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Abstract This study explores new wormhole solutions in
the background of teleparallel gravity. All the energy condi-
tions are investigated for two different new calculated shape
functions. The presence of exotic matter is confirmed due to
the violation of the energy conditions. Thin-shell around the
wormhole geometry is obtained by using the cut and paste
approach taking the Schwarzschild black hole as an exterior
manifold. The stability of thin-shell is explored by using lin-
earized radial perturbation about equilibrium shell radius for
both choices of calculated shape functions. It is concluded
that stable regions and the position of the expected event
horizon depend on the choice of physical parameters.

1 Introduction

The progressive revolutions in general relativity (GR) referred
to the understanding of a stimulating framework incorporat-
ing gravity and also, shed light on various astrophysical phe-
nomena in the cosmos. Recent developments in this aspect
have led to many remarkable investigations into the evolu-
tionary mechanism of the Universe. Accelerated expansion
of our Universe is one of the fundamental facts that have
brought many challenges to the present arena of research.
Researchers attempted different astronomical probes (type Ia
supernova, large-scale structure and cosmic microwave back-
ground radiation (CMBR), the integrated Sachs-Wolfe effect,
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baryon acoustic oscillations, gamma-ray bursts, etc.) and
found evidence about the mysterious exotic source that takes
part in the expansion of the Universe [1–6]. These observa-
tional advances indicate two cosmic phases of accelerated
expansion, i.e., the cosmic era before radiation and eventu-
ally, the present state following the matter-dominated phase.
In the last couple of decades, a consensus about this accel-
erating behavior exhibits that an unusual anti-gravitational
force termed dark energy (DE), causes the current cosmic
expansion. The observational data about the presence of DE
was firstly proposed by physicists in the early 1980s while
exploring the structure formation of galaxies in the cosmos
[7].

The investigation of dominant cosmic ingredients in a
matter distribution has remained one of the biggest puzzles
in Cosmology. Recent observations indicate their contribu-
tion in the ratio: 4% baryonic matter, 28% dark matter, and
68% DE of the total budget. Dark energy comprises a signif-
icant feature of having large negative pressure (responsible
for acceleration) but does not the cluster at large scales. This
exotic nature of DE makes it inconsistent with strong energy
conditions (SEC), thereby the major part of cosmic contents
remains unspecified. Several attempts have been made in the
literature to comprehend the ambiguous nature of the DE.
Without having any solid argument in favor of dark sources,
extensive approaches have been chosen as an alternative.
The study of mysterious approaches to these exotic terms
have been illustrated in two ways, i.e., using modified matter
sources or modifying the gravity by introducing some extra
degrees of freedom in the action for the field equations. The
first approach refers to the modification of the matter sector of
the Einstein–Hilbert Lagrangian density by taking different
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proposals like quintessence energy [8], phantom [9], tachyon
field [10], k-essence [11], generalization of barotropic equa-
tion of state (EoS) such as Chaplygin gas [12] and its modifi-
cation [13] etc. that effectively suggest the dynamical behav-
ior of the cosmos. The other approach is an extension of the
gravitational part in GR by incorporating a DE source while
the matter part remains fixed. Although the first category has
interesting implications but could not be endorsed as much
promising due to the presence of some ambiguities, whereas
modified frameworks of gravity are quite useful due to their
effective cosmological executions.

Einstein developed the concept of geometry-matter cou-
pling whose modifications are as old as GR itself. Modified
theories of gravity supplemented by extra curvature terms in
the action have been extensively studied in the literature.
Some well-known modifications of gravity include f (R)

gravity [14], Gauss–Bonnet gravity [15], f (R, T ) gravity
[16], and the scalar-tensor theory [17]. Further, in the con-
text of wormhole study some modified theories of gravity,
like f (T ) gravity [18,19], f (T, TG) gravity [20], f (Q) grav-
ity [21–23], and Einstenian cubic gravity [24,25] have been
explored. The attractive insights of these alternative gravi-
tational theories have become a center of interest for many
researchers in the fields of high energy physics, astrophysics,
and modern Cosmology. These modifications are based on
the metric tensor gi j being a dynamical variable. It is intrigu-
ing to note that an alternative approach to GR has been getting
momentum in the literature known as teleparallel gravity in
which the tetrad eiε is chosen as a basic physical variable [26].
Curvature is replaced by the notion of torsion through which
geometric deformation creates a gravitational field. In other
words, this modification leads to the torsion-based telepar-
allel connection instead of the curvature-based Levi–Civita
connection. Since gεε = ηi j ei εei ε, one may consider tetrad
as the square root of the metric which seems analogous with
the Dirac equation as the square root of Klein-Gorden equa-
tion. While working with tetrad, the inclusion of torsion is
naturally used instead of curvature which yields the so-called
the teleparallel equivalent of GR whose dynamical equiva-
lence shows that they both are indistinguishable by classical
experiments.

