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Abstract We have studied the momentum transport prop-
erties of a hot and dense QCD matter in the presence of
weak magnetic field by determining the shear (η) and bulk
(ζ ) viscosities in the relaxation time approximation of kinetic
theory. The dependence of η and ζ on the temperature has
been explored in the presence of weak magnetic field (B-
field) and finite chemical potential (μ). It is observed that
both shear and bulk viscosities get decreased in the pres-
ence of a weak magnetic field, whereas the finite chemical
potential increases these viscosities, specifically at low tem-
peratures. This study is important to understand the sound
attenuation through the Prandtl number (Pr), the nature of the
flow through the Reynolds number (Re), the fluidity and loca-
tion of transition point of the matter through the ratios η/s
and ζ/s (s is the entropy density), respectively. The Prandtl
number is observed to increase in the weak magnetic field,
whereas the presence of a finite chemical potential reduces its
magnitude as compared to the scenario of absence of B-field
and μ. However, Pr still remains larger than unity, indicating
that the energy dissipation due to the sound attenuation is
mostly governed by the momentum diffusion. It is noticed
that the weak magnetic field makes the Reynolds number
larger, whereas the chemical potential makes it smaller than
that in the absence of B-field and μ. We have observed that
the ratio η/s decreases in the weak magnetic field regime,
whereas the finite chemical potential increases its value, but
the ratio ζ/s is found to decrease in the presence of weak
magnetic field as well as finite chemical potential.

1 Introduction

The ultrarelativistic heavy ion collisions (URHICs) at Rela-
tivistic Heavy Ion Collider (RHIC) and Large Hadron Col-
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lider (LHC) have provided strong evidence of the formation
of a strongly interacting matter, known as the quark-gluon
plasma (QGP). One of the salient goals of these experiments
is to divulge the transport properties of the QGP. The transport
coefficients are sensitive to the relevant degrees of freedom
and their respective interactions within the QGP medium.
For example, the shear viscosity (η) gives information about
the momentum transfer in the presence of inhomogeneity of
fluid velocity and the bulk viscosity (ζ ) delineates the change
of local pressure due to either contraction or expansion of
fluid. Shear viscosity is related to a change in shape at con-
stant volume, whereas bulk viscosity is related to a change in
volume at constant shape. The dimensionless ratios of shear
and bulk viscosities (η/s and ζ/s) to entropy density (s)
characterize the intrinsic ability of a system to relax towards
equilibrium. The exploration of shear and bulk viscosities
reveal about the fluid dynamical behavior of the medium.
The shear and bulk viscosity calculations were performed
through various approaches, such as the relativistic Boltz-
mann transport equation in the relaxation time approximation
[1–3], the Green–Kubo formula [4–7], the lattice simulations
[8,9], the molecular dynamics simulation [10], the perturba-
tion theory [11–14] etc. The N = 4 supersymmetric SU (Nc)

Yang–Mills theory has estimated the lower bound of the ratio
η/s as close to 1/(4π), which is also known as the Kovtun–
Son–Starinets (KSS) lower bound [15]. This estimated lower
bound has been conjectured to be the lower bound of η/s
for different physical systems, such as helium, nitrogen and
water at pressures 0.1 MPa, 10 MPa, and 100 MPa, respec-
tively. The transition from hadrons to quark-gluon plasma
has a similar behavior in the ratio η/s [16].

In addition, the Au−Au collision at RHIC has also
reported very low value of η/s ∼ 1/(4π) for the QGP
medium formed indicating that the hot and dense matter pro-
duced in URHICs behaves like a perfect fluid. Using lattice
gauge theory principles, η/s has been studied for few values
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of temperature in pure Yang–Mills theory [8,17,18]. Accord-
ing to the Yang–Mills theory and perturbative QCD [19],
an increase in η/s is observed in the presence of dynam-
ical quarks [8,20]. Through the functional diagrammatic
approach to QCD, references [21,22] have evaluated η in
Yang–Mills theory and the results are in good agreement
with the lattice results for QCD with (2+1)-quark flavors.
Both the approaches have observed a minimal η/s of about
0.2 near the phase transition temperature, which is slightly
larger than 1/(4π). Similar results were also obtained in per-
turbation theory [22,23]. For massless QGP, the bulk viscos-
ity is very small compared to the shear viscosity for which it
was neglected by some early viscous hydrodynamic simula-
tions in the dissipative part of the energy–momentum tensor
[24,25]. The vanishing of the ratio ζ/s explains the restora-
tion of chiral symmetry of the matter. On the other hand, a
sharp rise of the ratio ζ/s in the vicinity of the phase tran-
sition temperature of matter is reported in Ref. [4]. Large
value of the bulk viscosity signifies large fluctuations in the
pressure. Although ζ vanishes for QGP with massless flavors
at the classical level, but the quantum effects break the con-
formal symmetry of QCD, thus generating a nonzero bulk
viscosity, which is described by the lattice calculation in the
SU (3) gauge theory [26]. As a result, the ratio ζ/s acts as
a measure of the deviation of the strongly interacting matter
from conformality.

The aforementioned estimations were made for most cen-
tral collisions. However, in noncentral events of heavy ion
collisions, when two nuclei travelling with ultrarelativistic
speeds collide with each other, an intensely strong mag-
netic field perpendicular to the collision plane is expected
to be produced at very early stages. Depending on the cen-
trality, the strength of the magnetic field may vary between
m2

