(rT , ν)

(
ν2

νr

)n(2)
T

(
ν

ν2

)−|n(1)
T |

,

ν2 < ν < νmax . (4.15)

Note that since n(1)
T < 0, in the spectral energy density we

introduced the absolute value just to avoid potential confu-
sions. This is not necessary in the case of n(2)

T which is instead
positive semidefinite. From Eq. (4.13) the second relevant
limit corresponds to the region where ν < ν2:

T 2
high(ν, νr , ν2, n

(1)
T , n(2)

T )

→ √
b2

(
ν

νr

)n(2)
T

, νr < ν < ν2. (4.16)

In this case the spectral energy density increases as νn
(2)
T and

its approximate expression is given by:

h2
0 �(ν, τ0) = N ρ(rT , ν)

(
ν

νr

)n(2)
T

, νr < ν < ν2. (4.17)

The third relevant limit of the transfer function is finally for
ν < νr and, in this limit, Eq. (4.13) simply goes to 1:

T 2
high(ν, νr , ν2, n

(1)
T , n(2)

T ) → 1, ν < νr . (4.18)

The function Nρ(ν, rT ) has been already introduced in Eq.
(3.10) and, as anticipated, its explicit expression depends in
fact upon the low-frequency transfer function:

N ρ(rT , ν) = Nρ rT

(
ν

νp

)nT
T 2
low(νr/νeq),

d lnN ρ

d ln ν
= −rT

8
� 1. (4.19)

Even though the prefactor N ρ(rT , ν) has a mild frequency
dependence coming from neutrino free-streaming, for sim-
plified analytic estimates this dependence can be ignored, at
least approximately; this in fact the meaning of the second
relation in Eq. (4.19). Along this perspective we can estimate
N ρ = O(10−16.5) for rT = 0.06.

4.3 The constrained parameter space

The shaded region n Fig. 2 illustrates the area of the parameter
space where the following pair of conditions are simultane-
ously verified:

h2
0�gw(ν2, τ0) ≥ h2

0�
(min)
gw ,

0.1 mHz < ν2 ≤ 0.1Hz. (4.20)

Since the product of the various ξi from 1 to (N − 1) must
equal ξ , in the case of N = 3 we have that ξ1ξ2 = ξ . Then the
analysis can be simplified by using three related observations:
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• ξ1 can be traded for ξ/ξ2 by recalling that, to avoid prob-
lems with nucleosynthesis, the lower limit ξ > 10−38

must always be separately imposed;
• as a consequence we end-up with three parameters ξ2, ξ ,

δ1 and δ2;
• to discuss the parameter space we can fix δ1 → 1: this

is the most constraining value since for δ1 > 1 the high-
frequency part of h2

0 �gw(ν, τ0) decreases and it is there-
fore less constrained by the high-frequency limits.

If the spectral energy density decreases for ν > ν2 (i.e.
n(1)
T < 0) all the high-frequency bounds (and in particular

the LIGO-Virgo-KAGRA limit [18–20]) are automatically
satisfied provided they are satisfied in the case δ1 → 1. The
value of δ1 affects the value of the high-frequency slope of
the spectral energy density since, in this case, n(1)

T (rT , δ1) =
O(rT ).

In the four different plots of Fig. 2 the value of ξ increases
from 10−36 to 10−30 so that the radiation dominates when the
expansion rate gets progressively larger; recall, in fact, that
ξ = Hr/H1 ≥ 10−38. As ξ increases the duration of the radi-
ation phase increases, the shaded are gets smaller and allowed
region is reduced. The same logic of Fig. 2 has been followed
in the case of Fig. 3 with the difference that h2

0�
(min)
gw is now

relaxed from 10−11 to 10−14. In each of the plots appear-
ing in Figs. 2 and 3 there are two shaded regions. The wider
area is obtained by enforcing the big-bang nucleosynthesis
(BBN) constraint [53–55]. The narrower (and darker) region
in each plot of Figs. 2 and 3 is instead obtained by imposing
the limits obtained from the operating interferometers on the
backgrounds of relic gravitons, i.e. the LIGO-Virgo-KAGRA
bound [18] (see also [19,20]).