Although teleparallel gravity is equivalent to GR but con-
ceptually quite different. In contrast to GR, teleparallel grav-
ity is nicely motivated within a gauge theory context and
can be beautifully framed as the gauge theory for the trans-
lation group [27]. In fact, like all other gauge theories, its
Lagrangian density is quadratic in the torsion tensor, the field
strength of the theory. This theory of gravity incorporates var-
ious features of GR like the possibility of studying nonvac-
uum solutions [28] and conserved currents [29] etc. Further-
more, this has also been a significant framework for studying
nonsingular black holes [30], gravitational waves [31,32] and
energy fluxes in cylindrical spacetimes [33]. The teleparallel

gravity also makes it possible to come up with extensions
of GR to address the challenges of dark matter [34,35] and
cosmology [36]. One of the most astonishing features of the
teleparallel theory that makes it simpler than GR is its first
order Lagrangian as well as its Yang–Mills-like field equa-
tions. The other feature of this framework that makes it richer
than that of GR is the fact that, unlike in GR, one can sepa-
rate gravitational effects from inertial effects [37]. This arises
due to the spin connection lying inside the Weitzenböck con-
nection. These unique features are not shared by any other
alternative theories.

Teleparallel gravity has also attained much interest the
researchers regarding its applications to different astrophys-
ical and cosmological scenarios as well as in the background
of its extended versions. Krssak et al. [38] discussed the
fully invariant formulation of teleparallel gravity and its gen-
eralizations using different assumptions on the frame and
spin connection to present the covariant procedure. Singh et
al. [39] studied Einstein’s cluster mimicking compact star
in the framework of teleparallel gravity and also discussed
cluster formation in modified f (T ) gravity by choosing an
anisotropic fluid distribution. Hammad et al. [40] derived
the Noether charge associated with diffeomorphism invari-
ance and black hole entropy in the teleparallel gravity. They
showed that the conformal issue that plagues the entropy-area
law within GR does not arise in teleparallel gravity based on
Wald’s approach. Nashed and Capozziello [41] explored a
charged non-vacuum solution for compact stars by taking a
physically symmetric tetrad field in the context of teleparal-
lel gravity. Asifa et al. [42,43] explored the existence of stars
in extended teleparallel gravity and studied the regularity,
anisotropy, energy conditions, stability and surface redshift
of the model. Ditta et al. [44] also discussed a new exact
model for anisotropic stars in the f (T ) theory of gravity.

One of the most fascinating features of GR is the exis-
tence of hypothetical geometries with topological structures
describing interstellar travel. A wormhole is a theoretical
connection between remote regions of the Universe which
reduces traveling time and distance. The concept of worm-
hole has a primal history starting with Flamm [45], who con-
structed the Schwarzschild solution of the field equations of
GR as a non-traversable wormhole. Einstein and Rosen [46],
proposed the existence of a bridge, known as the Einstein–
Rosen bridge, by joining two copies of the Schwarzschild
spacetime for which the wormhole throat implodes thus
forming a singularity. Misner and Wheeler [47] termed these
hypothetical characteristics of the field equations of GR as
wormholes for the first time. Ellis [48] introduced the con-
cept of the traversable wormhole with topological structure
by coupling geometry and scalar field that creates a geodesi-
cally complete manifold with no horizon. Bronnikov [49]
explored the scalar-electrovacuum configurations without
scalar charge. Clement [50] gave a class of traversable worm-

123



Eur. Phys. J. C (2022) 82 :825 Page 3 of 15 825

holes in higher dimensions. Morris and Thorne [51] proposed
the idea of a traversable wormhole by joining two distant cos-
mic regions (asymptotically flat) by a throat supported by an
exotic matter violating the null energy condition (NEC) that
keeps the wormhole throat open. The physical viability of
wormhole configuration requires confining the usage of this
matter, which is something controversial. There has been an
extensive work for the construction of wormholes from black
hole spacetimes and analysis of their various physical aspects
[52–71].

Many researchers have discussed the stability of thin-shell
wormholes (WHs) by using radial perturbation with different
matter distributions. The stable configuration of thin-shell
with linearized radial perturbation is analyzed by Poisson
and Visser in [72]. Later, it is extended to explore the effects
of the cosmological constant on the stability of thin-shell as
discussed in [73]. Thin-shell Wh is developed by using cut
and paste approach in the background of regular Hayward
BH in [74] and a stable configuration of rotating thin-shell
is explored in [75]. In the background of noncommutative
geometry, the stability of charged thin-shell gravastar with
linearized radial perturbation is studied in [76]. The effects of
dark matter and dark energy on thin-shell WH under Lorentz
symmetry breaking are discussed in [77]. These research arti-
cles are very interesting and motivate us to explore the stable
configuration of thin-shell in the modified theory of gravity.