π (1018 Gauss) at RHIC and 15 m2
π at LHC [27] and at

extreme cases it may reach 50 m2
π . The magnetic field is

very strong for very short duration and becomes weak. So,
there are two limits: strong magnetic field and weak magnetic
field. In the strong magnetic field limit, the energy scale asso-
ciated with the magnetic field is greater than the energy scale
related to the temperature (|q f B| � T 2, where |q f | is the
absolute electronic charge of quark with flavor f ). On the
other hand, in the weak magnetic field limit, the energy scale
associated with the magnetic field is smaller than the energy
scale related to the temperature (|q f B| � T 2). According
to some observations [28,29], the lifetime of such magnetic
field gets significantly extended in an electrically conducting
medium and is comparable with the lifetime of the partonic
medium. In addition, high baryon densities are expected to
be evidenced in Compressed Baryonic Matter (CBM) exper-
iment at Facility for Antiproton and Ion Research (FAIR)
and Nuclotron-based Ion Collider fAcility (NICA) at Joint
Institute for Nuclear Research (JINR) in fixed target exper-
iments. Thus, the shear viscosity, the bulk viscosity and the

associated transport properties of the medium are prone to
be altered by the presence of both magnetic field and chemi-
cal potential. Previously, the effects of magnetic field on the
QCD thermodynamics [30–33], the heavy quark diffusion
[34], the conductive properties [29,35–41], the magnetohy-
drodynamics [42,43], the photon and dilepton productions
from QGP [44–47], etc. have been explored. Recently, the
collective effects of weak magnetic field and finite chemical
potential on the charge transport, the heat transport and some
related transport coefficients were explored in Ref. [48]. Vis-
cous properties were also studied previously by using dif-
ferent models and approximations at finite magnetic field.
For example, in Ref. [49] authors had employed the diluted
instanton liquid model and the Green–Kubo formula to study
the shear viscosity of the SU(2) light-flavor quark matter at
finite temperature under the strong magnetic field limit. In
Ref. [50] authors had investigated the viscosities of the quark-
gluon plasma in the presence of the strong magnetic field with
the leading-log and lowest Landau level (LLL) approxima-
tions. Authors in Ref. [51] had computed the shear viscosity
of two-flavor QCD plasma in a magnetic field by using the
perturbative QCD at leading log order. In Ref. [52] authors
had investigated the viscosities using the nonresistive dis-
sipative magnetohydrodynamics from the Boltzmann equa-
tion in the 14-moment approximation at finite magnetic field.
Authors in Ref. [53] had estimated viscosities using the rel-
ativistic Boltzmann transport equation in the relaxation time
approximation, but for a hot and dense hadronic matter. In
Ref. [54] authors had investigated the effects of the strong
magnetic field-induced and asymptotic expansion-induced
anisotropies on viscosities for a hot QCD matter using the
kinetic theory approach, while in Ref. [55], the effects of
the strong magnetic field and density on viscosities had been
explored. In the present work, (i) we have studied shear and
bulk viscosities for a hot QCD matter in the presence of both
magnetic field and finite chemical potential. We have esti-
mated the viscosities by solving the relativistic Boltzmann
transport equation in the kinetic theory approach and used the
weak magnetic field limit, where the energy scale associated
with the temperature is larger than the energy scale related
to the magnetic field, i.e. T 2 � |q f B|. So, we have used the
ansatz method in the weak magnetic field limit to calculate
viscosities in the first part of Sect. 2, where the terms contain-
ing ωc (cyclotron frequency) and its higher orders have been
neglected. (ii) In the second part of Sect. 2, we have revis-
ited the viscosity coefficients in the general configuration of
magnetic field (no weak or strong magnetic field limit) and
observed how they are related to the viscosities calculated
using the ansatz method. (iii) We have extended our study to
know the collective effects of weak magnetic field and den-
sity on some applications of viscosities, such as the Prandtl
number (Pr), the Reynolds number (Re), specific shear vis-
cosity (η/s) and specific bulk viscosity (ζ/s). (iv) We have

123



Eur. Phys. J. C (2022) 82 :797 Page 3 of 18 797

used the quasiparticle model, wherein the interactions among
the medium constituents have been incorporated through the
thermal masses of particles.

The present work is organized as follows. In Sect. 2, the
momentum transport properties have been studied by deriv-
ing the response functions, viz. the shear viscosity and the
bulk viscosity in the kinetic theory approach with a short
description of the quasiparticle model. The results are pre-
sented in Sect. 3 while Sect. 4 discusses some applications
of both the viscosities in terms of the Prandtl number, the
Reynolds number and the ratios η/s and ζ/s. The work is
summarized in Sect. 5.

2 Momentum transport properties

A fluid system slightly shifted from its equilibrium state due
to the nonuniformity of its constituent flow with respect to
the macroscopic velocity, can possess finite shear and bulk
viscosities. We calculate the viscosities by assuming a local
temperature T (x) and flow velocity uμ(x). For a nonequilib-
rium system, the dissipative part of the energy–momentum
tensor �Tμν is written in terms of the equilibrium energy–
momentum tensor Tμν

(0) as

�Tμν = Tμν − Tμν

(0) . (1)

For the partonic system, �Tμν can also be written in terms
of the infinitesimal changes of the quark, antiquark and gluon
distribution functions as

�Tμν =
∫

d3p

(2π)3 p
μ pν

⎡
⎣∑

f

g f

(
δ f f + δ f̄ f

)
ω f

+ gg
δ fg
ωg

⎤
⎦ ,

(2)

where ‘ f ’ represents the flavor index for three flavorsu,d and
s. In Eq. (2), g f and δ f f (δ f̄ f ) denote the degeneracy factor
and the infinitesimal change in the quark (antiquark) distri-
bution function of f th flavor, respectively. For the gluon,
gg and δ fg denote the degeneracy factor and the infinites-
imal change in its distribution function, respectively. The
infinitesimal changes in quark, antiquark and gluon distribu-
tion functions are defined as δ f f = f f − f 0

f , δ f̄ f = f̄ f − f̄ 0
f

and δ fg = fg − f 0
g , respectively. Here, f 0

f , f̄ 0
f and f 0

g are
the equilibrium distribution functions for quark, antiquark
and gluon, respectively, which have the following forms,

f 0
f = 1

eβ(uα pα−μ f ) + 1
, (3)

f̄ 0
f = 1

eβ(uα pα+μ f ) + 1
, (4)

f 0
g = 1

eβuα pα − 1
, (5)

where T = β−1, uα denotes the four-velocity of fluid and μ f

represents the chemical potential of f th flavor of quark. In
above equations, for quark and antiquark, pα ≡ (

ω f ,p
)

with

ω f =
√
p2 + m2

f and for gluon, pα ≡ (
ωg,p

)
. In order to

determine the infinitesimal change in the particle distribution
function, we are going to solve the relativistic Boltzmann
transport equation in the relaxation time approximation for
finite magnetic field and chemical potential,

pμ ∂ f f (x, p)

