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Abstract We construct analytical and regular solutions in

four-dimensional General Relativity which represent multi-

black hole systems immersed in external gravitational field

configurations. The external field background is composed

by an infinite multipolar expansion, which allows to regu-

larise the conical singularities of an array of collinear static

black holes. A stationary rotating generalisation is achieved

by adding independent angular momenta and NUT parame-

ters to each source of the binary configuration. Moreover,

a charged extension of the binary black hole system at

equilibrium is generated. Finally, we show that the binary

Majumdar–Papapetrou solution is consistently recovered in

the vanishing external field limit. All of these solutions reach

an equilibrium state due to the external gravitational field

only, avoiding in this way the presence of any string or strut

defect.
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1 Introduction

Multi-black holes solutions are intriguing astrophysical

objects both from the theoretical and from the phenomeno-

logical point of view. On the theoretical side, these solutions

disclose the non-linear nature of General Relativity and rep-

resent an important playground in which testing the laws of

black hole mechanics. On the experimental side, the recent

remarkable observations of gravitational waves [1] heavily

rely on the interactions between two black holes in a binary

system: thus an analytical description of such a spacetime

is of utmost relevance for the interpretation of the measure-

ments.
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Of course one of the main obstacle in modelling a station-

ary multi-gravitational sources system is to provide a mech-

anism to balance the gravitational attraction of the bodies.

Otherwise the system naturally tends to collapse. Usually the

equilibrium is granted by the introduction of cosmological

struts which prop up the gravitating bodies, but these one-

dimensional objects must be constituted by matter that vio-

lates physically reasonable energy conditions. Alternatively

in some cases cosmic strings of infinite length can be used to

support the gravitational collapse. In both cases these objects

are symptomatic for conical singularities which plague the

spacetime. Other objects, such as the Misner string, which

occur in the presence of the gravimagnetic parameter, also

known as NUT charge, are sometimes used to prevent the

merging [2,3], but these bring in also harmful issues such

as closed timelike curves. Instead our main objective is to

remain as close to phenomenology as possible, therefore we

will try to avoid physical structures which are outside realis-

tic experimental or observational range.

We are interested in stationary and axisymmetric models

basically for mathematical reasons: the Einstein equations

enjoy some integrability properties which can be exploited

to generate highly non-trivial solutions without resolving the

equation of motion. To take advantage of the symmetries

underling axisymmetric and stationary General Relativity

we will mainly use the inverse scattering technique invented

by Belinski and Zakharov [4], which will be briefly sum-

marised in Sect. 2. Also the coupling of the Einstein theory

to the Maxwell electromagnetic field preserves the integra-

bility of the axisymmetric and stationary system, therefore

we will explore the possibility of including electromagnetic

charge to some multi-black hole configuration, even though

it seems quite difficult that these charged objects can exist

spontaneously in Nature, because the distribution of matter

in the Universe is neutral on large scale.

Basically the only regular multi-black holes configura-

tions known so far were the extremal ones where the gravi-

tational attraction is balanced by the electromagnetic force,

such as in the Majumdar–Papapetrou solution [5,6] or the

magnetised dihole [7].1 Only very recently a new physical

mechanism able to maintain the equilibrium was presented

in the realm of vacuum General Relativity [9]. It consists in

1 C-metrics embedded in an external magnetic field, found by Ernst
[8], can represent also a couple of black holes, when considering their
maximal extension. However these objects are two copies of the same
black hole, always causally disconnected, and not interacting with each
other, thus not really physically realistic.

the introduction of an external gravitational field endowed

with a number of integration constants related to the field

multipolar expansion. In [9] a simple model was studied,

which represents a system of two black holes immersed in

a dipole–quadrupole external gravitational field. Here we

extend such solution in several ways: firstly, we consider

an arbitrary number of black holes immersed in an external

field described by an infinite number of multipole momenta.

Then, in Sects. 5 and 6, we build the rotating and charged

generalisation of [9].

External gravitational fields represent a natural setting

for multi-black holes systems, as recent gravitational waves

detection proceeding from the center of galaxies confirms. In

fact the observed astrophysical black holes are not isolated

systems, as they always embedded in external gravitational

fields. In particular it has been shown in [10] that the multi-

polar gravitational field, we will deem here, can be produced

by a distribution of matter such as thin disks or rings, typical

shape of gravitational objects such as galaxies or nebulae.

Anyway the solutions considered in this article will be pure

vacuum solution, without any energy–momentum tensor. In

principle a distribution of matter might be possibly consid-

ered very far away from the black holes. In this sense our

solutions can be interpreted as local models for binary or

multi-black hole configurations. In a certain sense the met-

rics presented here have to be considered as the gravitational

analogous of the stationary black holes in Melvin magnetic

universe. In fact, also in this latter case, the solution is a pure

electrovacuum solution with no definite sources for the elec-

tromagnetic external field, therefore their feasibility remains

in the proximity domain of the black bodies.

Single black holes in external multipolar gravitational

field have been pioneered by Doroshkevich et al. [11], later

studied by Chandrasekhar [12], Geroch and Hartle [13].

These solutions are known in the literature as deformed black

holes. The novelty of our proposal, based on an Ernst’s insight

in the context of the C-metric2 [14], is to take advantage of

the external field to sustain the black bodies and prevent their

collision. From a mathematical point of view this means that

the solution can be regularised from conical singularities that

usually affect multi-black hole metrics.

The plan of the paper is the following: we begin by

reviewing the inverse scattering method, which is the leading

method for the generation of our solutions, in Sect. 2. Then,

2 We remind the reader that C-metric can be interpreted as a pair of
twins accelerating black holes, but causally disconnected.
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we describe the main properties of the background metric

which produces the “distortion” on the black holes sources in

Sect. 3: there we discuss both internal and external deforma-

tions from the point of view of the gravitational multipoles,

even if in the following we make use of the external defor-

mations only. Section 4 is devoted to the array of collinear

and static black holes immersed in the external field, while in

Sects. 5 and 6 we present the rotating and charged generalisa-

tions, respectively, of the binary system found in [9]. Finally,

we summarise our work and present some conclusions.

2 Inverse scattering method

We make use of the inverse scattering method [4,15,16] to

superimpose black holes on top of the background spacetime

containing an external gravitational field. Thus, we begin by

discussing the key features of the solution generation tech-

nique and subsequently by constructing the quantities apt to

generate the desired spacetime.

The inverse scattering method relies on the integrability of

the Einstein equations for the class of stationary and axisym-

metric spacetimes, which can be described by the general

metric in Weyl coordinates [17]

ds2 = f (ρ, z)(dρ2 + dz2) + gab(ρ, z)dxadxb, (2.1)

where a, b = 0, 1 and x0 = t , x1 = φ. The spacetime (2.1)

possesses two commuting Killing vectors proportional to ∂t

and ∂φ . We assume that the coordinate ρ is chosen such that

det g = −ρ2.

The vacuum Einstein equations Rμν = 0 can be equiva-

lently written as

U,ρ + V,z = 0, (2.2a)

(log f ),ρ = − 1

ρ
+ 1

4ρ
Tr(U 2 − V 2), (2.2b)

(log f ),z = 1

2ρ
Tr(UV ), (2.2c)

where U = ρg,ρg−1 and V = ρg,zg−1 are two 2 × 2 matri-

ces. We see that, by solving Eq. (2.2a) for g, one is able to

find the function f in quadratures from Eqs. (2.2b) and (2.2c).

Thus, the problem of solving the vacuum Einstein equations

is reduced to the problem of finding the matrix g.

One can show that the integrability condition for the Ein-

stein equations (2.2) is equivalent to the linear equations

D1� = ρV − λU

λ2 + ρ2 �, D2� = ρU + λV

λ2 + ρ2 �, (2.3)

for the generating matrix �(ρ, z, λ), where the commuting

differential operators D1 and D2 are given by

D1:=∂z − 2λ2

λ2 + ρ2 ∂λ, D2:=∂ρ + 2λρ

λ2 + ρ2 ∂λ, (2.4)

and λ is a complex spectral parameter.