The search for a realistic source for wormhole construc-
tion leads to the extension of GR. In modified theories of
gravity, normal matter supports the wormhole throat while
the violation of energy conditions corresponds to the effec-
tive energy-momentum tensor. Lobo and Oliveira [78] exam-
ined the wormhole configurations without violation of energy
conditions in the f (R) theory of gravity by taking partic-
ular choices for the shape function. Bronnikov et al. [79]
discussed some remarkable aspects of wormhole geome-
try in f (R) gravity. Dehghani and Mehdizadeh [80] pre-
sented wormholes in Lovelock gravity and found that two
different ranges of Lovelock coefficients satisfy the weak
energy condition. Azizi [81] studied the wormhole solutions
in f (R, T ) gravity for which the matter supporting the worm-
hole throat might fulfill the energy conditions. Zubair et al.
[82,83] obtained spherically symmetric wormhole solutions
and found realistic consequences for anisotropic matter dis-
tribution under the umbrella of f (R, T ) gravity. Garcia and
Lobo [84] explored the exact wormhole solutions in the con-
text of Brans-Dicke theory. Tayyaba et al., [85] investigated
wormhole configurations by assuming symmetries in the
f (G) theory of gravity. Farasat et al., [86] constructed non-
commutative wormhole geometries in f (R,G) gravity and
explored their equilibrium condition. Mustafa et al. [87] ana-
lyzed non-commutative wormholes through Lorentzian and
Gaussian distributions in the framework of f (G, T ) gravity.
Javed et al. [88] presented an analysis of different physical

characteristics of wormhole configurations by taking Rastall
gravity. Recently, the study of WH configuration with two
specific choices of shape function in f (Q) gravity is pre-
sented in [89].

Inspired by the remarkable features of teleparallel grav-
ity, it is always of great fascination to investigate different
astrophysical issues in this background. In this paper, we are
interested to explore a new wormhole solution in teleparallel
gravity. For this purpose, we consider two different generic
shape functions. It is well known that any relativistic model
will be physically interesting if it is stable under fluctuations,
thus motivated by this fact we also study stability conditions
for the respective wormhole solution. The format of paper is
as follows. In the next section, we discuss some basic for-
mulations of the teleparallel theory of gravity and wormhole
geometry. In Sect. 3, we obtain new wormhole solutions for
two different generic shape functions in the teleparallel the-
ory of gravity. Here we consider two different cases describ-
ing relations between pressure components. In Sect. 4, we
also analyze the thin shell around a wormhole geometry by
using the cut and paste approach. In this context, we choose
Schwarzschild’s black hole as an exterior manifold. Section
5 deals with the stability of the thin-shell wormhole configu-
rations through linearized radial perturbation for both cases.
Finally, we conclude our results in the last section.

2 Teleparallel gravity and wormhole geometry

Usually, Minkowski metric is used for the tangential space
indices with both upper and lowered, i.e., ηi j , for the current
framework for the Riemannian metric is provided as:

gξζ = ei ξ e
i
ζ ηi j , (1)

where, relation ei ξ ∂ξ = ei (xξ ) denotes the tetrad portion.
For the current analysis, we consider the orthogonal basis for
tangential can be rearranged by using the nontrivial tetrad. A
well-known connection, like Weitzenbock can be described
via tetrad field as

�α
ξζ = ei

α∂ζ e
i
ξ = −ei ξ ∂ζ ei

α. (2)

The covariant derivative with Weitzenbock for tetrad fields
calculate as zero, i.e

∇ξei ζ = ∂ξei ζ − �α
ξζ e

i
α = 0. (3)

From the above connection, the non-vanishing torsion and
null curvature are expressed as

T α
ξζ = �α

ζξ − �α
ξζ = ei

α(∂ξ e
i
ζ − ∂ζ e

i
ξ ). (4)

The Levi–Civita and Weitzenbock connections can be related
with the following relation:

�̂α
ξζ = �α

ξζ − K α
ξζ , (5)
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In the above equation �̂α
ξζ and K α

ξζ are given as:

K α
ξζ = 1

2
(Tξ

α
ζ + Tζ

α
ξ − T α

ξζ ). (6)

The torsion can be rewritten as:

T = Sαξζ Tαξζ , (7)

here super-potential Sαξζ is given as:

Sαξζ = −Sαζξ = 1

2
(K ξζα − gαζ T γ ξ

γ + gαξT γ ζ
γ ). (8)

For teleparallel theory, the gravitational type Lagrangian
become

LG = e

16π
T, (9)

where, c = G = 1 and e = det (ei ξ ). The action for telepar-
allel theory is given as:

S = −
∫

e(
T

16π
+ Lm)d4x, (10)

In the above action, Lm represents the matter term for
Lagrangian. By variational approach Eq. (10) termed as:

e−1ei ξ ∂�(eei
γ Sγ

ζ�) + T γ
λξ Sγ

ζλ + 1

4
δ
ζ
ξ T = 4π�

ζ
ξ , (11)

where �
ζ
ξ mentions the fluid source, which can calculated

as:

Dζ (e
−1ei ξ ∂p(eei

γ Sγ
ζ p) + T γ

λξ Sγ
ζλ + 1

4
δ
ζ
ξ T ) = 0, (12)

where the covariant derivative in the considered modified
theory is written as

DζV
ξ = ∂ζV

ξ + (�ξ
λζ − K ξ

λζ )V
λ, (13)

From Eq. (11), we obtain

Dζ �ξ
ζ = 0. (14)

In the present manuscript, we consider the matter source
in the following form:

�ξ
ζ = (ρ + pt )uξu

ζ − ptδ
ζ
ξ + (pr − pt )vξ v

ζ . (15)

Here, the line element of spherically symmetric static space-
time is given as:

ds2 = eξ(r)dt2 − eχ(r)dr2 − r2(dθ2 + sin2 θdϕ2), (16)

with

• ξ(r) = 2�(r) and the red-shift function is denoted with
�(r).

• eχ(r) =
(
r+b(r)

r

)−1
and the shape function is represented

with b(r).
• The position of wormhole throat is denoted with r0

which connects two asymptotic regions and it follows
b(r0) = r0.

• For the flaring-out condition, the following constraint
must be verified as b(r)−rb′(r)

2b2(r)
> 0. At wormhole’s throat,

it is reduced to b′(r0) < 1.
• For the signature of line element, the shape function of

wormhole throat must follows 1 − b(r)
r > 0 if r > r0.

• To obtain the asymptotically flat regions, the follow-
ing functions φ(r) and b(r)/r approaches to zero as
r → ∞. Otherwise, these constraints are relaxed for
non-asymptotically flat structures.

By considering Eqs. (15–16) into Eq. (11), the respective
field equations in considered modified gravity become:

ρ = 1

4π

(
e−χ(r)

(
ξ ′(r) + χ ′(r)

)
2r

+ 1

2r2 − T (r)

4

)
, (17)

pr = 1

4π

(
T (r)

4
− 1

2r2

)
, (18)

pt = 1

4π

(
e−χ(r)

2

(
ξ ′′(r)

2
+

(
ξ ′(r)

4
+ 1

2r

)

(
ξ ′(r) − χ ′(r)

) ))
. (19)

where

T (r) =
(
2e−χ(r)

) (
ξ ′(r) + 1

r

)
r

, (20)

It is noted that the behavior of the redshift function must be
non-vanishing as well as finite at the wormhole throat. In
this regard, we have considered �(r) = constant and hence
�′(r) = ξ(r) = 0.

3 Wormhole solutions

Now, we explore the new wormhole models by employing
two different relations between pressure components.

3.1 Case-I

In the current analysis, we consider new relations between
pressure components [90], which is expressed as:

pt = α1 pr + α2 p
2
r (21)

where α1 and α2 are constants. For the current analysis, we
take α1 ∈ [0, 0.7] and α2 = 5.0. Using Eqs. (18–19) in (21)

with eχ(r) =
(
r+b(r)

r

)−1
and �′(r) = ξ(r) = 0, we get a

differential equation as:

− α2b(r)2 − 4π(2α1 + 1)r3b(r) + 4πr4b′(r)
64π2r6 = 0 (22)
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Fig. 1 Wormhole properties for Model-I (left) and Model-II (Right)

On solving Eq. (22), the shape function for the current pro-
posed model yields

b(r) = 8π(α1 − 1)r2α1+3

8πK1α1r2 − 8πK1r2 + α2r2α1
(23)

whereK1 is a integrating constant. Using the calculated shape
function under the proposed scenario in Eqs. (17–19), we
have

ρ = 8πK1(α1 − 1)2(2α1 + 1)r2α1+2 + 3α2(α1 − 1)r4α1

(
8πK1(α1 − 1)r2 + α2r2α1

)2 ,

(24)

pr = − (α1 − 1)r2α1

8πK1α1r2 − 8πK1r2 + α2r2α1
, (25)

pt = − (α1 − 1)r2α1
(
8πK1(α1 − 1)α1r2 + α1r2α1

)
(
8πK1(α1 − 1)r2 + α2r2α1

)2 . (26)