∂xμ
+ Fμ ∂ f f (x, p)

∂pμ
= − pνuν

τ f
δ f f (x, p), (6)

where f f = δ f f + f 0
f . The external force Fμ = qFμν pν =

(p0v · F, p0F), where Fμν represents the electromagnetic
field strength tensor and F denotes the Lorentz force, F =
q(E+v×B). The relations between the components of Fμν

and the components of electric and magnetic fields are given
by F0i = Ei , Fi0 = −Ei and Fi j = 1

2εi jk Bk . The relax-
ation times for quarks (antiquarks), τ f (τ f̄ ) and for gluons,
τg are respectively written [56] as

τ f ( f̄ ) = 1

5.1Tα2
s log (1/αs)

[
1 + 0.12(2N f + 1)

] , (7)

τg = 1

22.5Tα2
s log (1/αs)

[
1 + 0.06N f

] . (8)

To solve Eq. (6), we take the following ansatz which was first
suggested by Ref. [36],

f f = f 0
f − τ f qE · ∂ f 0

f

∂p
− � · ∂ f 0

f

∂p
, (9)

where � is associated with the magnetic field. The partial
derivatives in the above ansatz are evaluated as

∂ f 0
f

∂px
= −βvx f

0
f

(
1 − f 0

f

)
,

∂ f 0
f

∂py
= −βvy f

0
f

(
1 − f 0

f

)
,

∂ f 0
f

∂pz
= −βvz f

0
f

(
1 − f 0

f

)
.

Assuming that the electric field is along x-direction (E = Ex̂)
and the magnetic field is along z-direction (B = Bẑ), the
relativistic Boltzmann transport equation (6) using the ansatz
(9) can be rewritten as

τ f

p0
pμ

∂ f 0
f

∂xμ
+ β f 0

f

(
1 − f 0

f

) (
�xvx + �yvy + �zvz

)

+τ f qEvx
∂ f f
∂p0

− qBτ f

(
vx

∂ f f
∂py

− vy
∂ f f
∂px

)
= 0. (10)

The partial derivatives in the above equation are calculated
as

vx
∂ f f
∂p0

= −βvx f
0
f

(
1 − f 0

f

)
− qEτ f β f 0

f

×
(

1 − f 0
f

)
v2
x

(
1

ω f
+ β

)
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−β f 0
f

(
1 − f 0

f

)
�xv

2
x

(
1

ω f
+ β

)

−β f 0
f

(
1 − f 0

f

)
�yvxvy

(
1

ω f
+ β

)

−β f 0
f

(
1 − f 0

f

)
�zvxvz

(
1

ω f
+ β

)
, (11)

vx
∂ f f
∂py

= −βvxvy f
0
f

(
1 − f 0

f

)
− qEτ f β f 0

f

×
(

1 − f 0
f

)
v2
xvy

(
1

ω f
+ β

)

−β f 0
f

(
1 − f 0

f

)
�xv

2
xvy

(
1

ω f
+ β

)

−β f 0
f

(
1 − f 0

f

)
�yvxv

2
y

(
1

ω f
+ β

)

+
vx�yβ f 0

f

(
1 − f 0

f

)

ω f
− β f 0

f

(
1 − f 0

f

)

×�zvxvyvz

(
1

ω f
+ β

)
, (12)

vy
∂ f f
∂px

= −βvyvx f
0
f

(
1 − f 0

f

)
− qEτ f β f 0

f

×
(

1 − f 0
f

)
vyv

2
x

(
1

ω f
+ β

)

+
qEτ f β f 0

f

(
1 − f 0

f

)
vy

ω f

−β f 0
f

(
1 − f 0

f

)
�xvyv

2
x

(
1

ω f
+ β

)

+
�xβ f 0

f

(
1 − f 0

f

)
vy

ω f

−β f 0
f

(
1 − f 0

f

)
�yv

2
yvx

(
1

ω f
+ β

)

−β f 0
f

(
1 − f 0

f

)
�zvyvzvx

(
1

ω f
+ β

)
. (13)

Substituting the values of partial derivatives in Eq. (10) and
then dropping higher order velocity terms, we obtain

J − β f 0
f

(
1 − f 0

f

)
τ f qEvx

+β f 0
f

(
1 − f 0

f

) (
�xvx + �yvy + �zvz

)

−
qBτ f β f 0

f

(
1 − f 0

f

)

ω f

(
vx�y − vy�x

)

+
τ 2
f q BqEvyβ f 0

f

(
1 − f 0

f

)

ω f
= 0. (14)

In getting the above equation, we have also replaced J =
τ f
p0
pμ ∂ f 0

f
∂xμ . For quark distribution function, we have calcu-

lated J as

J = −βτ f f
0
f

(
1 − f 0

f

) [{
ω f

(
∂P

∂ε

)
− p2

3ω f

}
∂lu

l

+pl
(

∂l P

ε + P
− ∂l T

T

)
−T pl

ω f
∂l

(μ f

T

)
− pk pl

2ω f
Wkl

]
,

(15)

where Wkl = ∂kul+∂luk− 2
3δkl∂ j u j . Similarly for antiquark

and gluon distribution functions, we get

J̄ = −βτ f̄ f̄ f
0
(

1 − f̄ f
0
) [{

ω f

(
∂P

∂ε

)
− p2

3ω f

}
∂lu

l

+pl
(

∂l P

ε + P
− ∂l T

T

)
+T pl

ω f
∂l

(μ f

T

)
− pk pl

2ω f
Wkl

]
,

(16)

Jg = −βτg f
0
g

(
1 + f 0

g

) [{
ω f

(
∂P

∂ε

)
− p2

3ωg

}
∂lu

l

+pl
(

∂l P

ε + P
− ∂l T

T

)
− pk pl

2ωg
Wkl

]
, (17)

respectively. With the help of Eqs. (14), (15) and (9), we get
the nonequilibrium part of the quark distribution function
(determined in Appendix A) as

δ f f = qEτ f vxβ f 0
f

(
1 − f 0

f

)
+ vxβ f 0

f

(
1 − f 0

f

)

