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Abstract In this work we investigate the effect of
spheroidicity on complexity in self-gravitating, static sys-
tems. Utilizing the anisotropic generalisation of the Vaidya–
Tikekar superdense stellar model, we employ the complexity
factor to connect the spheroidal parameter to the pressure
anisotropy and density inhomogeneity. Our findings indi-
cate that deviation from spherical symmetry lead to a higher
degree of complexity within the stellar body. We further show
the equation of state of parameter is inherently linked to the
complexity factor thus demonstrating that the nature of mat-
ter in self-gravitating bounded systems plays an important
role in the effect of pressure anisotropy and density inhomo-
geneities.

1 Introduction

In recent times, gravitational collapse has been vastly cov-
ered in great detail, which is the consequence of the work
done by Oppenheimer and Snyder [1]. In various studies,
gravitational collapse has been investigated with dissipation
along with important components, namely stability, luminos-
ity and temperature profiles. Key findings were established by
Vaidya [2] in the form of an exterior spacetime which con-
sisted of radiation. In different gravity theories, numerous
equations of state (EoS) were utilized in order to complete or
more so close off systems which resulted in a variety of mod-
els for gravitational collapse. At the forefront of gravitational
collapse, the main focus has always been on the Einstein field
equations. Considering the field equations, new exact solu-
tions were obtained for a five-dimensional spherically sym-
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metric static distribution of a perfect fluid. The Frobenius
method was employed to obtain solutions which were pre-
sented in the form of an infinite series. This study showed that
the models they looked at, all produced a barotropic equa-
tion of state of which all energy conditions were satisfied. The
reader is directed to the works by Krupanandan and Hansraj
[3] for other models which consisted of anisotropy and an
MIT bag model equation of state pr = γρ − β, which was
the first attempt in higher curvature gravity. In an alternative
study, solutions to the field equations and the deceleration
parameter was found by Maharaj and Naidoo [4]. This was
done by strategically using a form for the Hubble parameter
which resulted in establishing various number of solutions to
the Einstein field equations with variable cosmological con-
stant and variable gravitational constant. Much success has
been achieved when dealing with the field equations, which
has given more insight into models in higher dimensions [5].
The EoS plays a key role in various models when dealing
with stability and instability. Govender et al. [6] employed
a perturbative approach in their model in which they stud-
ied the effects that an EoS has on the dynamical stability or
instability of a spherically symmetric star undergoing dissi-
pative collapse. In the analysis carried out, a linear EoS of
the form pr = γμ was utilized on the perturbed radial pres-
sure and density. This led to determining the gravitational
behaviour of the collapsing star. Bogadi et al. [7] investigated
a static model in which they used a perturbative approach.
This led to the model changing into a dynamical heat dissi-
pating model, which resulted in more insight into dynamical
(in)stability. We shift our focus onto complexity, more so, a
new definition for complexity, has been noted by Herrera [8].
In the investigation carried out, the definition for complexity
was established for static and spherically symmetric self-
gravitating systems. The complexity factor is a consequence
of the orthogonal splitting of the Riemann tensor with regards
to general relativity. Herrera highlighted that the definition
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that was established was a result of the measure of the depar-
ture with regards to the Tolman mass, with respect to its value
for a zero complexity system. An important finding from this
work gives rise to interior solutions to the Einstein equations
which satisfy the case of zero complexity. A vital aspect prior
to the complexity factor is that of the statistical complexity
determined by Lopez-Ruiz et al. [9]. In the study conducted
by Lopez-Ruiz et al., the statistical measure of complexity
was focused on in which it was applied to numerous physical
situations. Within the framework of classical physics, the idea
of complexity can be used to, among other things, describe
systems such as the perfect crystal, and the ideal gas, which
both exhibit the factors of “order” (in terms of the symmetric
atomic arrangement), and “information” which for the ideal
gas, refers to the fact that it can be in any of its allowed states
while having the same probability distribution. The much
earlier work of Lopez-Ruiz et al. [9] presents complexity
as the concept of “disequilibrium” which gives a measure
of “how far away” a system is from all of its equiprobable
allowed states. Additionally, they demonstrated that a more
formal definition of complexity based on its quantization can
make it possible for “disequilibrium” and “information” to be
reconciled. This development subsequently enabled Sanudo
and Pacheco [10], and de Avellar et al. [11] to put forward
a definition of complexity in the context of relativistic fluids
in strong gravitational fields. In these studies the probabil-
ity distribution is replaced by the energy density of the fluid
system. However, this construct may be somewhat inade-
quate for the desired objective since it is understood that
other matter variables such as the pressure, and the compo-
nents of the energy–momentum tensor are also crucial for a
physically reasonable fluid in general relativity. Hence, the
study presented in Herrera [8] have provided a vital improve-
ment for static fluid spheres, by clearly defining complexity
as a measurable quantity that is strongly coupled to density
inhomogeneities and the spacetime geometry. The concept
of the complexity factor for static anisotropic self-gravitating
source with the generalized f (R) metric was utilized in the
works by Abbas and Nazar [12]. This concept was estab-
lished by performing the orthogonal splitting of the Reimann-
Christofell tensor which resulted in scalar functions which
in turn, led to the vanishing of the complexity condition
for the self-gravitating system. The basis for this investiga-
tion was the formulation of three ordinary differential equa-
tions, which was determined by static spherically symmet-
ric anisotropic self-gravitating geometry together with five
unknown variables (v, μ, ρ, Pr , P⊥). The condition that was
used (YT F = 0), gave rise to the vanishing complexity fac-
tor condition in which with an addition of another condition,
they were able to achieve the result produced by Herrera
[8]. New models have been determined for compact stars.
Maurya et al. [13,14] investigated a model for a spherically
symmetric anisotropic compact star. In this investigation, a