3.2 Case-II

In the current section we consider another new relations
between pressure components [90], which is defined as:

pt = β1 pr + β2r
β3 p2

r (27)

where β1, β2 and β3 are constants. For the current analysis,
we take β1 ∈ [0, 0.7], β2 = 5.0 and β3 = 0.2. By plug-

ging the Eqs. (18–19) in Eq. (27) with eχ(r) =
(
r+b(r)

r

)−1

and �′(r) = ξ(r) = 0, we get another differential equation
which as

4πr3
(
2β1b(r) − rb′(r) + b(r)

) − β2rβ3b(r)2

64π2r6 = 0 (28)

We obtain the specific form of shape function by solving Eq.
(28) expressed as

b(r) = 4π(β3 + 2β1 − 2)r2β1+3

4πK2β3r2 + 8πK2β1r2 − 8πc1r2 + β2rβ3+2β1
,

(29)

where K2 is another constant of integration. According to
Morris and Thorne [51], our calculated shape functions sat-
isfy the essential properties of a wormhole. Both the calcu-
lated shape functions are seen positive with increasing nature,
which can be confirmed from the left side of Fig. 1. The
derivative of both the models with respect to the r , i.e., dβ

dr is
confirmed as less than one, which confirmed the flaring out
condition. The graphical development of dβ

dr can be verified
from the right side of Fig. 1. The ratio of both the models with
radial coordinate, i.e., β

r is approaching zero as r approaches
to infinity, which can be confirmed from the left side of Fig.
1. For the current study, the wormhole throat r0 = 0.2 and
r0 = 0.3 for model-I and model-II respectively. By using
the calculated shape function under the proposed scenario in
Eqs. (17–19), we obtain

ρ = − (β3 + 2β1 − 2)r2β1
(
(β3 − 3)β2r L+2β1 − 4πK2(2β1 + 1)r2(β3 + 2β1 − 2)

)
2

(
4πK2r2(β3 + 2β1 − 2) + β2r L+2β1

)2 , (30)

pr = − (β3 + 2β1 − 2)r2β1

2
(
4πK2β3r2 + 8πK2β1r2 − 8πK2r2 + β2rβ3+2β1

) , (31)

pt = (β3 + 2β1 − 2)r2β1
(
(β3 − 2)β2rβ3+2β1 − 8πK2β1r2(β3 + 2β1 − 2)

)
4

(
4πK2r2(β3 + 2β1 − 2) + β2rβ3+2β1

)2 . (32)
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Fig. 2 ρ for Case-I (left) and Case-II (Right)

Fig. 3 ρ + pr for Case-I (left) and Case-II (Right)

The graphical behavior of all the energy constraints for
both calculated shape functions is given in Figs. 2, 3, 4, 5 and
6. In order to explore the behavior of energy conditions, we
use the particular values of involved parameters. With these
particular values, the density profile remains positive in the
current study for both models. Figure 3 shows the graphical
behavior of condition ρ + pr for both considered models.
The negative values of ρ + pr confirm the presence of exotic
matter. In fact, exotic matter is the very basic requirement for
the traversable of the wormhole.

4 Thin-shell around wormholes structure

Here, we are interested to construct thin-shell around worm-
hole geometries by taking two choices of generic shape func-
tions in the background of teleparallel gravity. In this regards,
we use interior manifold as a wormhole geometry and exte-
rior region as a Schwarzschild black hoe spacetime. Mathe-
matically, it can be expressed as

ds2 = −�±(r±)−1dr2± − r2±dθ2±
−r2± sin2 θ±dφ2± + �±(r±)dt2±, (33)

the metric functions of inner (−) and outer (+) manifolds are
given as

�−(r−) = −b(r−)

r−
+ 1, �+(r+) = −2m

r+
+ 1, (34)

the mass m only appears as an integration constant in the
Schwarzschild solution.

