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Abstract We study the problem of evolution of bulk 5-
fluids having an embedded braneworld with a flat, de Sitter,
or anti-de Sitter geometry. We introduce new variables to
express the Einstein equations as a dynamical system that
depends on the equation of state parameter γ and exponent
λ. For linear fluids (i.e., λ = 1), our formulation leads to
a partial decoupling of the equations and thus to an exact
solution. We find that such a fluid develops a transcritical
bifurcation around the value γ = −1/2, and study how this
behaviour affects to stability of the solutions. For nonlin-
ear fluids, the situation is more diverse. We find an over-
all attractor at λ = 1/2 and draw enough phase portraits to
exhibit in detail the overall dynamics. We show that the value
λ = 3/2 is structurally unstable and typical for other forms
of λ. Consequently, we observe a noticeable dependence of
the qualitative behaviour of the solutions on different ‘poly-
tropic’ forms of the fluid bulk. In addition, we prove the
existence of a Dulac function for nonlinear fluids, signify-
ing the impossibility of closed orbits in certain subsets of
the phase space. We also provide ample numerical evidence
of gravity localizing solutions on the brane which satisfy all
energy conditions.
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1 Introduction

It has been known for some time that singularity-free solu-
tions are possible for the scale factor and thermodynamical
quantities describing a 4-dimensional braneworld embedded
in a 5-dimensional space with a fluid analogue depending
on the extra spatial coordinate and with a specific equation
of state [1–10]. The problem is to find the most general cir-
cumstances that allow such solutions with the properties of
satisfying the energy conditions and localising gravity on the
brane.

In a series of works, we have been able to find special
families of asymptotic solutions that satisfy all the above-
mentioned properties (cf. [11,12] and refs. therein). Although
this search constitutes a viable approach to the cosmological
constant problem through the mechanism of self-tuning, the
search for the simplest solutions with the desired properties
does not reveal the structure of the whole space of interesting
solutions.

In this paper, we assume that the bulk is non-compact and
we provide a detailed study of half of the space. In analogy
with Ref. [4], we look at the support of curved branes that
localize gravity and satisfy the energy conditions. We use
a bulk fluid-analog to make a model-independent analysis
without specific field representation.

This setup leads us to consider the general problem of
a 4-braneworld embedded in a five-dimensional bulk space
filled with a linear or nonlinear fluid from a more qualitative,
dynamical viewpoint. This provides us with an insight into
the global geometry of the orbits and the dynamics in the
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phase space of the problem. In addition, a more careful defi-
nition of the meaning of singularity-free solutions allows us
to look into the problem from a more precise point of view.

The main difference of the present approach with ear-
lier analyses is that although previously our solutions were
obtained as functions of the fifth coordinate Y , in the present
work we look for the global behaviour of solutions as func-
tions of the initial conditions. To achieve this goal, we intro-
duce new variables and a novel formulation of the basic
brane-bulk equations.

These variables are analogues of the Hubble and the den-
sity parameters H,� of relativistic cosmology, and are given
as functions of a suitable monotone reparametrization of Y .
Also since the new variables contain the scale factor, its first
derivative, as well as the density, they are able to provide
a more precise picture of the possible singular solutions.
The resulting formulation transforms the whole setup into
a dynamical systems problem that can then be studied using
qualitative methods.

The reduction of the dynamics to the aforementioned form
allows interesting dynamical properties to be studied here
for the first time in a brane-bulk phase space context. These
include the topological nature and bifurcations of equilibria,
the phase portraits of the dynamics, the question of existence
of closed orbits, as well as the dependence of the Planck-mass
integral on initial conditions.

The plan of this paper is as follows. In the next Section, we
rewrite the problem in terms of new variables and arrive at
dynamical equations describing bulk fluids with an equation
of state, and describe general features of the dynamics in Sec-
tion 3. In Sections 4, 5, we analyse the structure of dynamical
solutions for linear and nonlinear equations of state. In Sec-
tion 6, we discuss the problem of localization of gravity on
the brane, and we conclude with summarizing our results in
the last Section.

2 Dimensionless formulation

In this Section, we rewrite the basic dynamical equations in
a new dimensionless formulation for both the linear and the
nonlinear fluid cases.

The five-dimensional Einstein equations on the bulk are
given by,

GAB = RAB − 1

2
gAB R = κ2

5TAB, (2.1)

and we assume a bulk-filling fluid analogue with an energy-
momentum tensor,

TAB = (ρ + p)uAuB − pgAB, (2.2)

where the indices run from 1 to 5, the ‘pressure’ p and the
‘density’ ρ are functions only of the fifth coordinate Y , and

the fluid velocity vector field uA = ∂/∂Y is parallel to the
Y -dimension. We also choose units such that κ5 = 1. We
consider below the evolution of this model for a brane-bulk
metric given by

g5 = a2(Y )g4 + dY 2, (2.3)

where a(Y ) is a warp factor with a(Y ) > 0, while the brane
metric g4 is taken to be the four-dimensional flat, de Sitter or
anti-de Sitter standard metric.