From the technical viewpoint the BBN constraint requires7:

h2
0

∫ νmax

νbbn

�gw(ν, τ0)d ln ν

= 5.61 × 10−6�Nν

(
h2

0 �γ 0

2.47 × 10−5

)
, (4.21)

where �γ 0 is the (present) critical fraction of CMB photons
and νbbn denotes the BBN frequency:

νbbn = 2.252 × 10−11
(
Nef f

10.75

)1/4

×
(

Tbbn
MeV

)(
h2

0 �R0

4.15 × 10−5

)1/4

Hz, (4.22)

where Nef f denotes the effective number of relativistic
degrees of freedom entering the total energy density of the

7 The limit of Eq. (4.22) sets a constraint on the extra-relativistic species
possibly present at the BBN time. The limit is often expressed for prac-
tical reasons in terms of �Nν representing the contribution of sup-
plementary neutrino species. The actual bounds on �Nν range from
�Nν ≤ 0.2 to �Nν ≤ 1; the integrated spectral density in Eq. (4.22)
is thus between 10−6 and 10−5.

plasma and Tbbn is the temperature of big-bang nucleosyn-
thesis. The bound (4.22) can be relaxed if the nucleosynthesis
takes place in the presence of matter-antimatter domains [54]
and νmax appearing in Eq. (4.21) denotes, as previously dis-
cussed, the maximal frequency of the spectrum. However,
since h2

0�gw(ν, τ0) decreases for ν > ν2 (and more gener-
ally for ν > νN−1) the region between ν2 and νmax gives a
subleading contribution to the integral appearing at the left-
hand side of Eq. (4.21).

According to Figs. 2 and 3 the limits imposed by Eqs.
(4.21)–(4.22) are less constraining than the ones follow-
ing from the LIGO-Virgo-KAGRA bound [18]. Indeed the
LIGO-Virgo-KAGRA collaboration, in its attempt to con-
strain the stochastic backgrounds of relic gravitons, reported
a constraint [18] implying, in the case of a quasi-flat spectral
energy density in the audio-band

�gw(ν, τ0) < 5.8 × 10−9, 20 Hz < νK LV < 76.6 Hz,

(4.23)

where νLV K denotes the LIGO-Virgo-KAGRA frequency.
The exclusion plots of Fig. 2 are then confronted with the
current phenomenological bounds in all the available ranges
of frequency with the aim of constraining the rate and the
duration post-inflationary expansion Universe. In particular,
in the nHz region, the pulsar timing arrays (PTA) recently
reported a potential signal that could be attributed to the relic
gravitons [43–46]. The PTA recently reported evidence of a
potential signal in the nHz band. Using the spectral energy
density in critical units as a pivotal variable the features of
this purported signal would imply, in the present notations,
that:

q2
0 × 10−8.86 < h2

0 �gw(ν, τ0) < q2
0 × 10−9.88,

3 nHz < ν < 100 nHz. (4.24)

In Eq. (4.24) we introduced the numerical factor q0 that
depends on the specific experimental determination. The
Parkes Pulsar Timing Array collaboration [43] suggests q0 =
2.2. Similarly the International Pulsar Timing Array collabo-
ration (IPTA in what follows) estimates q0 = 2.8 [44] while
the European Pulsar Timing Array collaboration (EPTA in
what follows) [45] gives q0 = 2.95 (see also [56,57]). The
results of PPTA, IPTA and EPTA seem, at the moment, to be
broadly compatible with the NANOgrav 12.5 years data [46]
(see also [58,59]) implying q0 = 1.92.

It is relevant to point out that neither the observations of
Refs. [43–45] nor the ones of Ref. [46] can be interpreted yet
as an evidence of relic gravitons. The property of a PTA is
that the signal from relic gravitons will be correlated across
the baselines, while that from the other noise will not. Since
these correlation have not been observed so far, the interpre-
tation suggested in Eq. (4.24) is still preliminary, to say the
least. To be fair the pragmatic strategy followed here will be
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Fig. 2 The parameter space is illustrated in the plane (δ2, ξ2) by fix-
ing δ1 to its most constraining value realized in the case δ1 → 1. In the
four different plots of this figure the value of ξ progressively increases
between 10−38 and 10−30. The shaded area corresponds to the allow

region. The wider area is obtained by enforcing the big-bang nucleosyn-
thesis limit of Eqs. (4.21)–(4.22) while the smaller (and darker) region
follows by imposing the limits coming from the audio band (see Eqs.
(4.23)) and discussion therein

to interpret Eq. (4.24) as an upper limit whenever the cor-
responding theoretical signal is too low in the nHz region.
Conversely if h2