new anisotropic solution for Einstein’s field equations was
determined for embedding class one which proved viable as
they uncovered a solution that is relavant to realistic objects
such as Her X-1 and RXJ 1856-37. In their analysis, they
were able to find various relationships namely, the surface
and central density as well as the effective mass. Yousaf et
al. [15] persued the concept of complexity for static cylindri-
cally symmetric matter configurations in f (R, T, RT ) grav-
ity. This was achieved by coupling an irrotational static cylin-
drical spacetime together with a locally anisotropic relativis-
tic fluid. Once again, the orthogonal splitting of the Riemann
curvature tensor was carried out which emphasizes the rich
results that can be achieved from the orthogonal splitting. In
another study, the role of pressure anisotropy on relativis-
tic compact stars were looked at. This study was carried
out by Maurya et al. [16], of which the model was based
on a spherically symmetric relativistic object consisting of
anisotropic particle pressure. They employed a spatial met-
ric potential of Korkina and Orlyanskii [17] in order to solve
the Einstein field equations and thereafter commenting on
the compact strange stars such as the Her X-1 and SMC X-
1. Numerous models have given insight into compact stars
with comparisons being made with realistic known objects
[18,19], though in much recent times, work has been consid-
ered in Einstein–Maxwell–Gauss–Bonnet (EMGB) theory of
gravitation [20]. Herrera [21] engaged in the complexity for
dynamical spherically symmetric dissipative self-gravitating
fluid distributions. In this study, it was shown that the dissipa-
tive and non-dissipative cases were presented seperately. For
the dissipative case, the fluid distribution satisfies the vanish-
ing complexity factor condition. The results obtained from
various studies [8,22,23] produced different scalar functions
with regards to the orthogonal splitting of the Riemann ten-
sors. Bhar and Govender [20] expanded compact stars by
using the Krori–Barua (KB) ansatz in conjunction with a lin-
ear equation of state of the form pr = βρ − γ in which
they obtained new exact solutions of the EMGB field equa-
tions. In their successful attempt, it was established that the
Gauss-Bonnet terms have no effect on the various quanti-
ties namely, the density, the pressure and the anisotropy.
We now focus our attention on Vaidya–Tikekar superdense
stars. Thirukkanesh et al. [24] investigated the anisotropic
generalization of Vaidya–Tikekar superdense stars. In their
analysis carried out, they formulated a method to make an
anisotropic generalization of the Vaidya–Tikekar superdense
star model. This was achieved by solving the anisotropic Ein-
stein field equations, which was done by carefully selecting
hypergeometric functions for the gravitational potential and
anisotropy. In conclusion, for this model, they established the
basis for how the anisotropy affects the physical behaviour
of a compact star. Sharma et al. [25] made use of the Vaidya–
Tikekar metric ansatz in their study, which allowed for them
to produce a new class of interior solutions which describe
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a static and spherically symmetric anisotropic matter distri-
bution that reveals a linear EoS. The solution obtained is
utilized to determine the effects of deviation from sphericity
of 3-surface geometry on the mass-radius relationship.