With this setup, the Einstein equations split into the con-
servation equation,

ρ′ + 4(p + ρ)
a′

a
= 0, (2.4)

the Raychaudhouri equation,

a′′

a
= −1

6
(2p + ρ), (2.5)

and the Friedmann equation,

6
a′2

a2 = ρ + 6k

a2 , (2.6)

which is a first integral of the other two when a′ �= 0. Here,
the constant k is zero for a flat brane, k = 1 for a de Sitter
brane, and k = −1 for an anti de Sitter brane. For the brane-
bulk problem, there is also the junction condition which in
general describes a jump discontinuity in the first derivative
of a(Y ) and takes the generic form,

a′(0+) − a′(0−) = f (a(0), ρ(0)), (2.7)

where the brane tension f is a continuous, non-vanishing
function of the initial values of a, ρ (for examples of this in
specific solutions, see Ref. [11,12]).

Inspired by standard cosmology, we introduce the fol-
lowing ‘observational parameters’ related to the extra ‘bulk’
dimension Y : The Hubble scalar H , measuring the rate of
the expansion (a prime ′ means d/dY ),

H = a′

a
, (2.8)

the deceleration parameter q , which measures the possible
speeding up or slowing down of the expansion in theY dimen-
sion,

q = −a′′a
a′2 , (2.9)

and the density parameter � describing the bulk matter den-
sity effects,

� = ρ

3H2 . (2.10)

While �, q are dimensionless, the Hubble scalar H has
dimensions [Y ]−1.
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Using these variables and dividing both sides by 3H2, the
Friedmann equation (2.6) is,

2 − � = 2k

H2a2 , (2.11)

and we conclude that evolution of the 5-dimensional models
with

• � > 2 corresponds to those having an AdS brane (k =
−1)

• � = 2 corresponds to those having a flat brane (k = 0)
• � < 2 corresponds to those having a dS brane (k = +1).

(By redefining λ2
5 = κ2

5 /2, we would have obtained the usual

trichotomy � � 1 relations here, but this would have also
changed various coefficients in the other field equations, so
we prefer to leave it as above.)

We set Y0 for some arbitrarily chosen reference value of
the bulk variable Y , and a0 = a(Y0). The evolution will be
described not in terms of Y but by a new dimensionless bulk
variable τ in the place of Y , with,

a = a0e
τ . (2.12)

Then we have,

a′ = a
dτ

dY
, (2.13)

and hence,

dY

dτ
= 1

H
. (2.14)

We shall assume that the brane lies at τ = 0, or a = a0 (we
may assume without loss of generality that Y0 = 0). In this
case, the junction condition (2.7) expressed in terms of the
new variables H,� implies that,

H(0+) − H(0−) = f (x(0), 0), x = H2�, (2.15)

where the brane tension f is a function of the variables x, τ .
The variable x is regular from the definition (2.10), and τ is
regular from (2.14) because H has only a finite discontinuity
at 0 as it follows from the junction condition (2.7).

Having a brane located at the length scale value a0, with
0 < a < +∞, we consider two intervals, τ ∈ (−∞, 0) -
the ‘left-side’ evolution, and the ‘right-side’ interval τ ∈
(0,+∞). The latter is equivalent to the left-side interval
under the transformation τ → −τ , and so without loss of
generality we shall restrict our attention only to the τ -range
(−∞, 0). All our results involving the dimensionless vari-
able τ can be transferred to the right-side interval by taking
τ → −τ . This will be important later.

We now show that the dynamics of the system (2.4)–(2.6)
can be equivalently described by a simpler dynamical system
in terms of H and the dimensionless variables q, τ , and �.

From the above definitions for H and q, we are led to the
following evolution equation for H , namely,

dH

dτ
= −(1 + q)H. (2.16)

In the following we shall assume that fluids in the bulk satisfy
linear or nonlinear equations of state. Then the q-equation
for a linear equation of state (EoS),

p = γρ, (2.17)

is found to be,

q =
(

1

2
+ γ

)
�, (2.18)

while for the nonlinear equation of state,

p = γρλ, (2.19)

for some parameter λ, we have,

q =
(

1

2
+ γρλ−1

)
�. (2.20)

We note here the usual fluid parameter γ will be constrained
later using the energy conditions. On the other hand, the
parameter λ, the ratio cP/cV of the specific heats of the bulk
fluid under constant pressure and volume, is commonly taken
to satisfy λ > 1 in other contexts, most notable in standard
stellar structure theory (cf. e.g., [13], chap. IV). Although
we generally put no constraint on it, we shall find that in
the present problem there is a clear preference for the ‘poly-
tropic’ values λ = 1 + 1/n, for integer n, valid for the entire
bulk. Such polytropic changes provide ample differences as
compared to the ‘collisionless’ case n = ∞, for small values
of n.

The evolution equation for the Hubble scalar for the linear
EoS case (2.17), becomes,

dH

dτ
= −

(
1 +

(
γ + 1

2

)
�

)
H, (2.21)

whereas the nonlinear equation of state case (2.19), gives the
Hubble evolution equation in the form,

dH

dτ
= −H − �H

2
− 3λ−1γ H2λ−1�λ. (2.22)

Let us lastly consider the continuity equation (2.4). This
equation, assuming that H �= 0, in the linear-fluid case
becomes,

d�

dτ
= 2(q − 2γ − 1)�. (2.23)

On the other hand, in the nonlinear-fluid case, assuming again
that H �= 0, and using Eq. (2.22), we find the following
evolution equation for �, namely,

d�

dτ
= −2� + �2 + 2γ 3λ−1H2λ−2�λ+1
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−4γ 3λ−1H2λ−2�λ. (2.24)

Summarizing, in our new formulation of the bulk-brane
problem, the basic dynamical systems are given by the Fried-
man constraint Eq. (2.11), together with evolution equations
in the following forms.