Visser introduced the cut and paste technique to construct
thin-shell from joining of inner wormhole geometry and outer
Schwarzschild black hole spacetime at hypersurface. Here,
we use this approach to develop the geometry of thin-shell
around wormhole spacetime. In this regard, we cut these
spacetimes into the following regions as

M± = {
r± ≤ k, k > rh

}
, (35)

where k is known as the radius of thin-shell and rh represents
the position of the event horizon of the Schwarzschild black
hole. The interior wormhole geometry and exterior black
hole spacetime are connected at (2+1)-dimensional manifold
referred to as hypersurface given as

� = {
r± = k, k > rh

}
. (36)

This procedure gives a unique regular manifold and math-
ematically it can be expressed asM = M−∪M+. It is noted
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Fig. 4 ρ − pr for Case-I (left) and Case-II (Right)

Fig. 5 ρ + pt for Case-I (left) and Case-II (Right)

Fig. 6 ρ − pt for Case-I (left) and Case-II (Right)

that the event horizon and singularity in the developed struc-
ture can be avoided by using the radius of the event horizon of
the Schwarzschild black hole less than the shell radius. By
considering the Darmois–Israel formalism, the coordinates
of considered manifolds and hypersurface are in the follow-
ing form yγ

± = (t±, r±, θ±, φ±) and ηi = (τ, θ, φ), respec-
tively. Here τ represents the proper time over the hypersur-
face. These coordinate systems are related to one another by
using the following coordinate transformation

gi j = ∂yγ

∂ηi

∂yβ

∂η j
gγβ. (37)

The respective parametric equation for the hypersurface is
defined as

� : R(r, τ ) = r − k(τ ) = 0.

The physical quantities of matter distribution are evaluated
through the Einstein field equations at hypersurface referred

123
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as Lanczos equations given as

Sα
β = 1

8π
(δα

βζ γ
γ − ζ α

β ), (38)

where ζαβ = K+
αβ − K−

αβ and K−
αβ represents the compo-

nents of extrinsic curvature. For perfect fluid distribution, the
stress energy tensor is expressed as Sα

β = diag(ρ,P,P).
The energy density and pressure of the matter distribution
located at � is denoted by ρ and P , respectively. The extrin-
sic curvature of interior and exterior geometries are defined
as

K±
αβ = −n±

μ

[
∂2yμ

±
∂ηαηβ

+ �
μ
λν

(
∂yλ±
∂ηα

) (
∂yν±
∂ηβ

)]
, (39)

Further, we can define the unit normals as follow

nμ
± =

(
k̇

�±(k)
,

√
�±(k) + k̇2, 0, 0

)
, (40)

where the proper time derivative is represented with overdot.
By using Lanczos equations, we get

σ = −[K θ
θ ]

4π
= −

√
k̇2 − 2m

k + 1 −
√

− b(k)
k + k̇2 + 1

4πk
, (41)

P = [K θ
θ ] + [K τ

τ ]
8π

= 1

8πk

⎧⎨
⎩
k

(
b′(k) − 2

(
k̇2 + k̈k + 1

)) + b(k)

k
√

− b(k)
k + k̇2 + 1

+ 2
(
k̇2k + k̈k2 + k − m

)
k
√
k̇2 − 2m

k + 1

⎫⎬
⎭ , (42)

while

σ + 2P =
b′(k)

√
k̇2 − 2m

k + 1 − (
k̇2 + 2k̈k + 1

) (√
k̇2 − 2m

k + 1 −
√

− b(k)
k + k̇2 + 1

)

4πk
√

− b(k)
k + k̇2 + 1

√
k̇2 − 2m

k + 1
. (43)

Now, it is assumed that thin-shell of the developed geome-
try does not move along its radial direction at the equilib-
rium shell radius k0. Therefore, it is interesting to mention
that the proper time derivative of shell radius vanish, i.e.,
k̇0 = 0 = k̈0. Hence, we have

σ0 = − 1

4πk0

{√
−2m

k0
+ 1 −

√
−b(k0)

k0
+ 1

}
,

P0 = 1

8πk2
0

⎧⎨
⎩
k0

(
b′(k0) − 2

) + b(k0)√
1 − b(k0)

k0

+ 2(k0 − m)√
1 − 2m

k0

⎫⎬
⎭ ,

(44)

and

σ0 + 2P0 =
b′(k0)

√
1 − 2m

k0
+

√
1 − b(k0)

k0
−

√
1 − 2m

k0

4πk0

√
1 − b(k0)

k0

√
1 − 2m

k0

,

(45)

where surface energy density and pressure at equilibrium
position are denoted by σ0 and P0, respectively.

It is noted that σ0 < 0 which leads to the violation of
week as well as dominant energy constraints. Such viola-
tions indicate that the obtained structure is filled with matter
distribution having exotic nature. These matter distributions
at thin-shell produce repulsion against collapse and also helps
to keep it open. Hence, the developed structure is physically
acceptable for the observer movement among this configu-
ration.