This paper is structured as follows. In Sect. 2 we focus on
complexity in static spherically symmetric models in which
we configure the quantities. In Sect. 3 we present our static
compact stellar model, and employ an equation of state. In
Sect. 4 we consider the evolution of the complexity factor in
which we present various graphs for the behaviour of YT F .
Concluding comments are made in Sect. 5.

2 Complexity in static spherically symmetric models

ds2 = −eν(r)(r)dt2 + eλ(r)dr2 + r2(dθ2 + sin2 θdφ2), (1)

We assume that the stellar composition is anisotropic in
nature and accordingly the energy–momentum tensor of the
stellar fluid is taken as

T a
b = diag (−ρ, pr , pt , pt ) , (2)

where ρ, pr and pt are the energy density, radial pressure
and tangential pressure, respectively. The fluid four-velocity
u is comoving and is given by

ua = e−ν/2δa0 . (3)

The Einstein field equations for the line element (1) are
obtained as (in system of units having 8πG = 1 and c = 1)

ρ =
(
1 − e−λ

)

r2 + λ′e−λ

r
, (4)

pr = ν′e−λ

r
−

(
1 − e−λ

)

r2 , (5)

pt = e−λ

4

(
2ν′′ + ν′2 − ν′λ′ + 2ν′

r
− 2λ′

r

)
, (6)

where primes represent differentiation with respect to the
radial coordinate r .

Herrera was the first to establish the definition for the
complexity factor in static and spherically symmetric self-
gravitating systems. The complexity factor is a scalar func-
tion which is given by YT F in which the anisotropy Π can be
measured as well as the energy density gradient ρ′ = dρ

dr . In
much recent works, the complexity concept was expanded
to the setting of dynamical spherically symmetric dissipa-
tive self-gravitating fluid distributions. Using the definition
constructed by Herrera, we utilizeYT F as the complexity fac-
tor for spherically symmetric static self-gravitating systems
(4-6) given by

YT F = 8πΠ − 4π

r3

∫ r

0
x3ρ′(x)dx, (7)

where Π = pr − pt .
Herrera in his study, concluded that the complexity factor

YT F represents the influence of local anisotropy of pressure
and density inhomogeneity on the Tolman mass (mT ). The
relationship between YT F and the Tolman mT is given by

mT = (mT )�

( r

R

)3 + r3
∫ R

r

e(ν+λ)/2

x
YT Fdx, (8)

where MT is the total Tolman mass of the fluid sphere of
radius R (R = r�). In a study carried out by Herrera [8],
numerous observations have been made with regards to the
complexity factor. Firstly, the complexity factor vanishes for
isotropic fluid and all other configurations for which both
the terms in (7) identically vanish. Secondly, considering the
basis, it is clear that there exists many configurations with
vanishing complexity factors and lastly, it is important to
understand that the contribution of pressure anisotropy to
YT F is local in nature but differs with regards to the case for
density energy inhomogeneity.