Case A: Nonlinear EoS, p = γρλ. In this case, we have
a 2-dimensional dynamical system, namely,

dH

dτ
= −H − �H

2
− 3λ−1γ H2λ−1�λ, (2.25)

d�

dτ
= −2� + �2 + 2γ 3λ−1H2λ−2�λ+1

− 4γ 3λ−1H2λ−2�λ. (2.26)

Case B: Linear EoS, p = γρ. This is the special case
with λ = 1. We have the H equation,

dH

dτ
= −

(
1 +

(
γ + 1

2

)
�

)
H, (2.27)

and a single, decoupled evolution equation for �, namely,

d�

dτ
= 2

((
γ + 1

2

)
� − 2γ − 1

)
�. (2.28)

3 General properties

The 5-dimensional fluid solutions are then given in terms of
the (H,�) variables which satisfy these evolution equations
together with the Friedman constraint Eq. (2.11). For their
physical interpretation, it is helpful to use a new classification
in terms of H,� and k. We shall say that the bulk fluid is:

1. a dS (resp. an AdS) fluid, when k = +1 (resp. k = −1)
2. a flat fluid, when k = 0.
3. Static, when H = 0 (it is necessarily flat in this case).
4. Expanding (resp. contracting), when H > 0 (< 0). (This

means that the fluid is moving away (resp. towards) the
brane for positive τ )

As we have noted after Eq. (2.11), the cases � < 2,= 2,> 2
correspond to a dS, a flat, or a AdS fluid respectively, while
in the case � = 0, the bulk is empty, and the constraint
equation (2.11) necessarily implies k = +1 for consistency,
hence, a(τ ) = τ +C in this case. We shall refer to the � = 0
case as an empty dS bulk.

We shall also invariably refer to any given phase point
(H,�) as a ‘state’, for example the point (0, 0) describes
the state of as static, empty dS bulk, while the (0, 2) state
is a static, flat fluid. Dynamical (non-static) states require
H �= 0, and these are described as non-trivial orbits in the

(H,�) phase space. Further classification tags for each one
of these models appear in the next Sections and depend on
the ranges and values of the two fluid parameters γ, λ that
appear in the evolution equations.

Some general remarks about the dynamical system (2.25)–
(2.26), and its special case (2.27)–(2.28) are in order:

• Since the dynamical systems studied in this paper are
two-dimensional (with a constraint), our search is for
bifurcations, oscillations, or limit cycles, but no chaotic
behaviour, strange attractors, or more complex phenom-
ena can be present here.

• Equation (2.26) implies that the set � = 0 is invari-
ant under the flow of the dynamical system, i.e. � = 0
is a solution of the system. Since no trajectories of the
dynamical system can cross, we conclude that if initially
the state of the system is on the line � = 0 (that is if we
start with an ‘empty dS bulk’), it will remain on this line
for ever. Therefore, if initially � is positive, it remains
positive for ever. We emphasize that this result holds for
all λ ≥ 0.

• If λ ≥ 1, Eq. (2.25) implies that the set H = 0 is also
invariant under the flow of the dynamical system. There-
fore, for λ ≥ 1, assuming that initially H > 0, then
H (τ ) > 0 for all τ ≥ 0. We conclude that any trajectory
starting at the first quadrant H ≥ 0, � ≥ 0, cannot cross
the axes and therefore, cannot escape out of this quad-
rant. For instance, expanding AdS fluids, and expanding
empty dS bulks remain always expanding, and static AdS
fluids always remain static.

• For the linear EoS case, it is important that the �-equation
(2.28) decouples, that is, it does not contain the H . This
decoupling is due to our choice of new variables (cf. Eq.
(2.12)). So now the �-equation can be treated separately
as a logistic-type equation, and this simplifies the analysis
considerably. In this case, solving the �-equation and
substituting in the H -equation, we have a full solution
of the system. This feature is absent from the nonlinear
EoS fluid equations, which comprise a truly coupled 2D
system. This is studied more fully below.

• The necessity of satisfying the energy conditions (cf.
[11]) leads in general to restrictions on the γ range. For
a fluid with a linear EoS the intersection of the require-
ments that follow from the weak, strong, or null energy
conditions lead to the typical range γ ∈ [−1, 1]. We shall
assume this restriction as a minimum requirement for our
acceptance of a solution property.

Below, with an slight abuse of language, we shall use the term
linear (nonlinear) fluid when the respective EoS is linear
(nonlinear).
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Fig. 1 Solutions (4.2) for γ < −1/2 and γ > −1/2 when �0 > 2

4 Linear fluids and their bifurcations

This Section provides a study of the behaviour of bulk fluids
with the linear EoS given by Eq. (2.17) and described by the
nonlinear system (2.27), (2.28), (2.11).