×
[

τ f

1 + ω2
cτ

2
f

p0 px
p2

{
ω f

(
∂P

∂ε

)
− p2

3ω f

}
∂lu

l

+ ωcτ
2
f

1 + ω2
cτ

2
f

p0 py
p2

{
ω f

(
∂P

∂ε

)
− p2

3ω f

}
∂lu

l

− τ f

1 + ω2
cτ

2
f

pkWkx

2
− ωcτ

2
f

1 + ω2
cτ

2
f

pkWky

2

+
(
τ f − ω2

cτ
3
f

)
qE

1 + ω2
cτ

2
f

⎤
⎦ + vyβ f 0

f

(
1 − f 0

f

)

×
[

τ f

1 + ω2
cτ

2
f

p0 py
p2

{
ω f

(
∂P

∂ε

)
− p2

3ω f

}
∂lu

l

− ωcτ
2
f

1 + ω2
cτ

2
f

p0 px
p2

{
ω f

(
∂P

∂ε

)
− p2

3ω f

}
∂lu

l

− τ f

1 + ω2
cτ

2
f

pkWky

2

+ ωcτ
2
f

1 + ω2
cτ

2
f

pkWkx

2
− 2ωcτ

2
f qE

1 + ω2
cτ

2
f

]
, (18)
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where the cyclotron frequency, ωc is defined as ωc = qB
ω f

. In
a first order theory, for infinitesimal deviation of the system
from its equilibrium, the spatial component of the dissipative
part of the energy–momentum tensor is defined [56–58] as

�T i j = −ηWi j − ζ δi j∂lu
l . (19)

Here the shear viscosity and the bulk viscosity are described
as the coefficients of the traceless part and the trace part of
�T i j , respectively.

In the weak magnetic field regime, 3-dimensional dynam-
ics is retained, unlike the strong magnetic field regime, where
3-dimensional dynamics for charged particles gets reduced
to 1-dimensional dynamics and only longitudinal (along the
direction of magnetic field) component of �T i j exists. It is
very important to note that, at least in the weak magnetic
field limit, we do not split �T i j into different components,
rather, the effect of magnetic field enters mainly through the
cyclotron frequency (ωc). According to this specific limit,
we neglect the terms containing ωc and its higher orders in
the numerator. Thus, Hall-type shear and bulk viscosities are
not obtained in this part of this section. In the general config-
uration of magnetic field, different components of aforesaid
viscosities are obtained in the next part of this section. We get
the spatial component of Eq. (2) (determined in Appendix B)
as

�T i j

=
∑
f

g f

∫
d3p

(2π)3

βpi p j

ω f

×
⎡
⎣2qEvx

τ f f 0
f

(
1 − f 0

f

)

1 + ω2
cτ

2
f

+ 2q̄ Evx

τ f̄ f̄ f
0
(

1 − f̄ f
0
)

1 + ω2
cτ

2
f̄

+
⎛
⎝τ f f 0

f

(
1 − f 0

f

)

1 + ω2
cτ

2
f

+
τ f̄ f̄ f

0
(

1 − f̄ f
0
)

1 + ω2
cτ

2
f̄

⎞
⎠

×
{
ω f

(
∂P

∂ε

)
− p2

3ω f

}
∂lu

l

−
⎛
⎝τ f f 0

f

(
1 − f 0

f

)

1 + ω2
cτ

2
f

+
τ f̄ f̄ f

0
(

1 − f̄ f
0
)

1 + ω2
cτ

2
f̄

⎞
⎠ pk pl

2p0
Wkl

⎤
⎦

+gg

∫
d3p

(2π)3

pi p jτg

ωg
β f 0

g

(
1 + f 0

g

)

×
[{

ωg

(
∂P

∂ε

)
− p2

3ωg

}
∂lu

l

− pk pl

2ωg
Wkl + pl

(
∂l P

ε + P
− ∂l T

T

)]
. (20)

Comparing Eqs. (19) and (20), we get the shear viscosity of
a weakly magnetized hot and dense QCD matter as

η = β

30π2

∑
f

g f

∫
dp

p6

ω2
f

×
⎡
⎣ τ f

1 + ω2
cτ

2
f

f 0
f

(
1 − f 0

f

)
+ τ f̄

1 + ω2
cτ

2
f̄

f̄ 0
f

(
1 − f̄ 0

f

)⎤
⎦

+ β

30π2 gg

∫
dp

p6

ω2
g

τg f 0
g

(
1 + f 0

g

)
. (21)

Similarly, the comparison between Eqs. (19) and (20) gives
the bulk viscosity as

ζ = 1

3

∑
f

g f

∫
d3p

(2π)3

p2

ω f

×
[
f 0
f

(
1 − f 0

f

)
A f + f̄ 0

f

(
1 − f̄ 0

f

)
Ā f

]

+1

3
gg

∫
d3p

(2π)3

p2

ωg
f 0
g

(
1 + f 0

g

)
Ag. (22)

The factors A f , Ā f and Ag in Eq. (22) are respectively writ-
ten as

A f = τ f β

3
(

1 + ω2
cτ

2
f

)
[

p2

ω f
− 3

(
∂P

∂ε

)
ω f

]
, (23)

Ā f = τ f̄ β

3
(

1 + ω2
cτ

2
f̄

)
[

p2

ω f
− 3

(
∂P

∂ε

)
ω f

]
, (24)

Ag = τgβ

3

[
p2

ωg
− 3

(
∂P

∂ε

)
ωg

]
. (25)

The calculation of viscosity requires nonzero velocity gradi-
ent. But there exist different frames to define velocity uμ, for
example, uμ denotes the velocity of baryon number flow in
the Eckart frame, whereas it denotes the velocity of energy
flow in the Landau–Lifshitz frame. Therefore the freedom
to choose a specific frame creates arbitrariness. To avoid
this arbitrariness, one needs the “condition of fit”, i.e. if one
chooses the Landau–Lifshitz frame, then the condition of
fit in the local rest frame demands the “00” component of
the dissipative part of the energy–momentum tensor to be
zero (�T 00 = 0). In order to satisfy this Landau–Lifshitz
condition, the factors A f , Ā f and Ag should be replaced as
A f → A′

f = A f − b f ω f , Ā f → Ā′
f = Ā f − b̄ f ω f and

Ag → A′
g = Ag − bgωg . The Landau–Lifshitz conditions

for A f , Ā f and Ag are respectively given by

∑
f

g f

∫
d3p

(2π)3 ω f f
0
f (1 − f 0

f )
(
A f − b f ω f

) = 0, (26)