3 Static compact stellar model

In a recent paper [26], the Vaidya and Tikekar (VT) [27]
superdense stellar model was generalised to include pressure
aniostropy and a linear equation of state of the form

pr = αρ − β, (9)

where α is a constant and β encodes the surface density. The
solution is given in a simple closed form

ν =
∫

reλ

[
(α + 1)(1 − e−λ)

r2 + αλ′e−λ

r
− β

]
dr ,(10)

eλ(r) = 1 − K (r2/L2)

1 − (r2/L2)
. (11)

which has a spheroidal geometry characterized by the param-
eters L (which has the dimension of a length) and K (which
denotes departure from spherical geometry). The metric will
be spherically symmetric and well behaved for r < L and
K < 1. For K = 1, the spheroidal 3-space degenerates into
flat 3-space. In the case K = 0 (i.e., b = L), it becomes
spherical. We note that the metric with K = 0 generates
the constant density solution commonly referred to as the
Schwarzschild interior solution. Following this approach,
making use of (11), (4) and (5) into the equation of state,
we solve the system and obtain

eν = A

(
1 − r2

L2

)n (
1 − Kr2

L2

)α

eK (L2−r2)β/2, (12)
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where A is a constant of integration and we have defined

n = 1

2

[
−1 − 3α + L2β + K (1 + α − L2β)

]
.

The thermodynamical quantities assume the following form
[26]

ρ =
(1 − K )

(
3 − Kr2

L2

)

L2
(

1 − Kr2

L2

)2 , (13)

pr = αρ − β, (14)

pt = (K − 1)

4(L2 − r2)
(
L2 − Kr2

)3 (
L2 − K R2

)4

7∑

i=1

Fi , (15)

where each Fi (i = 1, 2, . . . , 7) are functions of parameters
K , R, L , α and r . It is important to note that β is not a
free parameter for this situation and is given by β = αρR ,
for which we have R as the radius of the star and ρR is the
surface density which is given by

ρR =
(1 − K )

(
3 − K R2

L2

)

L2
(

1 − K R2

L2

)2 . (16)

In the case in which we have ρ = ρR , the radial pressure
vanishes i.e., pr (r = R) = 0, which defines the boundary.

We determine the central density from Eq. (13) which is
given by

ρc = 3(1 − K )

L2 . (17)

From Eq. (17), we notice that we have the restriction
K < 1. In our model, we consider anisotropy, thus we can
determine the anisotropy by utilizing the following

Π = pt − pr . (18)

In conclusion, we establish that the anisotropy vanishes at
the centre by setting r = 0, we have Π = 0.

We now consider a sphere with mass m(r) and radius r ,
where the mass inside the sphere is given by

m(r) = 1

2

r∫

0

ω2ρ(ω)dω. (19)

Following this, we integrate equation (19) and obtain

m(r) = (1 − K )r3

2(L2 − Kr2)
. (20)

Once again, we note that by setting r = 0, we havem(r) = 0.
In order to fix the constants not appearing in the solution

we match the interior solution to the vacuum Schwarzschild
exterior

ds2 = −
(

1 − 2M

r

)
dt2 +

(
1 − 2M

r

)−1

dr2

+r2dθ2 + r2sin2θ dφ2, (21)

across the boundary R. The matching conditions determine
the constants as

L = R
√

2KM − K R + R√
2M

, (22)

where M = m(R) is the total mass and

A = L2 − R2

L2 − K R2

×
(

1 − R2

L2

) 1
2

[

−α(K−3)+ α(K−1)2L2(K R2−3L2)

(L2−K R2)
2 −K+1

]

×
(

1 − K R2

L2

)−α

× exp

[

−KG(K , α, R, L , r)

2
(
L2 − K R2

)2

]

,

(23)

where

G(K , α, R, L , r) = 2
(
L2 − K R2

)2

×
(
L2 − r2

)
[

α(K−1)(K R2−3L2)
2(L2−K R2)

2

]

+α(K − 1)r2
(
K R2 − 3L2

)

−α(K − 1)R2
(
K R2 − 3L2

)
. (24)

With the above model parameters, Sharma et al. [26] demon-
strated that this solution obeyed the requirements for regu-
larity, stability and causality. This model was also utilised
by Bogadi et al. [7] and Govender et al. [28] to investi-
gate the interplay among the hydrostatic, gravitational and
anisotropic forces once a star loses equilibrium. It was fur-
ther shown that the Tolman–Oppenheimer–Volkoff forces are
sensitive to the spheroidal parameter, K as the collapse pro-
ceeds towards the horizon formation.