In the inverse scattering method we prepare a seed solution

(g0, f0), and then find a generating matrix �0 which satisfies

the linear eigenvalue equations (2.3). Given such a �0, we

introduce the functions

μk(ρ, z) =
√

ρ2 + (z − wk)2 − (z − wk), (2.5a)

μ̄k(ρ, z) = −
√

ρ2 + (z − wk)2 − (z − wk), (2.5b)

where wk are arbitrary (complex) constants, called poles. μk

and μ̄k are called solitons and anti-solitons, respectively, and

they satisfy μkμ̄k = −ρ2. We will make us of the solitons

only, in the following.

We associate a 2-dimensional vector (called BZ vector) to

each (anti-)soliton

m(k)
a = m(k)

0 b

[
ψ−1

0 (μk, ρ, z)
]
ba, (2.6)

with arbitrary constants m(k)
0 a . Given the matrix

	kl = m(k)
a (g0)abm

(l)
b

ρ2 + μkμl
, (2.7)

a new metric is obtained by adding 2N solitons to (g0, f0)

as

gab = ±ρ−2N
( 2N∏

k=1

μk

)[
(g0)ab −

2N∑

k,l=1

(	−1)kl L
(k)
a L(l)

b

μkμl

]
,

(2.8a)

f = 16C f f0ρ
−(2N )2/2

( N∏

k=1

μ2N+1
k

)

×
[ 2N∏

k>l=1

(μk − μl)
−2
]

det 	, (2.8b)

where L(k)
a = m(k)

c (g0)ca and C f is an arbitrary constant.

The new metric (2.8) satisfies by construction the Einstein

equations (2.2) and is such that det g = −ρ2.

3 Background metric: internal and external multipoles

We discuss the general solution to the Einstein equations

in vacuum, which contemplates both the internal deforma-

tions of the source and the contributions which come from
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matter far outside the source. This general solution finds its

roots in the pioneeristic work of Erez and Rosen [18], and it

was lately discussed and expanded in [11–13] to include the

deformations due to an external gravitational field.

The general solution for the Weyl metric

ds2 = −e2ψ(ρ,z)dt2 + e−2ψ(ρ,z)

×[
e2γ (ρ,z)(dρ2 + dz2) + ρ2dφ2], (3.1)

is given, following the conventions in [19], by

ψ =
∞∑

n=1

(
an
rn+1 + bnr

n
)
Pn, (3.2a)

γ =
∞∑

n,p=1

[
(n + 1)(p + 1)anap
(n + p + 2)rn+p+2 (Pn+1Pp+1 − Pn Pp)

+ npbnbprn+p

n + p
(Pn Pp − Pn−1Pp−1)

]
, (3.2b)

where r :=√
ρ2 + z2 defines the asymptotic radial coordinate

and Pn = Pn(z/r) is the n-th Legendre polynomial. The real

constants an describe the deformations of the source, while

the real parameters bn describe the external static gravita-

tional field.

We observe that the “internal” part an , which is related

to the deformations of the source, is asymptotically flat:

this seems to contradict Israel’s theorem [20], which states

that the only regular and static spacetime in vacuum is the

Schwarzschild black hole. Actually, the internal deforma-

tions lead to curvature singularities not covered by a horizon,

in agreement with the theorem. Because of this feature, in the

following sections we will discard the internal contributions

and focus on the external ones only.

On the converse, the “external” part bn is not asymptot-

ically flat. This is in agreement with the physical interpre-

tation: this part of the metric represents an external gravi-

tational field generated by a distribution of matter located

at infinity. This interpretation parallels the Melvin spacetime

one, and in fact there is no stress–energy tensor here to model

the matter responsible of the field. The asymptotia is not flat

because at infinity there is the source matter and the space-

time is not empty. Actually it can be shown that the curvature

invariants, such as the Kretschmann scalar, can grow indef-

initely at large distances3 in some directions. In this sense,

a spacetime containing such an external gravitational field

3 For the black hole model we are considering below, these large dis-
tances can be quantified in several orders of magnitude larger than the
scale of the black holes. However, before reaching such distances, large

should be considered local, in the sense that the description

is meaningful in the neighborhood of the black holes that one

embeds in this background. In this regard these metric are not

different with respect to the usual single distorted black hole

studied in the literature [19,22]. To have a completely phys-

ical solution, one should match the black holes immersed in

the external field with an appropriate distribution of matter

(such as galaxies), which possibly asymptotes Minkowski

spacetime at infinity. A model for matter content consistent

with the multipolar background expansion treated here and

based on a thin ring distribution can be found in [10].4

Accelerating generalisations of the multipolar gravita-

tional background studied in this section naturally are

endowed with a Killing horizon of Rindler type. These accel-

erating horizon are typically located in between the black

hole sources and the far region [21].

The constants an and bn are related to the multipole

momenta of the spacetime Qn . The relativistic definition

of the multipole momenta was given by Geroch [23], and

lately refined by Hansen [24]. That definition applies for a

stationary, axisymmetric and asymptotically flat spacetime:

the modified Ernst potential associated to the spacetime is

expanded at infinity, and the first coefficients of the expan-

sion correspond to the multipole momenta [25]. Clearly, the

internal deformations asymptote a flat spacetime, while the

external ones do not.

In the following, we compute the multipole momenta asso-

ciated to the above deformations, in order to clarify the inter-

pretation of an and bn . In particular, we calculate the internal

multipoles contributions by means of the standard defini-

tion, and then we propose a new approach for determining

the multipoles associated to external deformations. We shall

see that the proposed definition is analogous to the usual

one and gives a consistent interpretation of the external field

parameters.

3.1 Internal multipoles

Let us start with the internal deformations. If we turn off the

bn , then we are left with

Footnote 3 continued
values of the curvature invariants can be covered by a Killing horizon
such as the one provided by the accelerations, as done in [21].
4 Analysis of the sectors where the scalar curvature invariants are larger,
at least for the firsts order of the multipole expansion, suggests that a ring
matter distribution is the more appropriate one for these backgrounds.
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ψint =
∞∑

n=1

an
rn+1 Pn . (3.3)

We define ξ as a function of the Ernst potential (cf.

Appendix B)

E = 1 − ξ

1 + ξ
, (3.4)

that in our case reads

ξint:=1 − e2ψint

1 + e2ψint
. (3.5)

We want to expand the above expression around infinity:

following [25], we bring infinity to a finite point by defining

ρ̄ = ρ/(ρ2 + z2), z̄ = z/(ρ2 + z2), and by conformally

rescaling ξint:

ξ̄ = 1

ρ̄2 + z̄2 ξint. (3.6)

One can prove that ξ̄ is uniquely determined by its value on

the z-axis: since infinity corresponds to ρ̄ = z̄ = 0 in the

new coordinates, then we expand ξ̄ around z̄ for ρ = 0

ξ̄ (ρ̄ = 0) =
∞∑

j=0

Mj z̄
j , (3.7)

where Mj are the expansion coefficients. The multipole

momenta are completely determined by the coefficients Mj ,

and in particular one can show (see [25] and references

therein) that the first four coefficients M0, . . . , M3 are exactly

equal to the first four multipole momenta Qint
0 , . . . ,Qint

3 .

Thus, for the internal deformations, we find

Qint
0 = M0 = 0, Qint

1 = M1 = −a1,

Qint
2 = M2 = −a2, Qint

3 = M3 = −a3. (3.8)

We see that there is a direct correspondence between the

coefficients an and the multipole momenta, at least at the

first orders. Qint
0 is the monopole term, which is zero since

no source (e.g. no black hole) is present. Qint
1 is the dipole,

Qint
2 is the quadrupole and Qint

3 is the octupole moment. The

subsequent multipole momenta can be still computed from

the expansion (3.7) by means of a recursive algorithm, but

now they will be non-trivial combinations of the coefficients

Mj [25]. For instance, the 16-pole is given by Qint
4 = M4 −

1/7M2
0 M2.