∑
f

g f

∫
d3p

(2π)3 ω f f̄
0
f (1 − f̄ 0

f )
(
Ā f − b̄ f ω f

) = 0, (27)

gg

∫
d3p

(2π)3 ωg f
0
g (1 + f 0

g )
(
Ag − bgωg

) = 0. (28)
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The quantities b f , b̄ f and bg are arbitrary constants and are
associated with the particle and energy conservations for a
thermal medium having asymmetry between the numbers
of particles and antiparticles [59]. These quantities can be
obtained by solving Eqs. (26), (27) and (28). After substitut-
ing A f → A′

f , Ā f → Ā′
f and Ag → A′

g in Eq. (22) and
simplifying, we get the bulk viscosity of a weakly magnetized
hot and dense QCD matter as

ζ = β

18π2

∑
f

g f

∫
dp p2

[
p2

ω f
− 3

(
∂P

∂ε

)
ω f

]2

×
⎡
⎣ τ f

1 + ω2
cτ

2
f

f 0
f

(
1 − f 0

f

)
+ τ f̄

1 + ω2
cτ

2
f̄

f̄ 0
f

(
1 − f̄ 0

f

)⎤
⎦

+ β

18π2 gg

∫
dp p2

[
p2

ωg
− 3

(
∂P

∂ε

)
ωg

]2

τg f 0
g

(
1 + f 0

g

)
.

(29)

In this part, we have obtained the shear and bulk viscosities
using the ansatz method in the weak magnetic field limit. In
the next part, we are going to determine different components
of shear and bulk viscosities in the general configuration of
magnetic field.

Momentum transport coefficients in the general config-
uration of magnetic field: In the presence of an arbitrary
magnetic field, the infinitesimal change in the distribution
function of charged particles (quarks and antiquarks) is writ-
ten as

δ f =
4∑

l=0

ClY
l
mnvmvn . (30)

The spatial component of the nonequilibrium part of the
energy–momentum tensor is written as

�Ti j =
4∑

l=0

ηlY
l
i j , (31)

where η0, η1, η2, η3 and η4 denote five shear viscosity coef-
ficients. For the calculation of the viscosities, it is sufficient
to take only spatial component of the nonequilibrium part of
the energy–momentum tensor. In the above tensor, we have
excluded the bulk viscosity part to determine the shear vis-
cosity coefficients. In terms of the infinitesimal change in the
particle distribution function, �Ti j has the following form,

�Ti j =
∑
f

g f

∫
d3p

(2π)3 ω f viv jδ f. (32)

Substituting the value of δ f (30) in Eq. (32) and then simpli-
fying, we get

�Ti j = 1

15

∑
f

g f

∫
d3p

(2π)3 ω f v
4

× (
δi jδmn + δimδ jn + δinδ jm

) 4∑
l=0

ClY
l
mn . (33)

In the above equations, Y 0
i j , Y

1
i j , Y

2
i j , Y

3
i j and Y 4

i j are respec-
tively expressed [57,60] as

Y 0
i j = (

3bib j − δi j
) (

bkblVkl − 1

3
∇ · V

)
, (34)

Y 1
i j = 2Vi j + (

bib j − δi j
) ∇ · V + δi j Vklbkbl

−2Vikbkb j − 2Vjkbkbi + bib j Vklbkbl , (35)

Y 2
i j = 2Vikbkb j + 2Vjkbkbi − 4bib j Vklbkbl , (36)

Y 3
i j = Vikb jk + Vjkbik − Vklbikb j bl − Vklb jkbi bl , (37)

Y 4
i j = 2Vklbikb j bl + 2Vklb jkbi bl , (38)

where bi j = εi jkbk and Vi j = 1
2

(
∂Vi
∂x j

+ ∂Vj
∂xi

)
, with Vi

and bi = B
B denoting the fluid velocity and the unit vector

along the direction of magnetic field, respectively. Impos-
ing the condition, ∇ · V = 0, and using the relations, such
as Vi j bi b j = 0, bi jviv j = 0, bibi = 1, bi j bi = 0 and
bi j b j = 0, we determine η1, η2, η3 and η4. On the other
hand, η0 remains the same as in the absence of magnetic
field and is given by

η0 = β

30π2

∑
f

g f

∫
dp

p6

ω2
f

[
τ f f

0
f

(
1 − f 0

f

)

+τ f̄ f̄
0
f

(
1 − f̄ 0

f

)]
. (39)

Comparing Eqs. (31) and (33), and requiring the consistency
of both these equations, we have

η1 = 2

15

∑
f

g f

∫
d3p

(2π)3 ω f v
4C1, (40)

η2 = 2

15

∑
f

g f

∫
d3p

(2π)3 ω f v
4C2, (41)

η3 = − 2

15

∑
f

g f

∫
d3p

(2π)3 ω f v
4C3, (42)

η4 = − 2

15

∑
f

g f

∫
d3p

(2π)3 ω f v
4C4. (43)

The factors C1, C2, C3 and C4 can be calculated by using
the relativistic Boltzmann transport equation in the relax-
ation time approximation at finite magnetic field and chem-
ical potential (6). To proceed for the calculation, we take
only the spatial components in Eq. (6) and keep only the
magnetic field part in the Lorentz force. Then, we split
f as f = f0 + δ f in the left hand side of Eq. (6) and
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keep only f0. In doing so, the second term will vanish
due to the appearance of the expression q (v × B) · ∂ f0

∂p =
−qβ [(v × B) · v] f0 (1 − f0) = 0. So, in order to keep the
magnetic field dependence, we need to keep δ f in the second
term. Thus, Eq. (6) gets simplified into

pi
ω f

∂ f0
∂xi

− qB

ω f
bi jv j

∂(δ f )