0 �gw(ν, τ0) happens to be grossly compat-
ible with the range of Eq. (4.24) it will be interesting to see
if the associated spectral energy density fits within the PTA
window. The average of the q0 of the different experiments

is given by q0 = 2.46. If we use q0 into Eq. (4.24) we get to
the requirement:

10−8.07 < h2
0 �gw(ν, τ0) < ×10−9.09,

3 nHz < ν < 100 nHz. (4.25)

The condition (4.25) is never verified for the parameter space
illustrated in Figs. 2 and 3. Thus, for the selection of parame-

123



828 Page 12 of 17 Eur. Phys. J. C (2022) 82 :828

Fig. 3 As in Fig. 2 the parameter space of the model is illustrated in the plane (δ2, ξ2). The difference between these plots and the ones of Fig. 2
is related to h2

0�
(min)
gw which is now given by 10−14 while it was 10−11 in Fig. 2

ters analyzed here, h2
0�gw(ν, τ0) may lead to a relevant signal

below the Hz but not in the nHz band.

4.4 The spectral energy density and its signatures

In Figs. 4 and 5, the spectral energy density has been explic-
itly illustrated for a selection of the parameters. In Fig. 4 we
selected ξ = 10−36 and ξ2 = 10−10 for different values of
δ1 > 1 and δ2 < 1. As expected the value of νr is always
larger than 10−10. For this reason h2

0�gw(ν, τ0) does not
exceed O(10−16) in the frequency range of the PTA and the
profiles of Figs. 4 and 5 are unable to account for the puta-
tive signal of Eqs. (4.24)–(4.25). Note, in this respect, that

the parameters of the dot-dashed and of the dashed curves
of Fig. 4 have been selected in order to get an artificially
large signal that is in fact excluded both by the constraint of
Eq. (4.21) and by the limit of ground-based detectors (see
Eq. (4.23) and discussion therein). Even in this case the PTA
values are too large and must be accounted by different mech-
anisms. The results of Fig. 5 correspond instead to a slightly
different choice of the parameters, namely ξ = 10−34 and
ξ2 = 10−8. For illustration we have chosen δ1 → 1 implying
that between νmax and ν2 the spectral energy density is quasi-
flat. This is the most constraining case from the viewpoint of
the limits coming from wide-band detectors [18–20].
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Fig. 4 We illustrate the
common logarithm of the
spectral energy density of the
relic gravitons as a function of
the common logarithm of the
frequency expressed in Hz. In
this plot the dashed and the
dot-dashed curves illustrate two
models that are excluded by the
big-bang nucleosynthesis
constraint of Eq. (4.21) and by
the LIGO-Virgo-KAGRA limit
of Eq. (4.23). The parameters of
the curve at the bottom (full
line) are instead drawn from the
allowed region of the parameter
space. In all the examples of this
plot δ1 > 1

Fig. 5 The conventions are exactly the same already explained in Fig. 4
but the spectral energy is illustrated for a different choice of the parame-
ters. The dashed curves at the top of the figure is barely compatible with
the limits set by Eq. (4.23). If δ1 > 1 (see e.g. Fig. 4) the spectral energy
density decreases for ν > ν2 and the most relevant constraint on the

height of the maximum comes from Eqs. (4.21)–(4.22). If δ1 → 1 the
limits from the audio band (see, in particular, Eq. (4.23)) are the most
constraining ones and this is why we illustrated here this case where
the spectral energy density remains quasi-flat at high-frequencies