3.2 External multipoles

The above construction can not work for the external defor-

mations: the asymptotia is not flat, and infinity is the place

where the sources of the external field are thought to be,

hence it does not make sense to expand there. On the con-

verse, it is meaningful to detect the effects of the deformation

in the origin of the Weyl coordinates: thus, by paralleling the

Geroch–Hansen treatise, we propose to expand the modified

Ernst potential in the origin of the cylindrical coordinates.

Now we consider only the external deformations

ψext =
∞∑

n=1

bnr
n Pn, (3.9)

with modified Ernst potential

ξext = 1 − e2ψext

1 + e2ψext
. (3.10)

According to the above discussion, we assume that ξext is

completely determined on the z-axis, so we expand around

the origin for ρ = 0

ξext(ρ = 0) =
∞∑

j=0

N j z
j , (3.11)

where N j are the expansion coefficients. We define the first

four multipole momenta Qext
0 , . . . ,Qext

3 as the coefficients

N0, . . . , N3, which are equal to

Qext
0 = N0 = 0, Qext

1 = N1 = −b1,

Qext
2 = N2 = −b2, Qext

3 = N3 = b3
1

3
− b3. (3.12)

Again, the monopole moment is zero because of the absence

of a source. We observe, contrary to (3.8), that the octupole

Qext
3 is given by a non-trivial mixing of the constants b1

and b3. This definition occurs only for the first momenta: a

definition which takes into account higher momenta can be

achieved by generalising the procedure in [25].

For the time being, we content ourselves by proposing the

following interpretation: the coefficients bn are related to the

multipole momenta generated by the external gravitational

field, similarly to what happens for the internal deformations.

Then, the presence of the external gravitational field affects

the momenta of a black hole source immersed in it.

3.3 Seed for the inverse scattering construction

We are interested in the external deformations only, hence

we consider an = 0 hereafter, and focus only on the contri-

butions from bn . The seed metric can be readily obtained by

comparing the Weyl form of the multipolar field (3.1) and

the metric useful for the inverse scattering procedure (2.1):

in this way, we identify the components g0 and f0, where
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we put an = 0. In particular, the comparison shows that

(g0)t t = −e2ψ , (g0)φφ = ρ2e−2ψ and f0 = e2γ−2ψ , so

g0 = diag

[
− exp

(
2

∞∑

n=1

bnr
n Pn

)
, ρ2 exp

(
−2

∞∑

n=1

bnr
n Pn

)]
,

(3.13a)

f0 = exp

[
2

∞∑

n,p=1

npbnbprn+p

n + p

(
Pn Pp − Pn−1Pp−1

)

− 2
∞∑

n=1

bnr
n Pn

]
. (3.13b)

The parameters bn are related the multipole momenta of the

external field, as explained above. Metric (3.13) represents a

generic static and axisymmetric gravitational field.

Since we want to add black holes on the background repre-

sented by the gravitational field, we take the metric (3.13) as

a seed for the inverse scattering procedure. Following the dis-

cussion in Sect. 2, we need the generating matrix �0, which

serves as starting point to build the multi-black hole solution.

The function which satisfies Eq. (2.3) is [26]

�0(ρ, z, λ) =
(

−eF(ρ,z,λ) 0

0 (ρ2 − 2λρ − λ2)e−F(ρ,z,λ)

)

,

(3.14)

where

F(ρ, z, λ) = 2
∞∑

n=1

bn

[ ∞∑

l=0

(
n

l

)(−ρ2

2λ

)l(
z + λ

2

)n−l

−
n∑

l=1

[(n−l)/2]∑

k=0

(−1)k+l2−2k−ln!λ−l

k!(k + l)!(n − 2k − l)!ρ
2(k+l)zn−2k−l

]
.

(3.15)

Now we can construct the BZ vectors (2.6): we parametrise

m(k)
0 = (

C (k)
0 ,C (k)

1

)
, where C (k)

0 , C (k)
1 are constants that will

be eventually related to the physical parameters of the solu-

tion. The BZ vectors are thus

m(k) =
(

−C (k)
0 e−F(ρ,z,μk ),

C (k)
1

μk
eF(ρ,z,μk )

)
. (3.16)

Depending on the value of C (k)
0 and C (k)

1 , the spacetime will

be static or stationary, as we will see in the following.

4 Array of collinear static black holes in an external
gravitational field

We now proceed to the generalisation of the Israel–Khan

solution [27], which represents an array of collinear Schwarzschild

black holes. The Israel–Khan metric is plagued by the pres-

ence of conical singularities which can not be removed by a

fine tuning of the physical parameters.5 On the converse, we

will see that the external gravitational field will furnish the

force necessary to achieve the complete equilibrium among

the black holes.

Given the seed metric (3.13) and the generating matrix

(3.14), we construct a new solution by adding 2N solitons

with constants

C (k)
0 =

⎧
⎨

⎩
1 k even

0 k odd
, C (k)

1 =
⎧
⎨

⎩
0 k even

1 k odd
. (4.1)

This choice guarantees a diagonal, and hence static, metric.

Each couple of solitons adds a black hole, then the addition

of 2N solitons gives rise to a spacetime containing N black

holes, whose metric is

g = diag

[
−
∏N

k=1 μ2k−1
∏N

l=1 μ2l
exp

(
2

∞∑

n=1

bnr
n Pn

)
,

ρ2
∏N

l=1 μ2l
∏N

k=1 μ2k−1
exp

(
−2

∞∑

n=1

bnr
n Pn

)]
, (4.2a)

f = 16C f f0

( N∏

k=1

μ2N+1
2k μ2N−1

2k−1

)( 2N∏

k=1

1

ρ2 + μ2
k

)

×
( 2N−1∏

k=1,l=1,3,···

1

(μk − μk+l)2

)

×
( 2N−2∏

k=1,l=2,4,···

1

(ρ2 + μkμk+l)2

)

× exp

[
2

2N∑

k=1

(−1)k+1F(ρ, z, μk)

]
. (4.2b)

Metric (4.2) is, by construction, a solution of the vacuum

Einstein equations (2.2), and it represents a collection of

N Schwarzschild black holes, aligned along the z-axis, and

immersed in the external gravitational field (3.13).

We limit ourselves to the case of real poles wk , since it

represents the physically most relevant situation. These con-

stants are chosen with ordering w1 < w2 < · · · < w2N−1 <

w2N and with parametrisation

w1 = z1 − m1, w2 = z1 + m1, . . .

w2N−1 = zN − mN , w2N = zN + mN . (4.3)

5 Actually, in the limit of an infinite number of collinear black holes,
the conical singularities disappear and the metric is regular. See [28].
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The constants mk represent the black hole mass parameters,

while zk are the black hole positions on the z-axis.

The black hole horizons correspond to the regionsw2k−1 <

z < w2k (k = 1, . . . , N ), while the complementary regions

are affected by the presence of conical singularities, as hap-

pens for the Israel–Khan solution (cf. Fig. 1). Differently

from that case, our solution can be regularised, as we will

show in the next subsection.

It might be useful to write the metric (4.2) in the canonical

Weyl form (3.1), in order to provide a comparison with the

literature. By writing down explicitly the solitons (according

to (2.5)) and the values for wk , one finds the Weyl functions

ψ =
N∑

k=1

ψk +
∞∑

n=1

bnr
n Pn, (4.4)

γ =
N∑

k,l=1

γkl +
∞∑

n,p=1

npbnbprn+p

n + p

(
Pn Pp − Pn−1Pp−1

)

+
2N∑

k=1

(−1)k+1F(ρ, z, μk), (4.5)

where

ψk = 1

2

N∑

k=1

log
R+
k + R−

k − 2mk

R+
k + R−

k + 2mk
, (4.6)

γkl = 1

4
log

R+
k R−

l + (z − zk − mk)(z − zl + ml) + ρ2

R−
k R−

l + (z − zk − mk)(z − zl − ml) + ρ2

+ 1

4
log

R+
k R−

l + (z − zk + mk)(z − zl − ml) + ρ2

R+
k R+

l + (z − zk + mk)(z − zl + ml) + ρ2
,

(4.7)

and we defined R±
k :=√

ρ2 + (z − zk ± mk)2. Actually, this

form of the metric corresponds to the choice for C f made

below (cf. Eq. (4.8)). From this form, it is evident that the

Israel–Khan solution [27] is recovered simply by putting

bn = 0.