This system can be solved exactly and the asymptotic
properties of the solutions displayed graphically. Equation
(2.28) has the form

d�

dτ
= A�2 + B�, (4.1)

with A = 2(γ + 1/2), B = −2A. The �-solution from Eq.
(4.1) with initial condition �(0) = �0 is given by

�(τ) = B/A(
B

A�0
+ 1

)
e−Bτ − 1

= 2�0

�0 + (2 − �0) e2(2γ+1)τ
, (4.2)

The resulting H -solutions are found by substituting in (2.27)
(which is a linear differential equation), yielding,

H (τ ) = H0e−τ
√

�0e−2(2γ+1)τ − �0 + 2√
2

, (4.3)

where H0 = H (0).
From these solutions it follows that dS fluids (2−�0 > 0)

are real solutions for all values of the fluid parameter γ and
signs of τ . However, the AdS solutions (2−�0 < 0) become
complex when γ > −1/2, τ > 0 or when γ < −1/2, τ < 0,
since in these cases the exponential in the right-hand-side
of Eq. (4.3) decays. Hence, AdS fluids are real only when
γ < −1/2, τ > 0, or when γ > −1/2, τ < 0, and we shall
consider AdS solutions only in these ranges.

For dS fluids, we can see that �(τ) approaches zero when
γ > −1/2, τ > 0 or γ < −1/2, τ < 0, and approaches two
when γ < −1/2, τ > 0, or when γ > −1/2, τ < 0. All AdS
fluids develop � blow up singularities for γ < −1/2, τ > 0,
or γ > −1/2, τ < 0.

On the other hand, to disclose the asymptotic nature of the
H -solutions we can look at the monotonicity properties of

the function H(τ ) and its possible dependence on different
γ ranges. The results show a further sensitive dependence on
the γ parameter around its γ = −1 value1. For γ > −1,
H (τ ) always decreases and approaches zero. At the critical
value γ = −1 the solution H (τ ) decreases and approaches
the constant H0

√
1 − �0/2, provided that �0 < 2. We note

that the behaviour of the solutions (4.2) and (4.3) is insen-
sitive on the initial value H0. The asymptotic behaviours of
the H,� solution is shown in Figs. 1 and 2.

The nature of the solutions is further revealed by studying
the stability of the equilibrium solutions. This is effected
by formally setting X = (H,�), and think of the system
(2.27)–(2.28) as one of the form,

dX

dτ
= F(X, γ ), F = (F1, F2), (4.4)

where γ ∈ (−∞,∞), and with the Fi , i = 1, 2, being the
right-hand-sides of Eqs. (2.27) and (2.28) respectively. With
this notation, we now show that the solutions of the system
undergo a transcritical bifurcation when γ = −1/2 at the ori-
gin which is a non-hyperbolic equilibrium. This means that
bulk fluids exchange their stability when the EoS parameter
γ passes through −1/2.

Returning to Eq. (2.28), when γ = −1/2, the system is
�′ = 0, H ′ = −H , with immediate solution,

�(τ) = �0 = const., H (τ ) = H0e
−τ . (4.5)

In this case, every point on the � axis is a non-hyperbolic
equilibrium and every other point on the phase plane
approaches the corresponding point of the � axis as shown
in Fig 3. Therefore in this case we have expanding universes
with ever-decreasing rate and collapsing ones with an ever-
increasing rate both approaching a static dS bulk of a constant
density. As two of us have shown elsewhere (cf. Ref. [11],

1 For γ < −1, the term −2 (2γ + 1) is positive (and > 2), therefore,
the term e−τ dominates over

√
e−2(2γ+1)τ for τ < 0, while the opposite

happens for τ > 0. Thus, the solution H (τ ) is decreasing for τ < 0 and
is increasing for τ > 0. As discussed already, solutions in this range of
γ are not acceptable as they do not satisfy the energy conditions, and
so we shall not consider them further.
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Fig. 2 Solutions for γ = −2/3 and γ = 1/2. In the first case the solution (4.2) increases following the usual logistic curve and quickly approaches
the constant value 2

Sect. 4.1.1), for this value of γ the system satisfies all the
energy conditions.

The case γ �= −1/2 is shown in Figs. 4 and 5. When
γ ≷ −1/2, we have F ′′

2 ≷ 0, and so F2(�) is a convex or
a concave function respectively. In this case, there are two
equilibria, one at � = 0, and a second one at � = 2. When
γ > −1/2, the equilibrium at the origin is stable while the
one at � = 2 is unstable, and they exchange their stability
when γ < −1/2. For initial conditions with �0 < 2, that
is for bulk models with a dS brane, and for the case γ >

−1/2 (the left diagram in Fig. 4), the solution �(τ) decreases
approaching zero, the ‘Milne state’ for positive τ , whereas
for γ < −1/2 (the right diagram in Fig. 4), the solution
(4.2) increases and approaches the constant value 2 which
corresponds to a flat brane (k = 0). The situation is different
if initial conditions with �0 > 2, that is for bulk models
with a AdS brane (k = +1) are considered. For γ > −1/2,
the solution �(τ) increases without bound, whereas for γ <

−1/2 the solution �(τ) decreases to the flat state at � = 2.
Therefore we have a transcritical bifurcation occurring at the
parameter value γ = −1/2, so that the two equilibria switch
their stability without disappearing after the bifurcation, see
Fig. 5 for the full phase portrait of the system.