The class of signals computed here are distinguishable,
at least in principle, from the other astrophysical and cos-
mological foregrounds. In the region between a fraction of
the mHz and the Hz the predominant astrophysical fore-
grounds of gravitational radiation are probably associated
with the galactic distribution of the white dwarves. While
the signal of white dwarves could also be used for calibra-
tion, other astrophysical foregrounds are also expected (e.g.
stellar origin black holes and even supermassive black holes

from galaxy mergers). Another cosmological foreground is
given by TeV scale early Universe and this happens since
the typical frequency corresponding to the Hubble radius at
the electroweak stage is O(10) μHz. To have drastic devi-
ations from homogeneity and the consequent production of
burst of gravitational radiation the electroweak phase transi-
tion must be strongly first-order. In this respect two classes
of related observations are in order. The first remark is that
the electroweak phase transition does not have to be strongly
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first-order. Since the first perturbative analyses of the problem
we actually know that that for the measured range of Higgs
masses the electroweak phase transition is not of first-order
[60,61]. Due to the inherently non-perturbative nature of the
problem, the original perturbative estimates have been sub-
sequently corroborated by lattice calculations both in three
[62] and four dimensions [63]. For the measured values of
the Higgs and gauge boson masses the transition between
the symmetric and the broken phase follows a cross-over
evolution that should not lead to an appreciable production
of gravitational radiation. In this case the only cosmologi-
cal signal may be the one associated with the inflationary
gravitons.

The second remark is that, at the moment the hopes of
observing a burst of gravitational radiation from the elec-
troweak scale must rely on some extension of the standard
electroweak theory. In this situation the amount of gravita-
tional radiation produced by the phase transition depends on
the particular model and also on the difference between the
energy density in the broken and in the symmetric phase. This
energy density may be comparable with the energy density
of the ambient plasma (and in this case the phase transi-
tion experiences a strong supercooling) or smaller than the
energy density of the surrounding radiation (and in this case
the phase transition is mildly supercooled). If the gravita-
tional is produced from the collisions of the bubbles of the
new phase [64–66] the equivalent h2

0�gw(ν, τ0) scales like
ν3, reaches a maximum and then decreases with a power that
may be faster than ν−1. The spectral energy density inherits
also contribution from the sound waves of the plasma [67]
and this second component may be even larger than the one
due to bubble collisions. The key point for the present ends
is that the powers associated with a strongly first-order phase
transition are typically much steeper than the ones discussed
here. In our case the rise of h2

0�gw(ν, τ0) appearing in Figs. 4

and 5 always scales with 0 < n(2)
T ≤ 1 while the correspond-

ing slope in the case of phase transitions is typically O(3).
Another possibility not requiring a strongly first-order phase
transition is the presence of a stochastic background of hyper-
magnetic fields at the electroweak phase. In this case bursts of
gravitational radiation may also be produced and the spectral
energy density is different from the one discussed here [68]
(see also [69,70]). Overall, because of causality, the spec-
tra associated with the TeV physics are much steeper around
their putative maximum. For this reason it seems plausible
to disentangle the inflationary contributions from other pos-
sible cosmological foregrounds. There is of course a deeper
problem that has to do with our ability to separate the cosmo-
logical signals from the other astrophysical foregrounds (e.g.
white dwarves, massive and supermassive black-holes). The
potential difficulties associated with the astrophysical fore-
grounds suggested already many years ago [31,32] that the

potential signals of post-inflationary stages should be proba-
bly observed over much higher frequencies O(MHz) where
electromagnetic detectors might be operating in the future
[71–77].

4.5 Complementary considerations

Even if specific scenarios involving high, intermediate and
low reheating temperatures have been suggested in the
past [31–33] (see also, in this respect, Refs. [34–42]), the
present analysis focussed on a model-independent perspec-
tive. Given that the early expansion history of the background
is unknown the only plausible strategy is to combine the low-
frequency limits and of the high-frequency constraints. This
approach suggests that a signal below the Hz is not excluded
and the features of the spectra can be clearly distinguished
from the ones of strongly first-order phase transitions that are
the main competitive signal in this region. We might think, by
the same token, that large signals can be achieved also over
much smaller frequencies and it is then interesting to apply
the present model-independent strategy in this instance.

By looking at Figs. 4 and 5 we may note that the first
break from scale invariance of the spectral energy density
always occurs above a typical frequency O(10−10) Hz. This
feature persists if the number of successive stages of expan-
sion is increased and the ultimate reason for this occurrence
is given by Eqs. (3.5)–(3.6): while all the intermediate fre-
quencies of the spectrum are given by a complicated combi-
nation involving the various expansion rates and the interme-
diate curvature scales (see e.g. Eqs. (3.7)–(3.8)) νr is solely
determined by the ratio between Hr and H1. This means
that the absolute lower limit Hr ≥ 10−44 MP imposed by
big-bang nucleosynthesis also implies that νr > O(10−10)