4.1 Conical singularities and regularisation

The infinite multipole momenta bn allow to regularise the

metric, i.e. to remove all the conical singularities, by tuning

their values. More precisely, given N black holes, there will

be exactly N + 1 conical singularities: two cosmic strings,

one rear the first black hole and one ahead the last black hole,

and N − 1 struts located between the N black holes. Hence,

one will need at least N + 1 parameters to fix the singulari-

ties. We want to remove both the struts and the strings, since

they are unphysical and lead to energy issues, as is shown in

Appendix A.

The manifold exhibits angular defects when the ratio

between the length and the radius of small circles around

the z-axis is different from 2π . Working in Weyl coordi-

nates, a small circle around the z-axis has radius R = √
gzzρ

and length L = 2π
√
gφφ [9]. The regularity condition corre-

sponds then to L/(2πR) → 1 as ρ → 0. It is easy to prove

that, for the static and axisymmetric metrics of the class (2.1),

the above condition is equivalent to P ≡ f gtt → 1 as

ρ → 0.

We choose for convenience the gauge parameter C f as

C f = 22(2N+1)

[ N∏

i=1

(w2i − w2i−1)
2
]

[N−1∏

k=1

N−k∏

j=1

(w2k−1 − w2k+2 j )
2(w2k − w2k+2 j−1)

2
]
.

(4.8)

The quantity P = f gtt is equal to

Pk =
[ 2k∏

i=1

2N∏

j=2k+1

(w j − wi )
2 (−1)i+ j+1

]

exp

[
4

∞∑

n=1

bn

2N∑

j=2k+1

(−1) j+1wn
j

]
, (4.9)

between the k-th and (k + 1)-th black holes (i.e. w2k < z <

w2k+1), for 1 ≤ k < N . In the region z < w1 we find

P0 = exp

[
4

∞∑

n=1

bn

2N∑

j=1

(−1) j+1wn
j

]
, (4.10)

while for z > w2N we simply have

PN = 1, (4.11)

thanks to our choice of C f . These expressions are the natu-

ral generalisations of the conical singularities for the Israel–

Khan metric [29].

The above expressions provide a system of equations

Pk = 1 for 0 ≤ k < N , which can be solved, e.g., for the

parameters b1, . . . , bN , with the result of fixing all the coni-

cal singularities. Hence the solution can be made completely

regular outside the black hole horizons.

As a pictorial example we show in a figure the geometry of

the black holes array in the triple hole configuration. As can

be appreciated from Fig. 2, the surfaces of the event horizons

are regular because, thanks to the procedure explained above,

the spacetime is everywhere devoid from conical defects. At
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w1 w2 w3 w2N−2 w2N−1 w2N z

t

φ

Fig. 1 Rod diagram for the multi-black hole spacetime (4.2). The horizons correspond to the timelike rods (thick lines of the t coordinate), while
the conical singularities correspond to “bolts” where conical singularities can be avoided by imposing an appropriate periodicity on the angular
coordinate

this purpose some integration constants, equal to the number

of the spacelike rods of the rod-diagram, have to be fixed

according to Eqs. (4.8)–(4.10).

4.2 Smarr law

We investigate the Smarr law for spacetime (4.2): to this end,

we compute the total mass of the spacetime and the entropy

and temperature of the black holes.

The mass is easily found by means of the Komar–

Tomimatsu [30,31] integral. The result for the k-th black

hole (i.e. the black hole in the interval w2k−1 < z < w2k) is

Mk = α

∫ w2k

w2k−1

ρg−1
t t ∂ρgtt = α

2
(w2k − w2k−1) = αmk,

(4.12)

where α is a constant which takes into account the proper

normalisation of the timelike Killing vector, generator of the

horizon, ξ = α∂t associated to (4.2).

The entropy of a black hole is taken as the Bekenstein–

Hawking formula, that works well also for multi-sourced

systems, as suggested by [29,32]. Thus Sk = Ak/4, which

implies

Sk = 1

4
lim
ρ→0

∫ 2π

0
dφ

∫ w2k

w2k−1

dz
√

f gφφ

= πmkW exp

[
2

∞∑

n=1

bn

2N∑

j=2k

(−1) j+1wn
j

]
, (4.13)

where

log W = lim
ρ→0

log
√

f gφφ

= log 2 +
2k−1∑

i=1

2N∑

j=2k

(−1)i+ j+1 log |w j − wi |. (4.14)

The product
√

f gφφ is independent of z in the limit ρ → 0,

and that was crucial in the derivation of (4.13).

Finally, the temperature is found via the Wick-rotated met-

ric, and the result is

Tk = α

2π
lim
ρ→0

ρ−1
√
gtt
f

= α

2π
lim
ρ→0

1
√

f gφφ

= αmk

2Sk
.

(4.15)

It is easily shown, by using (4.12), (4.13) and (4.15), that the

Smarr law is satisfied:
N∑

k=1

Mk = 2
N∑

k=1

Tk Sk . (4.16)

We notice that the explicit value of α is not needed for (4.16)

to work, while it is relevant in the study of the thermodynam-

ics [9].

4.3 Distorted Schwarzschild black hole

The simplest non-trivial example we can consider for the

complete external multipolar expansion from the general

solution (4.2), is clearly the single black hole configuration

for N = 1. In that case the functions that appear in the Weyl

static metric (3.1) take the form

e2ψ = −μ1

μ2
exp

(
2

∞∑

n=1

bnr
n Pn

)
, (4.17a)

e2γ = 16 C f f0 μ3
2 μ1 e2F(ρ,z,μ1)−2F(ρ,z,μ2)

(ρ2 + μ2
1)(ρ

2 + μ2
2)(μ1 − μ2)2

. (4.17b)

This spacetime represents a static black hole embedded in an

external gravitational field. The limit to the Schwarzschild

metric is clear: it is obtained just by switching off all the

multipoles bn = 0 ∀n. In order to recover the standard

Schwarzschild metric in spherical coordinates the following

transformation is needed

ρ = √
r(r − 2m) sin θ, z = z1 + (r − m) cos θ. (4.18)

A solution of this kind is not completely new, since it

was already present in Chandrasekhar’s book [12], see also
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Fig. 2 Embedding diagram in E
3 of the surfaces of three collinear

black hole event horizons for the parametric values w1 = 1, w2 = 12/5,
w3 = 3, w4 = 22/5, w5 = 5, w6 = 32/5 expressed in Solar mass
units M�. The external gravitational background is endowed only with
the first two terms of the multipolar expansion, the dipole and the
quadrupole. This picture shows the deformation of the horizons due to
both the external gravitational field and the mutual interaction between

the sources: while all the sources have the same mass parameter (rod
length), the central hole is more stretched because of the tidal forces pro-
vided by the external ones. All the horizon surfaces are smooth because
of the removal of any conical singularities thanks to the constraints on
bn given by (4.8)–(4.10). At most four parameters must be fixed in this
specific triple source example: b1 = 37

56 log 40000
17901 , b2 = − 5

56 log 40000
17901 ,

bn = 0 ∀n > 2, while C f = 1606582813275738095616
3814697265625

Fig. 3 Embeddings in Euclidean three-dimensional space E
3 of the event horizon of single black holes distorted by the external dipolar and

quadrupolar gravitational field, for three different sets of physical parameters, expressed in Solar mass units M�. b1 and C f are fixed by the
regularity constraint (4.19)

[19]. However the form we are writing here is more general

because, thanks to the extra parameter z1, allows to place

the black hole in any point of the z-axis. In the absence of

the external field the location of the black hole is irrelevant

because the solution is symmetric under a finite shift of z1.

But, when the external gravitational field is not null, a boost

along the z-axis is significant, since the relative position of the

black hole with respect to the external multipolar sources has

some non-trivial effects on the geometry and on the physics

of the black hole.