5 Stability analysis through radial linear perturbation

Now, we are interested to explore the stability of constructed
thin-shell around wormhole geometry through linearized

radial perturbation at k = k0. For this purpose, we develop
the equation of motion of the shell from Eq. (41) as

k̇2 + V(k) = 0, (46)

here the effective potential function of thin-shell is denoted
with V(k). It is defined as

V(k) = mb(k)

16π2k4σ 2 − b(k)2

64π2k4σ 2 − b(k)

2k
− m2

16π2k4σ 2

−4π2k2σ 2 − m

k
+ 1. (47)

The components of stress-energy tensor follows the
energy conservation constraints as

P d

dτ
(4πk2) + d

dτ
(4πk2σ) = 0,
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Fig. 7 Plots of the solution of Eq. (50) with different values of ω2

which turns out to be

σ ′ = −2(σ + P(σ ))

k
.

For stability analysis, we use Taylor’s series to expand the
effective potential upto second-order terms about equilibrium
shell radius as

V(k) = V(k0) + (k − k0)V ′(k0) + 1

2
(k − k0)

2V ′′(k0)

+O[(k − k0)
3],

where V(k0) = 0 = V ′(k0). By taking J = k − k0, we get

J̇ 2 + ω2 J 2 	 0, (48)

where

ω2 = 1

2

d2V
dk2 |k=k0 . (49)

Differentiating Eq. (48) with respect to proper time, it follows
that

J̈ + ω2 J 	 0. (50)

This equation plays an important role to discuss stability of
the developed structure which depends on ω2. It is found that
thin-shell expresses oscillation about J = 0 for ω2 > 0 as
shown in the left plot of Fig. 7. Hence, the developed structure
indicates oscillation about the equilibrium shell radius (J =
0 ⇒ k = k0) and remains stable. This leads to a stable
configuration of a thin-shell. We can write this condition as

d2V
dk2 |k=k0 > 0. (51)

If ω2 < 0, then the shell’s radius represents the exponen-
tial behavior which corresponds to the unstable behavior as
shown in the right plot of Fig. 7. The respective condition for
the unstable configuration can be expressed as

d2V
dk2 |k=k0 < 0. (52)

The developed structure become stable if V(k0) = 0 =
V ′(k0). Hence, the above yields

V(k) = 1

2
(k − k0)

2V ′′(k0). (53)

Thin-shell mass and its radial derivatives in terms of energy
density and pressure are given as

M(k0) = 4πk2
0σ0, M ′(k0) = −8πk0 p0,

M ′′(k0) = −8πP0 + 16πξ2
0 (σ0 + P0),

here ξ2
0 = dp/dσ |k=k0 is an EoS parameter. So, we get

V ′′(k0) = − 1

2k4
0M

4

{
−k4

0M(2m − b(k0))

× (
M ′′(2m − b(k0)) − 4M ′b′(k0)

)
+ k4

0M
2
(
(b(k0) − 2m)b′′(k0) + b′(k0)

2
)

+ k0M
4
(
k0

(
k0b

′′(k0) − 2b′(k0) + (
M ′)2

)

+ 2b(k0) + 4m) + 3k4
0

(
M ′)2

(b(k0) − 2m)2

+ k0M
5 (
k0M

′′ − 4M ′) + 3M6
}

. (54)

Here, we consider V ′′(k0) > 0 to analyze the stability of
the developed structure. Hence, Eq. (54) becomes

− (−σ0(2m − b(k0))
(
32πk0P0b

′(k0)

+(2m − b(k0))(16πξ2
0 (P0 + σ0) − 8πP0)

)

+48πP2
0 (b(k0) − 2m)2

+4πk2
0σ 2

0

(
(b(k0) − 2m)b′′(k0) + b′(k0)

2
)

+64π3k3
0σ 4

0

(
k2

0b
′′(k0) − 2k0b

′(k0) + 2b(k0)

+64π2k3
0P2

0 + 4m
)

+2048π5k6
0σ 5

0 ((2ξ2
0 + 3)P0 + 2ξ2

0 σ0)

+3072π5k6
0σ 6

0

)
(128π3k6

0σ 4
0 )−1 > 0
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Fig. 8 Stable regions for the choice of first shape function (case(i)) for
different values of α1. Left plots show the graphical behavior of λ0 and
right plots expressed the stable regions. The straight line in right plots

show the position of expected event horizon of the developed structure.
Here, the shaded regions show the stable regions of developed structure

Further, we can write stability constraints in the following
form

V ′′(k0) > 0 ⇒ λ(h0)ξ
2
0 − E0 > 0. (55)

Here, the coefficient of EoS parameter is denoted by λ(k0) =
λ0 and remaining terms are named as E(k0) = E0.