∂vi
= −δ f

τ f
, (44)

where pi
ω f

∂ f0
∂xi

= −βω f viv j Vi j f0 (1 − f0) and the value of
δ f is given in Eq. (30). Now, Eq. (44) becomes

βω f Vi jviv j f0 (1 − f0) = −ωcbi jv j
∂

∂vi

(
4∑

l=0

ClY
l
mnvmvn

)

+
∑4

l=0 ClY l
mnvmvn

τ f

= −2ωcbi jv j

(
4∑

l=0

ClY
l
imvm

)

+
∑4

l=0 ClY l
mnvmvn

τ f
. (45)

Using the relations ∇ · V = 0, Vi j bi b j = 0, bi jviv j = 0,
bibi = 1, bi j bi = 0 and bi j b j = 0 in above equation, and
then comparing the same tensor structures on both sides of
Eq. (45), C1, C2, C3 and C4 can be obtained (in Appendix C)
as

C1 = βω f τ f f0 (1 − f0)

2
(

1 + 4ω2
cτ

2
f

) , (46)

C2 = βω f τ f f0 (1 − f0)

2
(

1 + ω2
cτ

2
f

) , (47)

C3 = −βω f ωcτ
2
f f0 (1 − f0)(

1 + 4ω2
cτ

2
f

) , (48)

C4 = −βω f ωcτ
2
f f0 (1 − f0)

2
(

1 + ω2
cτ

2
f

) . (49)

Substituting the values of C1, C2, C3 and C4 in Eqs. (40),
(41), (42) and (43) and then simplifying, we get η1, η2, η3

and η4 respectively as

η1 = β

30π2

∑
f

g f

∫
dp

p6

ω2
f

[
τ f

1 + 4ω2
cτ

2
f

f 0
f

(
1 − f 0

f

)

+ τ f̄

1 + 4ω2
cτ

2
f̄

f̄ 0
f

(
1 − f̄ 0

f

)⎤
⎦ , (50)

η2 = β

30π2

∑
f

g f

∫
dp

p6

ω2
f

[
τ f

1 + ω2
cτ

2
f

f 0
f

(
1 − f 0

f

)

+ τ f̄

1 + ω2
cτ

2
f̄

f̄ 0
f

(
1 − f̄ 0

f

)⎤
⎦ , (51)

η3 = β

30π2

∑
f

g f

∫
dp

p6

ω2
f

[
2ωcτ

2
f

1 + 4ω2
cτ

2
f

f 0
f

(
1 − f 0

f

)

+
2ωcτ

2
f̄

1 + 4ω2
cτ

2
f̄

f̄ 0
f

(
1 − f̄ 0

f

)⎤
⎦ , (52)

η4 = β

30π2

∑
f

g f

∫
dp

p6

ω2
f

[
ωcτ

2
f

1 + ω2
cτ

2
f

f 0
f

(
1 − f 0

f

)

+
ωcτ

2
f̄

1 + ω2
cτ

2
f̄

f̄ 0
f

(
1 − f̄ 0

f

)⎤
⎦ . (53)

Neglecting the factor 4 in the denominator of Eq. (50), one
can find that η1 = η2 = η (charged particle part), where η is
given in Eq. (21). In the above description of different shear
viscosity coefficients, the gluon part of the shear viscosity
has been excluded, because magnetic field has almost no
effect on the electrically neutral gluons, thus, this part of
the viscosity does not split into different components in the
presence of magnetic field. So, one can add the gluon part to
the charged particle part to get the total shear viscosity of the
hot medium of quarks, antiquarks and gluons like in Eq. (21).
Now, excluding the shear viscosity part and including only
the bulk viscosity part, �Ti j is expressed [57] as

�Ti j = ζ0δi j∇ · V + ζ1
(
δi j Vklbkbl + bib j∇ · V)

. (54)

Thus, there also exist two different bulk viscosity coefficients
in the presence of an arbitrary magnetic field, such as ζ0 and
ζ1. The volume or bulk viscosity coefficient ζ0 remains the
same as in the absence of magnetic field and is given by

ζ0 = β

18π2

∑
f

g f

∫
dp p2

[
p2

ω f
− 3

(
∂P

∂ε

)
ω f

]2

×
[
τ f f

0
f

(
1 − f 0

f

)
+ τ f̄ f̄

0
f

(
1 − f̄ 0

f

)]
. (55)

On the other hand, ζ1 which is the cross effect between the
ordinary and volume viscosities vanishes for a plasma (for
details, please see Ref. [57]). Thus, to see the magnetic field-
dependence, we use the bulk viscosity obtained through the
ansatz method at weak magnetic field limit in the first part of
this section (29).

The aforementioned transport properties are studied con-
sidering the quasiparticle model (QPM) of QGP medium. In
quasiparticle models [61–64], QGP is described as a system
of massive noninteracting quasiparticles and the mass of the
quasiparticle arises due to the interactions of quarks and glu-
ons with the thermal medium. In the kinetic theory approach
with the quasiparticle model description, the interactions
among partons have been considered to be contained only in
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their quasiparticle masses. Quasiparticle masses of particles
have been derived from the hard thermal loop (HTL) pertur-
bation theory at high temperatures [65,66]. We note that the
estimation of the quasiparticle model depends on the require-
ment of thermodynamic consistency, which has already been
tested in notable works like [61,62,66]. It assumes that the
deconfined quarks and gluons remain the relevant degrees
of freedom even in the quasiparticle model, which is a justi-
fied assumption for high temperatures T > Tc and for small
chemical potentials μ < 2Tc, because this model reproduces
the leading-order perturbative results and in addition, it repre-
sents a thermodynamically consistent effective resummation
of the leading-order thermal contributions. For the thermo-
dynamic consistency, there are some conditions which need
to be satisfied, for example, the derivative of pressure with
respect to the square of quasiparticle mass requires to van-
ish. At high temperatures, the thermodynamic consistency
can be fulfilled, because the thermodynamic quantities can
be perturbatively expanded in powers of coupling g and the
full expressions represent a thermodynamically consistent
resummation of terms of all orders in coupling g [66]. Thus,
the coupling must be very small and this is unambiguously
satisfied in high temperature QGP phase [61,66].