In particular the translation along the z-axis affects the

event horizon shape. In fact, as can be evaluated by comput-

ing the equatorial and polar circles around the event horizon,

it is possible to understand as the horizon surface stretches or

contracts depending on the position of the black hole and the

values of the external parameters. Some pictorial examples

of the black hole horizon deformation for different external

gravitational backgrounds are given in Fig. 3.

Moreover, the equilibrium constraint which removes the

conical defects can be loosen with respect to the one usually
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found in the literature [19]. The imposition usually requested

in the literature, i.e.
∑∞

n=1 b2n+1 = 0, is not fundamental

when the black hole can be adjusted coherently with the

external gravitational field. In fact when z1 	= 0 the two

regularising constraints we have to impose to avoid conical

singularities become, as seen in Sect. 4.1,

C f = (w1 − w2)
2

4
,

∞∑

n=1

bn
(
wn

1 − wn
2

) = 0. (4.19)

The physical charges computed in (4.12), (4.13) and (4.15),

can be specialised to the single black hole case (N = 1)

and, by substituting the parametrisation w1 = z1 −m, w2 =
z1 + m, one finds

M = αm, S = 4πm2 exp

[
2

∞∑

n=1

bn(z1 + m)n
]
,

T = α

8πm
exp

[
−2

∞∑

n=1

bn(z1 + m)n
]
. (4.20)

We notice that, with respect to the standard Schwarzschild

charges, there are corrections due to the external field

encoded in the exponential factors.

When bn = 0 for n > 2, we obtain a special subcase

of the solution [9], in the limit where one of the black hole

vanishes or where the two horizon rods merge, remaining

only with a single black hole configuration.6 Figure 4 in this

section refer, for simplicity, to this truncated expansion of

the external field. A qualitatively analogous behaviour of the

black hole horizon occurs in the full multipolar expansion.

5 Two Kerr–NUT black holes in an external
gravitational field

We briefly discuss the rotating and NUTty generalisation of

the binary black hole system immersed in an external grav-

itational field, that is the case N = 2. The generalisation to

an array of rotating and NUT black holes is straightforward,

at least conceptually.

We start again with the seed metric (3.13) and add four

solitons (i.e. two black holes). However we make a different

6 This second limit is more easily obtained, in Weyl coordinates, when
it is taken for the bi-dimensional Killing block of the metric gab (2.8a),
and only subsequently the associate f is generated according to the
prescription (2.8b).

choice for the BZ constants: we choose [33]

C (1)
1 C (2)

0 − C (1)
0 C (2)

1 = σ1,

C (1)
1 C (2)

0 + C (1)
0 C (2)

1 = −m1, (5.1a)

C (1)
0 C (2)

0 − C (1)
1 C (2)

1 = n1,

C (1)
0 C (2)

0 + C (1)
1 C (2)

1 = a1, (5.1b)

and

C (3)
1 C (4)

0 − C (3)
0 C (4)

1 = σ2,

C (3)
1 C (4)

0 + C (3)
0 C (4)

1 = −m2, (5.2a)

C (3)
0 C (4)

0 − C (3)
1 C (4)

1 = n2,

C (3)
0 C (4)

0 + C (3)
1 C (4)

1 = a2. (5.2b)

Heremi are the mass parameters, ai are the angular momenta

and ni are the NUT parameters. We have also defined σ 2
i ≡

m2
i − a2

i + n2
i . The poles wk are naturally defined as

w1 = z1 − σ1, w2 = z1 + σ1,

w3 = z2 − σ2, w4 = z2 + σ2, (5.3)

where zi are the positions of the black holes.

The resulting metric is computed by following the inverse

scattering method of Sect. 2, but it is quite involved and we

will not write it explicitly here. The simplest form of the

metric is achieved by using the bipolar coordinates
⎧
⎨

⎩
ρ = σ1

√
x2

1 − 1
√

1 − y2
1

z = z1 + σ1x1y1

,

⎧
⎨

⎩
ρ = σ2

√
x2

2 − 1
√

1 − y2
2

z = z2 + σ2x2y2

. (5.4)

The metric regularisation from angular defects on the sym-

metry axis, can be pursuit as in the static case above, by

tuning one physical parameter of the solution for each N +1

spacelike rod.

It is not sufficient to put equal to zero all the N constants

ni in order to avoid Misner strings or other issues carried by

the NUT charge: in the multi-black hole case the actual NUT

charge is a combination of the parameters of the solution [34],

hence it is not obvious how to remove the Misner singularities

a priori. A way to compute the NUT charge is provided in

[34,35]: given the quantities

�i :=gtφ
gtt

∣∣∣∣
wi−1<z<wi

, (5.5)
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(a) (b)

Fig. 4 Two embedding in E
3 of single static black hole horizons (yel-

low surfaces) immersed into a dipolar and quadrupolar external gravita-
tional field, for m = 0.6, z1 = −1.3, b2 = 0.3, expressed in Solar mass
units M�. A section is taken to appreciate the deformation with respect
to the null external field case, drawn in green as a reference: the standard

spherical Schwarzschild horizon, which is everywhere covered by the
horizon swollen by the presence of the external gravitational field. The
two black holes in external field differ only for the value of b1, which in
b is chosen according to Eq. (4.19) to remove also the second conical
singularity, while in a b1 = 0.5

the absence of Misner strings is guaranteed by the condition

�1 = �3 = �5. (5.6)

Once the latter condition is satisfied, the common constant

value of � can be reduced to zero by a shift of the time

coordinate, namely t → t + Cφ, where C is an appropriate

constant. In particular, the NUT charge n of the spacetime is

usually identified as

4n = �1 − �5. (5.7)

The requirement of a vanishing NUT charge provides a con-

straint on the parameters of the solution, which then guar-

antees the absence of the pathologies usually associated to

such a quantity.

Once the NUT charge (and the Misner strings) have been

removed, it is possible to investigate the conical singularities.

In fact, the presence of a Misner strings implies the existence

of a conical singularity, which can not be removed until the

string is present. The general formula for the computation of

the ratio between the circumference and the radius around

the z-axis is [34]

L

2πR
=
√

gφφ

gzzρ2 → 1; (5.8)

the expression used in the diagonal case can be applied in

the stationary case as well, provided that gtφ = O(ρ2) as

ρ → 0. Thus, such a formula can be used to constrain the

values of the dipole and quadrupole parameters, b1 and b2, in

order to remove the conical singularities and obtain a regular

spacetime. Since the explicit expressions of the regularis-

ing parameters are quite involved, it is not possible to write

them here. It is easier to check numerically that the rotating

solution can be regularised as in the static cases.

In the simplest case of a dipole-quadrupole configura-

tion, the binary system is characterised by ten parameters:

{m1,m2, a1, a2, n1, n2, z1, z2, b1, b2}. Contrary to the stan-

dard double-Kerr case, in which there is no external field,

the relevant physical quantity is not the distance between the

holes z2 − z1. This happens because the external field does

not act uniformly on the z-axis, hence the translation invari-

ance along the axis is broken. This means that the positions

of the black holes are two independent parameters.

However, when the external field parameters are set to

zero, b1 = b2 = 0, one recovers the usual double-Kerr–NUT

solution [33] (see [36] for a recent account on the equilibrium

configurations). Moreover, one can see that the positions z1

and z2 can be reabsorbed into a single parameter l = z2 − z1.

Obviously, in such a limit the spacetime can not be regu-
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larised to give a physical solution, and the conical singular-

ities can not be avoided. The spacetime is then affected by

the presence of struts or cosmic strings, unless one admits

“naked singularity-black hole” or “naked singularity-naked

singularity” configurations.7

6 Two Reissner–Nordström black holes in an external
gravitational field

A natural generalisation of the solutions presented in the

previous sections contemplates the addition of the electric

charge, thus we will construct a multi-Reissner–Nordström

solution immersed in an external gravitational field. Such a

solution is the multi-black hole version of the metric pre-

sented in [19].

6.1 The charging transformation

There are several procedures to extend a stationary and

axisymmetric solution of general relativity to support a

Maxwell electromagnetic field. This methods allows, for

instance, to generate the Reissner–Nordström spacetime

from the Schwarzschild black hole solution, such as the Har-

rison [37] or the Kramer–Neugebauer [38] transformations.