These results when translated to the bulk-brane language
imply that the evolution of bulk fluids with a linear equa-
tion of state depends of the γ parameter and is organized
around the two simplest equilibria, namely, the empty bulk
and the flat fluid, which exchange their stability because of
the transcritical bifurcation as the nature of the fluid changes
(depending on γ ). A typical bulk fluid evolves either towards
or away from the equilibrium states ‘empty bulk’ and ‘flat
fluid’ depending on whether it has γ ≷ −1/2 as shown in
Fig. 5.

A last special case of importance is that of a ‘bulk dust’.
The corresponding behaviour of a bulk fluid with a linear
EoS is also shared in this case with all bulk fluids having
a nonlinear EoS (see next Section). For γ = 0, the system

Fig. 3 Phase portrait of the system (2.27)–(2.28) for γ = −1/2. Every
point on the � axis is an equilibrium

(2.25)–(2.26) reduces to

dH

dτ
= −H − �H

2
,

d�

dτ
= −2� + �2,

(4.6)

for all λ. The phase portrait of the system (4.6) indicates that
all solutions with initial values �0 < 2 (this corresponds to
an dS dust fluid) and H0 arbitrary, asymptotically approach
the node (0, 0) (that is a static, empty dS bulk), see Fig. 6.
Hence, we find that dust-filled dS bulks rarefy to empty ones.
This can be proved by noting that the formal solution of the
first of (4.6) can be written as

H (τ ) = H (0) exp

(
−

∫ τ

0
(1 + �(s) /2) ds

)
, (4.7)

which goes to zero as τ → ∞. By the same formula, we can
see again here (like in Fig. 5, right phase portrait) that AdS

123
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Fig. 4 The 1-dimensional phase space (�-line) in the linear fluid case. The Figure on the left (right) shows the case γ > −1/2 (γ < −1/2). The
arrows correspond to evolution in positive τ

Fig. 5 Phase portrait of the
system (2.27)–(2.28) for
γ < −1/2 and γ > −1/2. The
stable node at (0, 2) (left),
exchanges stability with the
saddle (0, 0) (right) as the γ

values change

trajectories starting above the line �0 = 2 approach the �

axis, while �(τ) diverges.

5 Nonlinear fluids: Regularity and stability

Let us now move to discuss properties of the nonlinear,
two-dimensional system (2.25)–(2.26). In distinction to the
linear case treated above, this is a genuine, coupled, two-
dimensional dynamical system and this results in two impor-
tant effects that we discuss below. We first discuss the nature
of the equilibria of the system and study the phase portrait.
We then find a suitable Dulac function for the dynamics of
the nonlinear fluid-brane system and show that there can be
no closed (periodic) orbits for the system in certain parts of
the phase space.

The nature of the (H,�)-solutions of the system (2.25)–
(2.26) is strongly dependent on the ranges of the λ-parameter
present in the fluid’s nonlinear equation of state Eq. (2.19), in
particular, on the three ranges, λ < 0, λ ∈ (0, 1), and λ ≥ 1.

When λ < 0, there are no finite equilibria for the system
(2.25)–(2.26). In this case, the dynamics is transferred to
points at infinity, a more complicated problem that we do not
consider in this paper, since it requires a deeper analysis of the
‘companion system’ to (2.25)–(2.26), cf. [14,15]. Because of

Fig. 6 Phase portrait of the system (2.25)–(2.26) for arbitrary λ and
γ = 0

the presence of denominators in the vector field that defines
the system (2.25)–(2.26) when λ < 0, an analysis of this
case will help to further clarify the question of the existence
of stable singularity-free solutions of the system. We only
further note that the ‘dynamics at infinity’ in this case may
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be realized through the Poincaré sphere compactification as a
boundary dynamics in the framework of ambient cosmology,
an extension of brane cosmology wherein the brane lies at
the conformal infinity of the bulk [16].

Next, for the case λ > 0, we must distinguish between
the two cases λ ∈ (0, 1) and λ ≥ 1. For λ ≥ 1, there are
always the two γ -independent equilibria at (0, 0) and (0, 2).
In addition, there are γ -dependent equilibria being generally
complex:

(H∗,�∗) =
(

exp

(−iπ + λ ln 6 + ln γ
6

2 − 2λ

)
, 2

)
. (5.1)

These equilibria are real provided λ takes the values

λ(n) = 1 ± 1

2n
, n = 1, 2, . . . . (5.2)

It is interesting that this case falls into the polytropic index
form of the λ exponent (cf. [17], section 8). For λ taking the
values λ(n) = 1 − 1/2n, the equilibria (5.1) all correspond
to flat bulk fluids as they lay on the line � = 2, and at the
points where,

H∗ =
{
− γ√

6
,

γ 2

√
6
,− γ 3

√
6
,

γ 4

√
6
, . . .

}
. (5.3)

For the remaining values of λ in the case where λ ∈ (0, 1),
there are no other finite equilibria, and the presence of denom-
inators in the vector field, as in the case of λ < 0, makes this
case more complicated dynamically.