4 Evolution of the complexity factor

We now investigate the evolution of the complexity factor
as a function of the radial coordinate. In order to do this
we make use of (7) and the model discussed in Sect. 3. In
order to achieve this, we vary the spheroidil parameter K
for different fluid configurations (different α) and plot YT F

as a function of r . The values of α chosen correspond to
dark energy (α = −1), dark radiation fluid (α = − 1

3 ), dust
(α = 0), radiation fluid (α = 1

3 ) and stiff fluid (α = 1).
While these matter profiles correspond to cosmological flu-
ids, they have been discussed within astrophysical contexts
(see for example [29–33]). From Fig. 1, we observe that
for K = −2, the complexity factor is an increasing func-
tion from the center towards the boundary with the stiff EoS
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Fig. 1 YT F vs the radial coordinate r for K = −2 and varying α

dominating the others. For K = −20, (Fig. 2), we observe a
similar trend in YT F , ie: monotonically increasing function
of the radial coordinate as the boundary is approached. The
magnitude of YT F has increased by a factor of 100 with an
increase in 10% in the spheroidal parameter. In Fig. 3, we
observe the evolution of the complexity factor as a function
of the radial coordinate when K = −1000. It is interesting
to observe an initial increase in YT F up to a radius, r = r0,
beyond of which the complexity factor decreases smoothly
towards the boundary. It appears that the nature of matter
(determined by the EoS parameter, α) does not influence
YT F . By writing YT F = Π + w(r), where Π = pr − pt
and w(r) = − 4π

r3

∫ r
0 x3ρ′(x)dx , we have plotted the com-

ponents of YT F in Figs. 4 and 5. In Fig. 4, we consider the
evolution of complexity factor for a dust sphere (α = 0) for
different values of K . It is clear from Fig. 4 that the contri-
butions from the density inhomogeneities dominate at each
interior point of the stellar distribution. We also observe that
an increase in the magnitude of the spheroidal parameter K ,
results in a larger YT F . The contributions from the pressure
anisotropy are quenched by the density inhomogeneities. For
a stiff fluid (α = 1), Fig. 5 shows a similar trend in the com-
peting factors ofYT F . The density inhomogeneties grow with
increasing K and dominate any contributions from Π . For the
stiff EoS (α = 1), we note that the contributions from pres-
sure anisotropy are more significant then their counterparts
for the dust sphere. Note that for α = 0, the radial pressure
vanishes at each interior point of the sphere. The anisotropy
is driven solely by the tangential pressure. This implies that a
vanishing complexity factor is achievable when the tangen-
tial stresses are balanced by the density inhomogeneity of the
stellar fluid.

Fig. 2 YT F vs the radial coordinate r for K = −20 and varying α

Fig. 3 YT F vs the radial coordinate r for K = −1000 and varying α

Fig. 4 w(r) (solid lines) and Π(r) (dashed lines) vs the radial coor-
dinate r for fixed α = 0 and K = −2 (Blue), K = −20 (Purple),
K = −50 (Red), K = −100 (Green)
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Fig. 5 w(r) (solid lines) and Π(r) (dashed lines) vs the radial coor-
dinate r for fixed α = 1 and K = −2 (Blue), K = −20 (Purple),
K = −50 (Red), K = −100 (Green)

5 Concluding remarks

We have employed the idea of complexity in self-gravitating
systems as defined by Herrera et al. [8,21], to investigate
the effect of spheroidicity on pressure anisotropy and den-
sity inhomogeneity within the compact object. We employed
the Vaiday–Tikekar superdense star to exploit the effect of
departure from spherical symmetry on the complexity of the
system. The results we have achieved firmly indicated that
spheroidicity and the EoS parameter are inherently linked to
pressure anisotropy and density inhomogeneity which drives
complexity. We believe that our work sheds new light on the
nature of matter and its link to complexity within an astro-
physical setting. In a recent paper by Bogadi and Goven-
der [34], the evolution of the complexity factor was investi-
gated in a dynamical scenario in which an initial static stellar
object described by Vaidya–Tikekar model used here under-
goes dissipative gravitational collapse. It was shown that the
complexity factor is affected by the spheroidal parameter, K
particularly close to the time of formation of the horizon.
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