Hz, or, more precisely ν > νbbn . This requirement is essen-
tial when combining the high-frequency limits on the relic
gravitons with the low-frequency one [40,41] and it has been
correctly implemented in a recent analysis focusing on the
post-inflationary reheating parameters [79]. A direct conse-
quence of this requirement is that the recent results of the PTA
(see Eq. (4.25)) cannot be explained by a post-inflationary
modification of the expansion rate. Given the current limits
on rT [13–15] the largest value of h2

0�gw for ν < νr is, at
most, O(10−16.5). Since νr ≥ O(10−10) Hz it is impossible
that h2

0�gw reaches a value O(10−9) for typical frequencies
of the order of 10 nHz or even 100 nHz as required for an
explanation of the PTA observations [43–46]. We actually
remind that the largest slope of the spectral energy density,
in the case of a barotropic fluid, is of order 1 and it occurs for a
nearly stiff equation of state, as established long ago [31,32].
There have been nonetheless claims of a sound explanation
of the PTA data by post-inflationary stiff phases. For instance
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in Ref. [80] the authors just suggest the opposite of what we
just said; by looking more carefully at the results8 we see that,
in this case, νr = O(10−14) Hz. By appealing to the model-
independent results of Eqs. (3.5)–(3.6) that apply strictly also
in this case we have therefore

νr = O(10−14) Hz ⇒ ξ = O(10−45), (4.26)

and if we now recall that ξ = Hr/H1 we the conclude that

Hr

MP
= O(10−51)

(
rT

0.06

)1/2 ( AR
2.41 × 10−9

)1/2

, (4.27)

which is much smaller than the lower limit on Hr imposed
throughout this analysis. There is therefore no surprise that
h2

0�gw(ν) could be as large as 10−10 in the nHz range since
from 10−14 Hz to 10 nHz there are 6 orders of magnitude and
h2

0�gw(ν) may increase, in this range, with linear slope from
10−16 to 10−10. Reference [80] demands therefore that the
plasma is not dominated by radiation by the time of big-bang
nucleosynthesis and this approach is totally rejected by the
viewpoint conveyed in the present and analysis9.

The considerations developed in the previous paragraph
are also essential for a fair comparison of the relic gravitons
discussed here with the cosmic string signals (see, in this
respect, the review of Ref. [20]). The gravitational waves
emitted by oscillating loops at different epochs have been
argued to produce a stochastic background [81] with quasi-
flat spectral energy density which is typically larger than the
inflationary signal. The nature of the signal changes depend-
ing on three basic parameters: the string tension in Planck
units (i.e. Gμ); the typical size of the loops normalized at
the formation time; the emission efficiency of the loop. The
quoted values of Gμ may range between 10−8 and 10−23

while the typical size of the loop may vary between 10−10

and 10−1. The large interval of variation of the parameters
makes it obvious that different signals can be expected. From
symmetry breaking in the grand unified context the typical
values of Gμ could be as large as O(10−6). These values
would cause however measurable temperature and polariza-
tion anisotropies of the CMB and have been ruled out; cur-
rent limits from CMB observations demand Gμ < O(10−8).
For the largest values of Gμ potentially compatible with
CMB data the h2

0�gw from cosmic strings exhibits a hump
in the nHz region [82] (see also [83]) and then flattens out.
As G μ diminishes the hump shifts at higher frequencies
and the overall signal is suppressed potentially getting to
h2

0�gw = O(10−15) for G μ = O(10−21). Since the relic

8 See, in particular, the two plots in Fig. 8 of Ref. [80] where the lowest
break of the spectrum is O(10−14) Hz and possibly even smaller.
9 It should also be rejected on a more general ground since it is unclear
how it is possible to form the light element abundances in such a context.
We remark that the slopes derived by the authors in Eqs. (93)–(94) of
Ref. [79] coincide exactly with the ones discussed long ago (see e.g.
Eq. (3.32) of Ref. [31]).

gravitons discussed here never lead to a large signal in the
nHz region, the only possible ambiguity may arise when
G μ � 10−9. In this case the nearly flat branch of the cosmic
string signal might be confused with situations similar to the
one described, for instance, in Fig. 5. A detailed comparison
is however beyond the scopes of this paper.