To construct a typical phase portrait for λ = 1 − 1/2n,
we may use λ(1) = 1/2. The only equilibrium of the system

is
(
−γ /

√
6, 2

)
as implied by (5.3); for all γ the Jacobian

matrix at this point is
[−2 0

0 −2

]
,

therefore
(
−γ /

√
6, 2

)
is a stable improper node (‘a sink

star’ in other terminology). It is interesting that this node
represents a flat bulk fluid with a γ that falls inside the range
of acceptable values as dictated by the energy conditions. It
turns out that for all γ , this equilibrium is a global attractor of
all solutions of (2.25)–(2.26), see Fig. 7, where the attractor
is shown for the cases of a cosmological constant (γ = −1)
and a massless scalar field bulk (γ = 1).

We now proceed with the analysis of the case λ ≥ 1. As
already mentioned, the system (2.25)–(2.26) has two equi-
librium points, located at the origin and at the phase point
(0, 2), that is the whole bulk dynamics is organized around a
static empty dS bulk and a static flat bulk fluid. We note that
the linearized system around (0, 0) becomes,
[
H ′
�′

]
=

[−1 0
0 −2

] [
H
�

]
, (5.4)

therefore the point (0, 0) is a stable node, and the local phase
portrait of the full nonlinear system (2.25)–(2.26) is topolog-
ically equivalent to that of the linear system (5.4). By inspec-
tion of the Jacobian matrix at (0, 2) we see that its eigenvalues
are ±2, therefore this equilibrium is a saddle point, that is,
trajectories approaching this point eventually move away. A
typical phase portrait for λ ≥ 1 is given in Fig. 8 for a cos-
mological constant (for γ = −1) and a massless scalar field
bulk (i.e., p = ρ).

For λ(n) = 1 + 1/2n, the equilibria (5.1) lay on the line
� = 2, at the points where,

H∗ =
{
− 1√

6γ
,

1√
6γ 2

,− 1√
6γ 3

,
1√
6γ 4

, . . .

}
. (5.5)

We take as typical example the case λ = 3/2. Apart from
the attracting sink at the origin and the saddle at (0, 2), the
system has a third equilibrium located according to (5.5) at(
−1/

(√
6γ

)
, 2

)
, and belonging to the first quadrant for

γ < 0, or to the second quadrant for γ > 0. The phase
portrait of the system is shown in Fig. 9 for γ = −1/

√
6,

γ = 1/
√

6.
There are three invariant lines, namely H = 0 and � = 0

as discussed after (2.25)–(2.26), as well as the line � = 2,
corresponding to static, empty, and flat bulk fluids respec-
tively. These lines are the boundaries of the following invari-
ant sets. The strip between the lines � = 0 and � = 2 is an
invariant set under the flow of the system, since every trajec-
tory starting in this strip remains there forever. Similarly, the
sets � > 2, H > 0 and � > 2, H < 0 (that is dynamic AdS
bulks) are invariant sets. For both signs of γ , all solutions
with initial values �0 > 2 and H0 arbitrary, diverge to ±∞.

The only bounded solutions observed in Fig. 9 are those
trajectories approaching the stable node at the origin. For
example, expanding dS scalar field bulks (that is for γ = 1)
with initial values H0 > 0, �0 < 2 asymptotically approach
(0, 0), that is they become static and empty; however, the
determination of the whole basin of attraction of a sink is
not always possible. Finally, there are solutions with �(τ)

approaching the constant value �∗ = 2 while H (τ ) is
diverging to ±∞, depending on the sign of γ .

We conclude by giving in the following Table a summary
of how the nature of the equilibria given in Eq. (5.1) depends
on the type and range of γ for the first few values of n in Eq.
(5.2):

n λ = 1 − 1/2n λ = 1 + 1/2n

1 sink for γ ∈ [−1, 1] saddle for γ ∈ [−1, 1]
2 sink for γ ∈ [−1, 0), saddle for γ ∈ (0, 1] saddle for γ ∈ [−1, 1]
3 sink for γ ∈ [−1, 0) saddle for γ ∈ [−1, 0)

4 saddle for γ ∈ [−1, 1] saddle for γ ∈ [−1, 1]
5 sink for γ ∈ [−1, 0) saddle for γ ∈ [−1, 0)

123



Eur. Phys. J. C (2022) 82 :785 Page 9 of 12 785

Fig. 7 Phase portrait of the
system (2.25 )–(2.26) for
λ = 1/2 and γ = −1 and γ = 1

Fig. 8 Phase portrait of the
system (2.25)–(2.26) for λ = 2
and γ = −1 and γ = 1. There
are three saddles at (−1, 2) and
at (1, 2) for γ = −1, but only
one at (0, 2) for γ = 1

Fig. 9 Phase portrait of the
system (2.25)–(2.26) for
λ = 3/2 and γ = −1/

√
6 and

γ = 1/
√

6. In each case there
are three equilibrium points at
(0, 0), at (0, 2) and at(

1/
√

6, 2
)

and
(
−1/

√
6, 2

)
respectively

It is interesting to note that because of the presence of
a saddle connection in Fig. 9 (the horizontal line � = 2
connecting the two saddles), Peixoto theorem on structural
stability is violated. It also clearly follows from Figs. 7, 8 and
9, that the three cases, two corresponding to the polytropic
indices λ(n) = 1 ± 1/2n, and the third case of λ unequal to
those, are all qualitatively inequivalent.