We want to present here perhaps the simplest version of

this charging transformation, which maps a given static and

axisymmetric vacuum solution to another static and axisym-

metric electrovacuum spacetime, typically adding monopole

electric charge.8

Let us consider the most general static and axisymmetric

metric for Einstein–Maxwell theory, the Weyl metric (3.1).

Suppose the electromagnetic vector potential associated to

this metric, compatible with the symmetries of this system, is

null, i.e. Aμ(ρ, z) = 0. Then an electrically charged solution

can be generated by the following transformation on the ψ

function of the metric

e2ψ → e2ψ̂ = e2ψ(1 − ζ 2)2

(1 − ζ 2e2ψ)2 , (6.1)

7 Note that the “black hole-black hole” equilibrium configuration found
in [33] is not reliable, since the conical singularity is computed in pres-
ence of a Misner string by means of a non-suitable formula for the nutty
case.
8 These transformations combined with discrete symmetries of the
spacetime can also act differently, for instance, they are best known for
the ability to add an external electromagnetic background, of Melvin
type, to the seed solution.

which is be supported by an electric field given by

Âμ =
(

ζ(e2ψ − 1)

1 − ζ 2e2ψ
, 0, 0, 0

)
. (6.2)

The continuous parameter ζ can be considered real and it is

related to the electric charge of the spacetime. In Appendix B

we derive this transformation from the Kramer–Neugebauer

one and we show how the latter is contained in the Harrison

transformation up to some gauge transformations. There we

also provide a simple example of application of the charging

transformation (6.1), (6.2), where the electrically charged

black hole solution of Reissner–Nordström is generated from

the Schwarzschild metric.

6.2 Generating two distorted Reissner–Nordström black

holes

Now we want to charge a multi-Schwarzschild solution

embedded in an external gravitational field. To keep the

model as simple as possible, without constraining the phys-

ical parameters of the black hole, we consider, as a seed, the

double-black hole spacetime immersed in an external gravita-

tional field possessing dipole and quadrupole moments only.

Note that this choice is done only for simplicity, but it could

be chosen any external gravitational expansion endowed with

multipoles of any order; likewise the charging method allows

one to deal easily with an arbitrary number of sources. How-

ever we will act with the charging transformation (6.1), (6.2)

on the solution (4.2) for N = 2 and with only the coefficients

b1 and b2 different from zero. The resulting seed metric,

which coincides with the one described in [9], is determined

by the two functions of the static Weyl metric (3.1)

e2ψ = μ1μ3

μ2μ4
exp

[
2b1z + 2b2

(
z2 − ρ2

2

)]
, (6.3a)

e2γ = 16C f e2ψ μ3
1μ

5
2μ

3
3μ

5
4

W11W22W33W44W 2
13W

2
24Y12Y14Y23Y34

exp

{
−b2

1ρ
2 + b2

2

2

(
ρ2 − 8z2)ρ2 − 4b1b2zρ

2

+ 2b1(−z + μ1 − μ2 + μ3 − μ4)

+ b2
[−2z2 + ρ2 + 4z(μ1 − μ2) + μ2

1 − μ2
2

+ (μ3 − μ4)(4z + μ3 + μ4)
]}

, (6.3b)
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where Wi j = ρ2 + μiμ j and Yi j = (μi − μ j )
2, while the

solitons are defined as in (2.5). The new solution9 will main-

tain the same γ as (6.3b) while transforming ψ according

to (6.1).

ζ is related to the electric charge of the black holes, there-

fore the transformed metric will represent a couple of charged

black hole embedded in an external gravitational field. In the

limit of null external field bn = 0 and vanishing one of the

two black hole masses (m2 = 0 for instance), we exactly

recover the Reissner–Nordström solution. Otherwise when

the external gravitational field is not present the solution

approach the equal mass double charged masses of [39,40].

We are interested in solutions regular outside the event

horizons, therefore we have to consider the quantity P ≡
f gtt to avoid the possible conical singularities of the charged

metric. In fact, when P differs from 1, it takes into account

the deficit or excess angle along the three regions of the axial

axis of symmetry outside the black holes event horizons,

i.e. for ρ = 0 and z ∈ (−∞, w1), z ∈ (w2, w3) and z ∈
(w4,∞). The solution is made regular from line singularities

by imposing the following three constraints on the metric

parameters:

C f = 16(w1 − w2)
2(w2 − w3)

2(w1 − w4)
2(w3 − w4)

2,

(6.4)

b1 = w2
1 − w2

2 + w2
3 − w2

4

2(w1 − w2)(w1 + w2 − w3 − w4)(w3 − w4)

log

[
(w1 − w3)(w2 − w4)

(w2 − w3)(w1 − w4)

]
, (6.5)

b2 = − w1 − w2 + w3 − w4

2(w1 − w2)(w1 + w2 − w3 − w4)(w3 − w4)

log

[
(w1 − w3)(w2 − w4)

(w2 − w3)(w1 − w4)

]
. (6.6)

While this remains formally the same regularisation con-

straint of the uncharged case, the physical meaning of the

parameters is different, as can be easily understood from the

single source case treated in Appendix B. In fact the two

black hole horizons are located in ρ = 0 and z ∈ (w1, w2),

z ∈ (w3, w4), where

w1 = z1 − σ1, w2 = z1 + σ1,

w3 = z2 − σ2, w4 = z2 + σ2. (6.7)

9 A Mathematica worksheet with this metric can be found
among the files of this arXiv paper and on the web-page
https://sites.google.com/site/marcoastorino/papers/2105-02894.

Henceforward we consider C f and bn fixed, as in Eqs. (6.4)–

(6.6), in order to assure the absence of conical singularities.

Note that the proper distance between the two event hori-

zon surfaces converges:

� =
∫ w3

w2

dz
√
gzz

∣∣∣
ρ=0

< ∞. (6.8)

It means that the balancing condition is non-trivial and can

be realised for a finite separation between the sources.

6.3 Charges and Smarr law

The electric charge of each black hole can be computed

thanks to the Gauss law [41]

Qi = − 1

4π

∫ 2π

0
dφ

∫ w2i

w2i−1

dz ρ g−1
t t ∂ρ At

∣∣
ρ=0 = 2ζσi

1 − ζ 2 .

(6.9)

Note that non-null results occur only in the regions which

define the event horizon of the black holes, as expected.

Also note that, since the charging transformation is a one

parameter transformation, it adds only an independent elec-

tric charge to the system. Thus the free physical parameters of

the solution are five: zi , σi and ζ . Hence the two black holes

cannot vary independently their electric charge. More general

solutions involving independent electric charge parameters

can be built, but with more refined generating techniques

such as [42] (or [43]).

The mass of the charged black holes can be defined by

evaluating, on their respective event horizon, the following

integral10

Mi = 1

4

∫ w2i

w2i−1

dz
(
ρ g−1

t t ∂ρgtt − 2At∂ρ At
)∣∣

ρ=0

= 1 − 2A0ζ + ζ 2

1 − ζ 2 σi

∣∣∣∣
A0=0

= 1 + ζ 2

1 − ζ 2 σi . (6.10)

Considering the mass as a local quantity, i.e. defined close

to the horizon, we can fix the gauge degree of freedom in

the electric potential as A0 = 0. Of course other gauge fix-

ings can be pursued, for instance requiring that the electric

potential vanish at large radial distances
√

ρ2 + z2 → ∞.

From the masses and electric charges of the black holes,

Eqs. (6.9) and (6.10), we can deduce, for any ζ 	= 1, the

10 The normalisation of the timelike killing vector here is considered
unitary. The generic normalisation factor α for the mass is reintroduced
in Eqs. (6.19) and (6.21).