The quasiparticle model was successfully used to study
the equation of state for the partonic medium [67,68]. This
model had also been studied in different approaches, such
as the Nambu–Jona–Lasinio (NJL) and Polyakov NJL based
quasiparticle models [69–71], quasiparticle model in a strong
magnetic field [54,55], quasiparticle model with Gribov–
Zwanziger quantization [72,73], thermodynamically consis-
tent quasiparticle model [74,75] etc. In a hot and dense
medium, the thermal mass (squared) of quark is given [65,66]
by

m2
f T = g2T 2

6

(
1 + μ2

f

π2T 2

)
. (56)

In the similar environment, the thermal mass (squared) of
gluon is given [64,66,76] by

m2
gT = g2T 2

6

⎛
⎝Nc + N f

2
+ 3

2π2T 2

∑
f

μ2
f

⎞
⎠ . (57)

In the above equations, g2 = 4παs , where αs denotes
the one-loop strong running coupling at finite temperature,
chemical potential and weak magnetic field, and is expressed
[77] as

αs

(
�2, eB

)
= αs

(
�2

)
1 + b1αs

(
�2

)
ln

(
�2

�2+eB

) . (58)

Here αs
(
�2

)
is the one-loop strong running coupling in the

absence of magnetic field, which is given by

αs

(
�2

)
= 1

b1 ln

(
�2

�2
MS

) , (59)

with b1 = 11Nc−2N f
12π

, �MS = 0.176 GeV and � =
2π

√
T 2 + μ2

f /π
2 for electrically charged particles (quarks

and antiquarks) and � = 2πT for gluons. The chemical
potentials for all flavors have been kept the same, i.e.μ f = μ.

3 Results and discussions

Figures 1 and 2 show the temperature dependence of shear
(η) and bulk (ζ ) viscosities in the presence of weak magnetic
field and finite chemical potential, respectively. It can be seen
from these figures that the influence of weak magnetic field
on η and ζ is less pronounced than the influence of chemi-
cal potential. Compared to the thermal medium at eB = 0,
μ = 0, the decrease of η and ζ due to the weak magnetic
field is meagre, contrary to their discernible increase due to
the finite chemical potential. These effects of weak magnetic
field and chemical potential on shear and bulk viscosities are
more conspicuous at low temperatures. Thus, the reduction
in η leads to a decrease in the momentum transport in the
presence of weak magnetic field, whereas the finite chemi-
cal potential creates favorable condition for the momentum
transport in hot QCD matter and it becomes easy for a par-
ticle to carry momentum over great distances. It can also
be inferred that their effects on the momentum transport get
suppressed at higher temperatures. Further, the reduction in
ζ in weak magnetic field regime explains small fluctuations
in the pressure, contrary to large fluctuations at finite chemi-
cal potential. At finite magnetic field, the magnetic catalysis
phenomenon enhances the dynamical symmetry breaking,
thus triggering the binding of oppositely charged particles. It
results in a stronger interaction between the constituents of
the medium, which thus reduces the viscosities. In addition,
with the magnetic field, cyclotron frequency increases and
particle distributions decrease, which also give a decreasing
effect to the viscosities. But, in the weak magnetic field limit
this decrease is meagre, which can be understood from the
fact that, in this limit, the magnetic field is the weak energy
scale and the temperature is the strong energy scale. So, at
high temperature phase, the effects of weak magnetic field on
the abovementioned quantities and phenomenon are less pro-
nounced. Thus, the viscosities have a negligible dependence
on the magnetic field. Throughout the temperature range,
the shear viscosity remains nearly two orders of magnitude
larger than the bulk viscosity. Thus, the momentum transfer
across the layer exceeds the momentum transfer along the
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ba

Fig. 1 The variation of the shear viscosity with temperature (a) in the presence of weak magnetic field and (b) in the presence of finite chemical
potential

ba

Fig. 2 The variation of the bulk viscosity with temperature (a) in the presence of weak magnetic field and (b) in the presence of finite chemical
potential

layer. The dominance of shear viscosity over bulk viscosity
also describes that the change in shape at constant volume is
dominant as compared to the change in volume at constant
shape.

The enhancement of shear viscosity at finite chemical
potential also supports the reduction of elliptic flow in the
similar regime, which can be understood as follows. We know
that v2 measures the flow anisotropy in the azimuthal plane.
The shear viscosity being a result of frictional force and the
frictional force being proportional to the flow velocity have
noticeably large effects on the fast-moving particles in the
collision plane. Thus anisotropy gets reduced, resulting a
decrease in v2 at finite chemical potential. Although the bulk
viscosity is very small, but the emergence of finite chemical
potential tends to enhance its magnitude. It thus explains that

the chemical potential supports the deviation of the strongly
interacting matter from conformality.

For the comparison, we have plotted four shear viscos-
ity coefficients, η1, η2, η3 and η4 as functions of temper-
ature at weak magnetic field and finite chemical potential
in Fig. 3. One can see that, η1 and η2 are almost indistin-
guishable, whereas η3 and η4 are distinguishable. This is
expected, because the appearance of factor 4 in the denom-
inator does not affect much, so η1 (50) is almost equal to
η2 (51), whereas the appearance of factor 2 in the numera-
tor does affect noticeably, so the difference between η3 (52)
and η4 (53) is conspicuous. Both η3 and η4 directly depend
on magnetic field through the cyclotron frequency ωc (can
be seen in Eqs. (52) and (53)) and hence called Hall-type
shear viscosity coefficients. These Hall-type shear viscosity
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ba

Fig. 3 Variations of the four shear viscosity coefficients with temperature (a) in the presence of weak magnetic field and (b) in the presence of
finite chemical potential

coefficients η3 and η4 are found to be much smaller than the
shear viscosity coefficients η1 and η2, which explains that,
η2(≈ η1) is the dominant shear viscosity coefficient. One
can also notice that, η2(≈ η1) is exactly equal to the charged
particle part of η obtained using the ansatz method in the first
part of Sect. 2, i.e. η2(≈ η1) = η (charged particle part). As
compared to the μ = 0 case (Fig. 3a), these coefficients get
increased at finite chemical potential (Fig. 3b).