The final point we want to mention concerns the possibility
of second-order effects and their interplay with the consid-
erations presented here. In the concordance paradigm where
the curvature inhomogeneities are Gaussian and adiabatic
the stochastic backgrounds of relic gravitons are corrected
by second-order effects that involve an effective anisotropic
stress [84] which is however gauge-dependent10. The tensor
modes reentering the Hubble radius when the plasma is dom-
inated by a stiff fluid lead to a spectral energy density whose
blue slope depends on the total post-inflationary sound speed.
This result gets however corrected by a secondary term com-
ing from the curvature inhomogeneities that reenter all along
the same stage of expansion. In comparison with the first-
order result, the secondary contribution has been shown to
be always suppressed inside the sound horizon and its effect
on the total spectral energy density of the relic gravitons is
therefore negligible for all phenomenological purposes [86].
The same conclusion applies also in the present situation.

5 Concluding remarks and future perspectives

If the wavelengths that left the Hubble radius during inflation
reentered in the radiation-dominated stage of expansion the
spectral energy density of the inflationary gravitons is today
quasi-flat for typical frequencies larger than 100 aHz. Prior to
nucleosynthesis the timeline of the expansion rate is however
unknown and we considered here a post-inflationary evolu-
tion consisting of a sequence of stages expanding at rates
that are alternatively faster and slower than radiation. As a
consequence, the spectral energy density can even be eight
orders of magnitude larger than the conventional inflationary
signal for frequencies between the μHz and a fraction of the
Hz.

Below the Hz various space-borne detectors will proba-
bly be operational in the next twenty years and the signals
expected in the mHz region are dominated by astrophysi-
cal sources (e.g. galactic white dwarves, solar-mass black
holes, supermassive black holes coming from galaxy merg-
ers). The only cosmological sources considered in this con-
text are associated with the phase transitions at the TeV scale

10 It has been noted that the different gauge-dependent results can be
swiftly compared by a careful use of the normal modes of the system. It
turns out that the results obtained in different gauges is comparable for
typical wavelengths shorter than the Hubble radius. See, in this respect,
the discussion in Refs. [85,86].
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even if it is well established, both perturbatively and non-
perturbatively, that the standard electroweak theory leads to
a cross-over regime where drastic deviations from homo-
geneity (and the consequent bursts of gravitational radiation)
should not be expected. The inflationary signal is customarily
regarded as irrelevant since its spectral energy density could
be at most h2

0�gw(νS, τ0) = O(10−17) for rT ≤ 0.06 and
for νS = O(mHz). The relic gravitons of inflationary origin
may instead lead to h2

0�gw(νS, τ0) = O(10−9) provided the
expansion history prior to nucleosynthesis is not constantly
dominated by radiation. The slopes of the spectral energy
density obtained in the case of a putative strongly first-order
phase transition are much steeper than the ones associated
with a modified expansion history. When confronted with
the most relevant phenomenological bounds the class of sig-
nals discussed here is predominantly constrained by the limits
on the massless species at the nucleosynthesis scale and by
the direct observations of ground-based detectors (i.e. LIGO,
Virgo and KAGRA). From the profiles of the spectral energy
density and from the slopes of the hump in the mHz range
it is possible to infer the post-inflationary expansion his-
tory for typical curvature scales that are between 10−44 MP

and 10−34 MP (i.e. roughly 10 orders of magnitude larger
than the nucleosynthesis scale). The analysis of the spectral
energy density in different frequency ranges (e.g. nHz, mHz
and MHz) might even allow to reconstruct the expansion
history of the Universe at earlier and later times. It is finally
interesting that some regions of the parameter space that are
relevant for space-borne detectors also lead to a potentially
large signal in the audio band and will probably be directly
probed or excluded in the near future.

All in all the perspective conveyed in this analysis sug-
gests that the frequency range below the Hz should be care-
fully investigated in the light of a possible signal coming
from inflationary gravitons. While a strongly first order phase
transition may be realized beyond the standard electroweak
theory, the present discussion only assumes a conventional
inflationary stage supplemented by a post-inflationary evo-
lution that deviates from the conventional radiation domi-
nance prior to nucleosynthesis. The observations in the mHz
region could then simultaneously test the occurrence of an
early inflationary stage and of a post-inflationary expansion
history whose details are still unknown and might only be
discovered by looking at the spectra of relic gravitons.
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