123

https://sites.google.com/site/marcoastorino/papers/2105-02894


829 Page 14 of 19 Eur. Phys. J. C (2022) 82 :829

value of

σi =
√
M2

i − Q2
i . (6.11)

As expected the masses and electric charges are not all inde-

pendent, but they can be expressed just in terms of the param-

eters Mi and ζ . In fact the electric charges can be written,

thanks to Eqs. (6.9) and (6.10), as

Qi = 2ζ

1 + ζ 2 Mi . (6.12)

The entropy for each black hole is taken as a quarter of the

event horizon area

Si = 1

4

∫ 2π

0
dφ

∫ w2i

w2i−1

dz
√
gzzgϕϕ

∣∣
ρ=0, (6.13)

which gives

S1 = π
(w2 − w1)

2(w4 − w1)

(w3 − w1)(1 − ζ 2)2 e−2b1(w2−w3+w4)−2b2(w2
2−w2

3+w2
4),

(6.14)

S2 = π
(w4 − w3)

2(w4 − w1)

(w4 − w2)(1 − ζ 2)2 e−2w4(b1+b2w4). (6.15)

The temperature of the event horizons, computed as in the

previous section, can be written as

Ti = ασi

2Si
. (6.16)

From Eq. (6.12) it is easy to see that when the masses of the

two black hole coincides, M1 = M2, also Q1 = Q2. Then

it is possible to take ζ as in the single Reissner–Nordström

case treated in Appendix B

ζ =
M1 −

√
M2

1 − Q2
1

Q1
. (6.17)

In this symmetric case it can be straightforwardly checked

that both the temperature and the surface area of the two

black holes coincide. Anyway the thermal equilibrium can

be reached also for more general sources configurations. Note

that the event horizons become extremal in the limit case for

the charging transformation, ζ → 1, as in the single black

hole case.

The Coulomb electric potential � evaluated on both the

event horizons takes the same value

� = −ξμAμ

∣∣
ρ=0 = α(ζ − A0) − α�∞. (6.18)

We have now all the ingredients at our disposal to verify the

Smarr law, both for the single element

αMi = 2Ti Si − �Qi , (6.19)

and, thus, for the double black hole configuration

M =
2∑

i=1

2Ti Si − �Q, (6.20)

where we defined

M = α

2∑

i=1

Mi , Q =
2∑

i=1

Qi . (6.21)

Since distorted black holes have a preferred interpretation as

local systems, we primarily focused on local quantities, basi-

cally defined on the horizon. Nevertheless the above results

hold also in the case one considers the presence of the asymp-

totic Coulomb potential. The gauge freedom encoded in A0

can be used to put to zero the value of the potential at large

distance: when A0 = ζ sign(b2), then �∞ = 0.

The above results are valid for any α, the normalisation

parameter of the Killing vector that generate the horizon

ξ = α∂t . Then, in this context, α can practically regarded

as unitary. However, in discussing the first law of black hole

thermodynamics, it is necessary to select a particular value

for α, as described in [9], for a local point of view based on

the assumption that the observer are located close the hole

and they have no access to infinity.

This charged black binary configuration is one of the few

multi-black hole examples where it is concretely possible to

test the second law of black holes thermodynamics, as done

for the uncharged case [9] or for the Majumdar–Papapetrou

black holes [32]. For instance, when the system is isolated,

it is easy to verify that for two configurations, with the same

energy and background field, the disjoint state is always less

entropic than a collapsed state, which can be thought as the

final state: S�� < S⊙. Anyway, for different boundary con-

ditions this charged case has a rich phase transitions scenario,

from adiabatic merging to black hole brimming. However it is

outside the scope of this work and will be studied elsewhere.

6.4 Majumdar–Papapetrou limit

Inspecting the values of the regularising parameters bn in

Eqs. (6.5) and (6.6) we notice that there is a special case for

which they vanish: that happens for w1 = w2 and w3 = w4,

which, according to Eqs. (6.7), (6.11) and (6.12) corresponds

to extremality, Mi = Qi , or ζ = 1.11 In that case the standard

Minkowskian asymptotics is retrieved.

11 While the charging transformation is not well defined for ζ = 1,
the metric present no mayor drawback in this limit, besides the usual
carried by extremal horizons.
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That is not surprising because the charged double black

hole configuration presented in Sect. 6.2 naturally contains

a particular subcase of the Majumdar–Papapetrou solution

[5,6], the one which describes two identical black holes

located along the z-axis. The black holes have to be identi-

cal because the charging transformation (6.1), (6.2) adds only

one independent charge and the Majumdar–Papapetrou solu-

tion possesses only extremal horizons. In fact the Majumdar–

Papapetrou solution is the only configuration, within the dou-

ble Reissner–Nordström system [39,40], that can reach the

equilibrium by balancing the gravitational attraction thanks

to the electric repulsion of the sources, without requiring any

hyper-extremal event horizon, and thus preserving its black

hole interpretation.

Actually the limit to this version of the Majumdar–

Papapetrou metric, describing a twin couple of (extremal)

charged black holes, can be obtained easily, just considering

the extremal limit of the solution (6.1), (6.3b), i.e. Mi = Qi .

It is given by the following simple form12

dŝ2 = −e2ψ̂dt2 + e−2ψ̂
(
dρ2 + dz2 + ρ2dφ

)
, (6.22)

Ât =
(

1 + M1√
ρ2 + (z − z1)2

+ M2√
ρ2 + (z − z2)2

)−1

,

(6.23)

where

e2ψ̂ = Â2
t . (6.24)

7 Summary and conclusions

In this article several generalisation of the binary black hole

system at equilibrium in an external gravitational field are

built, thanks to various solution generating techniques. First

of all the complete infinite multipolar expansion for the exter-

nal field is considered as a background. These multipoles

allow us to regularise an arbitrary number of collinear static

Schwarzschild black holes at equilibrium. Therefore, thanks

to the external gravitational field, we are able to remove all the

conical singularities of the Israel–Kahn solution. The physi-

cal quantities computed for this infinite array fulfil the Smarr

relation.

We notice that in the single deformed Schwarzschild case

our solution is more general with respect to similar ones stud-

12 The Majumdar–Papapetrou solution describing a binary black hole
system in Weyl coordinate can be found in [32].

ied in the literature. This is because the one presented here

has an extra physical parameter related with the position of

the black hole with respect to the multipolar distribution. This

novel feature is fundamental in order to have a more general

balance constraint, hence an enriched physical description.

Then, with the aid of the inverse scattering method, we

show how to add both the angular momentum and the NUT

charge to each element of the black hole configuration. In

this stationary case the metric describes a deformed multi-

Kerr–NUT system.

Moreover we present, thanks to the Kramer–Neugebauer

transformation, an electrically charged extension of the

binary system at equilibrium. It represents two Reissner–

Nordström black holes held in balance by the external grav-

itational field. Also in this case it is verified that the physical

quantities of the double solution satisfy the Smarr relation. It

is shown how in the charged case the constraint that assure the

absence of conical singularities can be fulfilled also without

the need of the external gravitational field because it is suffi-

cient the balance between the gravitational attraction and the

electric repulsion between the two black holes to maintain

the equilibrium. Therefore this peculiar configuration has a

standard flat Minkowskian asymptotics and can not be noth-

ing else than the symmetric Majumdar–Papapetrou bi-hole,

which is naturally contained into our charged binary system.

The presence of external gravitational fields such as the

one produced by a distribution of matter around the black

holes can be used to regularise the angular defects for a wide

family of binary black hole systems. In our picture there is

no need for struts or cosmic strings which are of uncertain

experimental plausibility and of strident theoretical sound-

ness. The multi-sources description proposed here is local,

that is we believe have some phenomenological pertinence in

the proximity of the black holes, at least till the galactic heavy

matter that produce the necessary external gravitational mul-

tipolar expansion.

We believe that these new, well behaved, solutions of the

Einstein equations can be of some astrophysical interest and

also good reference for the Numerical Relativity community.

In fact, until now, this latter was the only to posses tools to

model and describe multi-black hole systems and to interpret

observations.