We conclude this Section by showing the impossibility of
closed orbits for the system (2.25)–(2.26) in the first quadrant
of the H − � plane, that is for expanding, non-empty bulks.
To see this, we introduce the function,

g = 1

Ha� b
, (5.6)

and the problem is to use the system (2.25)–(2.26) to deter-
mine the constants a, b such that the divergence of the vector
field given by the product of the function g times the vector
field (Ḣ , �̇), that is g(Ḣ , �̇), is positive for certain ranges
of λ, a, b, γ . The vector field g(Ḣ , �̇) is given by

g(Ḣ , �̇) = ( f1(H,�), f2(H,�)), (5.7)

where,
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f1(H,�) = 1

Ha−1�b
− 1

2Ha−1�b−1

−3λ−1H2λ−1−a�λ−b, (5.8)

and

f2(H,�) = −2

Ha�b−1 + 1

Ha�b−2

+2γ 3λ−1H2λ−2−a�λ+1−b

−4γ 3λ−1H2λ−2−a�λ−b. (5.9)

Then, setting a = 1, the divergence of this vector field is
given by,

div[g(Ḣ , �̇)] = 2(b − 1)

H�b
+ 2 − b

H�b−1

+ 2γ 3λ−1(2 − b)H2λ−3�λ−b

− 4γ 3λ−1(λ − b)H2λ−3�λ−b−1. (5.10)

The right-hand-side of this equation is positive provided,

γ > 0, H > 0, � > 0, 1 < b < 2, λ < b, (5.11)

so when these inequalities are all true, the divergence is
strictly positive. The function g from (5.6) with this prop-
erty is a Dulac function, but no algorithm in general exists
for finding such functions. From the inequalities in (5.11) it
then follows that on the simply connected domain,

D = {(H,�)|H,� > 0}, (5.12)

of the planar phase space, the vector field defined by (2.25)–
(2.26), satisfies (Ḣ , �̇) ∈ C1(D), and g ∈ C1(D), and the
divergence ∇ · g(Ḣ , �̇) is strictly positive on D. Then by
the Bendixson-Dulac theorem, we conclude that there is no
closed orbit lying entirely on D.

6 Localisation

The basic condition for gravity localisation on the brane is
that the 4-dimensional Planck mass proportional to the inte-
gral

∫ 0
−∞ a2dY is finite, that is the integral be convergent. We

can use two different approaches to deal with this integral,
firstly using the constraint to re-express the integral in terms
of dimensionless variables, and secondly by direct evalua-
tion.

To start with the first approach, we note that using the
Friedmann constraint equation (2.11) which is reproduced
here,

2 − � = 2k

H2a2 ,

we can express the ‘Planck mass integral’
∫
a2dY in terms

of the dimensionless variables, namely,

2k
∫

dτ

H3(2 − �)
.

One may think that this integral expressing the Planck mass
can be calculated explicitly, for H (τ ) and �(τ) given by the
solutions (4.2) and (4.3), however, the constraint equation
(2.11) provides a relation between the scale factor a and the
variables H and � only for k �= 0 models. Therefore we may
instead choose to evaluate the integral directly,
∫

a2dY =
∫

a2

H
dτ. (6.1)

Let us consider the case of the linear fluid first. By the defini-
tion (2.12), a (τ ) is proportional to eτ and H (τ ) is given by
the solution (4.3). We are interested to examine whether the
Planck mass integral becomes finite on the interval (−∞, 0].
In fact, we are able to show something more, namely, that
it is finite on intervals of the form (−∞, τ1], with a suitable
chosen positive τ1 dependent of the initial conditions and γ .

It turns out that the integral expressing the Planck mass
can be expressed explicitly in terms of the ordinary hyperge-
ometric function 2F1 (a, b; c; z). More precisely, the value
of the indefinite integral (6.1) is

a2
0

√
2e3t

2F1 (a, b; c; z)
3H0

√
2 − �0

, (6.2)

where

a = 1

2
, b = − 3

4γ + 2
,

c = 4γ − 1

4γ + 2
, z = �0 exp (−2 (2γ + 1)) τ

�0 − 2
. (6.3)

For some particular values of γ , the integral (6.2) can be
expressed as combination of elementary functions, although
by complicated formulas. We treat the cases �0 ≶ 2 sepa-
rately below.

For �0 < 2 the improper integral
∫ 0
−∞

(
a2/H

)
dτ exists,

i.e. can be expressed in terms of the constants a0,�0, H0, at
least for the representative values,

γ = −1,−2/3,−1/2,−1/3, 0, 1/2, 1. (6.4)

For the critical value γ = −1/2, the hypergeometric function
is not defined, but with the solution (4.5), i.e., H ∼ e−τ , the
integral (6.1) is elementary and

∫ 0
−∞

(
a2/H

)
dτ = a2

0/3H0.
(For this value of γ , the system satisfies all the energy con-
ditions, cf. Ref. [11], Sect. 5.)