The geometrical configuration of thin-shell is explored by
using stable regions which can be expressed as

(i) For λ0 < 0 ⇒ ξ2
0 < E0/λ0:

(ii) For λ0 > 0 ⇒ ξ2
0 > E0/λ0,

where

E0 = b(k)
(

8
(
mP0(6P0 + σ0) − 4π2k3

0σ 4
0

)

−k0σ0
(
k0σ0b

′′(k0) + 8P0b
′(k0)

))
+k0σ0

(
2k0σ0b

′′(k0)
(
m − 8π2k3

0σ 2
0

)

+ b′(k0)
(
−k0σ0b

′(k0) + 32π2k3
0σ 3 + 16mP0

))

−2P0b(k0)
2(6P0 + σ0)

−8
(

32π4k6
0σ 4

0

(
4P2

0 + 6P0σ0 + 3σ 2
0

)
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Fig. 9 Stable regions for the choice of first shape function (case(i)) for different values of K1. Here, the shaded regions show the stable regions of
developed structure

+ 8π2k3
0mσ 4

0 + m2P0(6P0 + σ0)
)

,

λ0 = 4σ0(P0 + σ0)

×
(

4mb(k0) − b(k0)
2 + 256π4k6

0σ 4
0 − 4m2

)
.

The characteristics of thin-shell around wormhole geometry
are explored through stable regions for both generic shape
functions as discussed in cases (i) and (ii).

5.1 For b(k) = 8π(α1−1)k2α1+3

8πK1α1k2−8πK1k2+α2k2α1

Now, we consider the first case of shape function to dis-
cuss stability regions of the developed structure. For this
purpose, we use the following functions λ0 and E0/λ0 to
obtain the stability regions. If λ0 < 0, the stability of thin-
shell is expressed with a light gray shaded region in the plot
of E0/λ0 as shown in Figs. 8 and 9. In each of the figures, the
left plot expressed the graphical behavior of λ0 and the right
plot shows stable regions through plots of E0/λ0. If λ0 > 0,
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Fig. 10 Stable regions for the choice of first shape function (case(ii)) for different values of α1. Here, the shaded regions show the stable regions
of developed structure

then the light blue region shows a stable configuration of the
shell. Figure 8 explains the effects of coupling constant α1

on the position of event horizon as well as stable regions. It is
noted that stability regions are decreased as α1 increases. The
integration constant K1 greatly effect the geometrical con-
figuration of the developed structure. The stable regions are
decreased for the higher values of the integration constant.

5.2 For b(k) = 4π(β3+2β1−2)k2β1+3

4πK2β3k2+8πK2β1k2−8πc1k2+β2kβ3+2β1

For the second case of shape function, we explore character-
istics of geometrical structure for different values of the cou-

pling constant β1 and integration constant K2. Stable regions
are decreased for the higher values of β1 and K2 as shown in
Figs. 10 and 11.

6 Concluding remarks

This analysis has discussed the spherically symmetric worm-
hole geometries involving two different and most generic
approaches in the background of the teleparallel gravity. In
the evolution of some unique features of the wormhole struc-
tures under teleparallel gravity, we calculate the density ρ,
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Fig. 11 Stable regions for the choice of first shape function (case(ii)) for different values of K2. Here, the shaded regions show the stable regions
of developed structure

the tangential pressure pt , and the radial pr for the worm-
hole solution obtained here. It is noted that the calculated
new shape functions are the most generic which are viable
and meet the Morris and Thorne wormhole criterion. Fur-
ther, we have calculated the exact shape functions for two
different models and have discussed their few major aspects,
such as energy conditions and their physical interpretation
in the framework of the teleparallel gravity. The obtained
shape functions have fulfilled all the necessary conditions
for the existence of wormhole structures under two differ-
ent sources. All the required conditions, including flaring
out property, have been provided in Fig. 1. Some necessary

expressions for defining the energy conditions, ρ, ρ + pr ,
ρ − pr , ρ + pt , ρ − pt , and ρ + pr + 2pt are shown graph-
ically in Figs. 2, 3, 4, 5 and 6 respectively. The violation of
NEC is revealed, which causes the existence of exotic matter,
which can be confirmed in Fig. 3 for both the models.

Moreover, we have discussed the stable configuration of
the thin-shell around the wormhole geometry in the back-
ground of the teleparallel gravity. For this purpose, we have
considered Schwarzschild black hole spacetime as an exte-
rior geometry. We have obtained the wormhole solution with
two choices of the shape function, taken as an interior mani-
fold. We have explored the stability of the thin-shell around
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the wormhole geometry by using linearized radial perturba-
tion about the equilibrium position of the shell radius. Stable
regions have decreased for the higher values of β1 and K2

as shown in Figs. 8 and 11 for both the models. It should be
noted that stable regions are obtained for every choice of the
shape function with suitable values of the physical param-
eter. The stable regions and position of the expected event
horizon depend on the physical parameters.
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