It would be interesting to study the stability of these met-

rics, even though, we expect that in the long term the final

state might be a merging of the binary system. Therefore

these models might be mainly useful in some metastable

phase of the eventual collision between the black holes.
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Several other generalisations could be performed rela-

tively easily thanks to generating techniques both in the realm

of General Relativity and in related gravitational theories

for which the integrable methods are still applicable, from

Brans–Dicke to other scalar tensor theories.
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Appendix A: Conical singularities and energy conditions

Conical singularities, beyond making the spacetime manifold

ill-defined from a mathematical point of view, give also rise to

energy issues. In general, such singularities can be interpreted

as strings or struts whose energy–momentum tensor has a δ-

like nature. We show what are the physical issues that the

conical singularities bring in when they are present in the

spacetime.

Let us consider Minkowski spacetime with an wedge of

angle 2πα′ artificially removed. By defining C = 1−α′, we

can write the metric as

ds2 = −dt2 + dr2 + C2r2dϕ2 + dz2, (A.1)

where 0 ≤ ϕ < 2π . One can regard this spacetime as a

field sourced by a cosmic string or a strut [44], whose non-

vanishing energy–momentum tensor components are

T t
t = T ϕ

ϕ = 2πμ δ(x, y), (A.2)

where

μ = 1 − C

4C
, (A.3)

and δ(x, y) is the two-dimensional delta function depend-

ing on the coordinates orthogonal to the z-axis (x, y). μ is

interpreted as the tension of the filament source.

This result can be generalised to a generic four-dimensional

spacetime [45], for which one finds that the Einstein equa-

tionsGμν = 8πTμν give rise to an energy–momentum tensor

T 0
0 = T 3

3 = 2πμ δ(x, y), (A.4)

where now

μ = 2π − C

4C
. (A.5)

C represents again the angular excess/deficit for the azimuthal

angle.

Let us consider, e.g., a two-black hole spacetime from (4.2)

(N = 2): the result (A.4) clearly shows that for μ > 0 (pos-

itive tension), the source acts as a string that pull a black

hole. This is the behaviour of the conical singularities that

one finds at z < w1 and z > w4 There are no negative-energy

issues in this case, but the string extends to infinity and the δ

function gives rise to a divergent energy–momentum tensor.

In the case of μ < 0 (negative tension), the conical singu-

larity in w2 < z < w3 acts as a strut which pushes apart the

two black holes. The energy density associated to the energy–

momentum tensor is negative (i.e. the strut is composed of

anti-gravitational matter) and there is again a divergence due

to the δ function.

Appendix B: Harrison and Kramer–Neugebauer charg-
ing transformations

Both the Harrison and the Kramer–Neugebauer [38] trans-

formations are two symmetries of the Ernst equations for the

Einstein–Maxwell theory. The Ernst equations are a couple

of complex differential equations governing the axisymmet-

ric and stationary electrovacuum of General Relativity [46]

(
ReE + |�|2)∇2E = (−→∇ E + 2�∗−→∇ �

) · −→∇ E, (B.1)
(
ReE + |�|2)∇2� = (−→∇ E + 2�∗−→∇ �

) · −→∇ �. (B.2)

They are equivalent13 to the standard Einstein–Maxwell

equations for fields possessing two commuting Killing vec-

13 Up to a couple of real equations for γ which remains decoupled from
the system, and therefore can be always integrated in a second instance.
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tors, such as for the spacetimes we are considering in this

paper: (∂t , ∂ϕ). Equations (B.1) and (B.2) are expressed in

terms of the complex Ernst potentials, defined as

E(ρ, z):=h − |�|2 + iχ, �(ρ, z):=At + i Ãϕ, (B.3)

where Ãϕ(ρ, z) and χ(ρ, z) are obtained from14

−→∇ Ãϕ := − hρ−1−→e ϕ × (
−→∇ Aϕ − ω

−→∇ At ), (B.4)
−→∇ χ := − h2ρ−1−→e ϕ × −→∇ ω − 2Im(�∗−→∇ �). (B.5)

It is a simple matter to verify that the complex Ernst equa-

tions (B.1), (B.2) enjoy an SU(2,1) Lie-point symmetry group

spanned by the finite transformations

E −→ Ê = λλ∗E , � −→ �̂ = λ�, (I)

E −→ Ê = E + i b , � −→ �̂ = �, (II)

E −→ Ê = E
1 + icE , � −→ �̂ = �

1 + icE , (III)

E −→ Ê = E − 2β∗� − ββ∗ , � −→ �̂ = � + β,

(IV)

E −→ Ê = E
1 − 2α∗� − αα∗E , (V)

� −→ �̂ = � + αE
1 − 2α∗� − αα∗E .

Greek letters (λ, β, α) represent continuous complex

parameters, while Latin letters, such as (b, c), label real ones.

Some of these transformations, such as (I), (II) and (IV) are

pure gauge transformations, hence they could be reabsorbed

by a diffeomorphism. The Harrison transformation is (V),

while the Kramer–Neugebauer, as defined in [47] to charge

the Kerr metric embedded in an external gravitational field

is

(KN) E −→ E ′ = E − ζ 2

1 − ζ 2E ,

� −→ �̂ = ζ(E − 1)

1 − ζ 2E . (B.6)

14 The differential operators here are intended in flat three-dimensional
Euclidean space in cylindrical coordinates (ρ, z, ϕ). For a brief review
of the Ernst formalism and symmetries see [32].

The latter transformation reduces to the one in (6.1), (6.2)

for static and uncharged seeds. Since both the Kramer–

Neugebauer (B.6) and the Harrison transformation (V), have

the same physical effects (they are know to add an elec-

tric monopole to an uncharged seed), we have the suspect

that they are basically the same transformation, up to gauge

transformations. In fact it can be shown that the subsequent

composition of transformations (I), (IV) and (V) to a Ernst

seed (E0,�0) gives

(V) ◦ (IV) ◦ (I) ◦
(
E0

�0

)

=
⎛

⎝
λλ∗E0−β∗(β+2λ�0)

1+α2(−2β+α∗ββ∗−αλλ∗E+2λ(αβ∗−1)�0

β−αββ∗+λλ∗αE0+�0−2λαβ∗�0
1+α2(−2β+α∗ββ∗−αλλ∗E+2λ(αβ∗−1)�0

⎞

⎠ . (B.7)

Then considering a null electromagnetic Ernst potential,

�0 = 0, the imaginary part of the parameters α, β, λ zero

and choosing the specific values

λ = 1

1 − ζ 2 , α = ζ, β = − ζ

1 − ζ 2 , (B.8)

we exactly recover the (KN) transformation (B.6). In case

of static metrics the latter further simplifies to (6.1), (6.2).

Therefore (K N ) and (V ) are basically equivalent, up to

gauge transformations, so they might be called collectively

Harrison–Kramer–Neugebauer transformation.

As an explicit example we show the efficacy of the charg-

ing transformation (6.1), (6.2) on an asymptotically flat,

static and discharged metric. For instance acting on the

Schwarzschild metric, we produce the Reissner–Nordström

black hole.

For simplicity we take the seed in spherical symmetric

coordinates

ds2 = −
(

1 − 2m

r

)
dt2 + dr2

1 − 2m
r

+ r2dθ2

+ r2 sin2 θdϕ2, (B.9)

from which we can easily read the seed

e2ψ = 1 − 2m

r
, At = 0. (B.10)

After the charging transformation (6.1), (6.2) we get the new

solution

e2ψ̂ = r(r − 2m)(1 − ζ 2)2

[r + (2m − r)ζ 2]2 ,

Ât = − 2mζ

r + (2m − r)ζ 2 . (B.11)
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A shift of the radial coordinate

r → r̂ − M +
√
M2 − q2, (B.12)

and a rescaling of the parameters

ζ → M − √
M2 − q2

q
, m →

√
M2 − q2, (B.13)

is sufficient to recognise the standard Reissner–Nordström

spacetime

dŝ2 = −
(

1 − 2M

r̂
+ q2

r̂2

)
dt2 + dr̂2

1 − 2M
r̂ + q2

r̂2

+ r̂2dθ2 + r̂2 sin2 θdϕ2, (B.14)

Âμ =
(
−q

r̂
, 0, 0, 0

)
. (B.15)

Note that this procedure, even though it always produces

a non-equivalent (to the seed) solution, it might act not so

predictably on an non-asymptotically flat solution, even if

static.
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