Moreover, in all cases the integral is finite on intervals of
the form (−∞, τ1], for some positive τ1. This fact can be
understood, at least for k �= 0, if we take into account the
remarks after Eq. (4.3): the integrand 1/H3 (� − 2) remains
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Fig. 10 Numerical solution for γ = 1/2, λ = 2 and �0 > 2. �(τ)

develops a singularity at about τ ∼ 0.74 and H (τ ) has a singularity at
τ ∼ −0.5

bounded and approaches zero, even if the functions H (τ )

and �(τ) take arbitrary large values.
The situation is different if �0 > 2. In that case, for γ <

−1/2, H (τ ) is real only when the expression inside the root
in Eq. (4.3) is non-negative, that is when

τ ≥ τ∗, (6.5)

where,

τ∗ = 1

−2(2γ + 1)
ln

(
�0 − 2

�0

)
< 0, (6.6)

with equality in (6.5) giving the position of the brane. Then
we find that the integral

∫ ∞
τ∗

(
a2/H

)
dτ always diverges. For

γ ≥ −1/2, τ∗ is positive, but in this case we require τ < τ∗
for the expression inside the square root in Eq. (4.3) to be
positive. Thus we have to integrate in the range (−∞, τ∗],
and so we find that the integral

∫ τ∗
−∞

(
a2/H

)
dτ exists, at least

for the representative values γ = −1/3,−1/2, 0, 1/2, 1.
To summarize our results for the linear fluid: if �0 < 2

the integral (6.2) allows for a finite Planck mass for all γ ∈
[−1, 1]. If �0 > 2, we have a finite Planck mass for all
γ ∈ [−1/2, 1]. In this case, we choose the upper limit of the
integral to be less than some τ1 > 0.

Next we consider the case of the nonlinear fluid, λ �= 1.
Equations (2.25) and (2.26) can be solved numerically for
various values of the parameters γ and λ and initial values
of the variables H and �. In all numerical evaluations the
solutions develop finite time singularities, see for example
Fig. 10.

Nevertheless, it seems that the integral (6.1) is finite in any
interval between the singularities. This is due to the fact that
the integrand e2τ /H (τ ) remains bounded and approaches
zero, even if the functions H (τ ) and �(τ) take arbitrary
large values.

The numerical investigation described above indicates that
even for the nonlinear fluid, the Planck mass expressed by

(6.1) may be finite, although we were unable to prove this
result rigorously.

7 Discussion

In this paper we have introduced and studied the conse-
quences of a new formulation for the dynamics of a 4-
braneworld embedded in a bulk 5-space. This formulation
transforms the problem into a two-dimensional dynamical
system that depends on parameters such as the EoS param-
eter and the degree of nonlinearity of the fluid. This allows
us to study the phase space of the model, and also consider
in detail the importance of different states, points in phase
space, such as the origin or the (0, 2)-state for the overall
dynamical features of the bulk fluid.

For the case of a bulk fluid with a linear equation of state,
our new formulation leads to a partial decoupling of the
dynamical equations of this model. This in turn implies that
the linear fluid case can be solved exactly, and the asymptotic
nature of the (H,�) solutions to be directly revealed as well
as their dependence on the EoS parameter and the initial con-
ditions to be explicitly shown. In addition, we find that the
equilibria of the system depend on the fluid parameter γ and
this has a major effect of the global dynamics of the system,
not present in the simpler case of relativistic cosmologies.
The main effect is the existence of a transcritical bifurcation
around the γ = −1/2 value which change the nature of the
local equilibria as well as their stability. We also concluded
that the overall geometry of the orbits swirls around the two
states we call empty bulk and flat fluid, as well as a number
of other equilibria.

For the case of a nonlinear bulk fluid, the dynamics is orga-
nized differently for different λ-values, and shows a prefer-
ence for polytropic bulk fluids. For instance, the existence
on an overall attractor appears only for λ = 1/2, while the
dynamics for a bulk havingλ > 1 is characterized by portraits
organized around nodes and saddle connections for the val-
ues of λ = 1 + 1/n. This means that the nonlinear case has a
variety of instabilities as well as stable and saddle behaviours.
The non-existence of closed orbits in the first quadrant is also
a marked feature of the nonlinear bulk fluid.

However, as numerical evaluations show, despite the exis-
tence of singularities, the phenomenon of brane-localization
in the sense of having a finite Planck mass is self-induced
by the dynamics itself: restricting the dynamics on the orb-
ifold leads generically to gravity localization on the brane.
For this conclusion, although it follows clearly from vari-
ous numerical evaluation that we have explicitly performed,
we have not been able to provide a full analytic proof. We
note, however, that for nonlinear fluids when the null energy
condition is satisfied and γ < 0, there are indeed solutions
without finite-distance singularities as two of us have shown
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in [10] using different techniques such as representation of
solutions through hypergeometric expansions and matching.

It would be interesting to extend some of these results
further. For example, to the case of a bulk filled with a self-
interacting scalar field instead of the fluid. Another extension
is to study the ambient problem and allow for singularities
at infinity using similar methods as those discussed here. It
would also be interesting to study in detail the case λ < 1
where the vector field is non-polynomial. These more general
problems will be given elsewhere.
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