4 Applications

In this section, we are going to study the effects of weak
magnetic field and finite chemical potential on the Prandtl
number, the Reynolds number, the ratio of shear viscosity to
entropy density, η/s and the ratio of bulk viscosity to entropy
density, ζ/s.

4.1 Prandtl number

The momentum diffusion and the thermal diffusion are not
completely independent, rather, they are related through the
Prandtl number (Pr) as

Pr = η/ρ

κ/Cp
, (60)

where Cp represents the specific heat at constant pressure,
ρ is the mass density and κ denotes the thermal conduc-
tivity. The Prandtl number is important to understand the
effects of momentum diffusion and thermal diffusion on the
sound attenuation in a medium. For Pr < 1, the dominance
of thermal diffusion over momentum diffusion in the sound

attenuation is implied, unlike the case where Pr > 1. The
estimation of the Prandtl number is carried out in a weak mag-
netic field, using the expression of the thermal conductivity
in the similar environment (written in Appendix D) from our
recent work [48]. Cp and ρ are calculated from the energy–
momentum tensor (Cp = ∂(uμTμνuν − �μνTμν/3)/∂T ,
with �μν = gμν − uμuν) and the particle flow four-vector
(ρ = ∑

f, f̄ ,g m f, f̄ ,guμNμ, with m f, f̄ ,g denoting the quasi-
particle mass), respectively.

Figure 4 shows the variation of the Prandtl number as a
function of temperature for different values of magnetic field
and chemical potential. It can be observed that Pr > 1 and
it increases with temperature. The presence of weak mag-
netic field increases Pr (Fig. 4a), whereas the finite chemical
potential decreases its magnitude (Fig. 4b). The changes of Pr
are higher for lower temperatures. The values of the Prandtl
number imply that the sound attenuation is mostly governed
by the momentum diffusion for the hot QCD matter and it
is more pronounced in the presence of weak magnetic field
than at finite chemical potential. Here, one can notice that the
effect of magnetic field on the Prandtl number is measurable,
unlike the effect on η and ζ , which can be comprehended
as follows. The Prandtl number is the ratio of the momen-
tum diffusion to the thermal diffusion. Both the thermal and
momentum diffusions get noticeably affected by the pres-
ence of weak magnetic field and the effect on the momentum
diffusion (Fig. 5a) is found to be larger than the effect on
the thermal diffusion (Fig. 5b), so their ratio, i.e. the Prandtl
number is noticeably affected by the magnetic field.
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ba

Fig. 4 The variation of the Prandtl number with temperature (a) in the presence of weak magnetic field and (b) in the presence of finite chemical
potential

ba

Fig. 5 Variations of (a) η/ρ and (b) κ/Cp with temperature at different values of magnetic field

4.2 Reynolds number

The viscous behavior of a medium can be understood by
studying the Reynolds number,

Re = Lv

η/ρ
, (61)

where η/ρ represents the kinematic viscosity, and L and v

are the characteristic length and velocity of the flow, respec-
tively. Laminar or turbulent nature of the flow is specified
by the Reynolds number, i.e. Re requires to be much larger
than 1 for a turbulent flow while lower values correspond
to a laminar flow, describing a more viscous fluid [78]. The
proper time evolution of the thermodynamic quantities in the
second-order dissipative relativistic fluid dynamics and their

dependence on the Reynolds number have been studied in
Ref. [79]. The Reynolds number of quark matter has been
estimated to be around 10 using the Kubo formula and NJL
model [80]. For initial QGP, (3+1)-dimensional fluid dynam-
ical model reports the range of Re to be 3–10 [81], whereas
its upper bound is estimated to be approximately 20 in the
holographic model [78]. In the present work, the Reynolds
number for a weakly magnetized hot and dense QCD matter
is estimated with v 
 1 and L = 4 fm.

Figure 6 depicts the variation of the Reynolds number with
the temperature in the presence of weak magnetic field and
finite chemical potential. The Reynolds number is found to
increase with the temperature. A small increase in the magni-
tude of Re is noticed due to the weak magnetic field (Fig. 6a),
contrary to a large decrease due to the finite chemical poten-
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ba

Fig. 6 The variation of the Reynolds number with temperature (a) in the presence of weak magnetic field and (b) in the presence of finite chemical
potential

tial (Fig. 6b). The range of Re is found to be 5.49–11.86 in the
temperature range, 160–640 MeV, indicating that the char-
acteristic length scale of the hot QCD system prevails over
its kinematic viscosity with the flow remaining laminar. It
can be seen that the effect of magnetic field on the Reynolds
number is measurable, unlike the effect on η and ζ , which
can be understood as follows. The Reynolds number is the
ratio of the product of characteristic length and velocity of
the flow (Lv) to the kinematic viscosity. Since Lv has been
taken to be constant, the magnitude of effect due to the weak
magnetic field is decided by the kinematic viscosity, which
is the ratio of the shear viscosity to the mass density. Since
the influence of magnetic field on this ratio is noticeable, a
measurable effect of magnetic field on the Reynolds number
is observed.

4.3 Ratios η/s and ζ/s

In order to determine the ratios η/s and ζ/s, entropy density
(s) is first evaluated from the energy–momentum tensor and
baryon density (nB) using the following equation:

S = uμTμνuν − ∑
f μ f nB − �μνTμν/3

T
, (62)

where nB is defined as

nB =
∑
f

g f

∫
d3p

(2π)3

(
f 0
f − f̄ 0

f

)
. (63)

The entropy density is observed to decrease with an increase
of magnetic field at a fixed temperature (Fig. 7a). On the other
hand, an increase in the value of entropy density is observed
at finite chemical potential (Fig. 7b). Thus, the presence of
magnetic field makes the system less disordered, whereas the

disorder is larger at finite chemical potential. The observa-
tions on entropy density, shear and bulk viscosities facilitate
the exploration of ratios η/s and ζ/s.

Figure 8a and 8b display the effects of weak magnetic field
and finite chemical potential on the variations of η/s and ζ/s
with temperature, respectively. In a weak magnetic field at
zero chemical potential, the ratio η/s gets slightly decreased
and becomes nearer to the conjectured lower bound 1/(4π),
specifically at low temperatures (Fig. 8a). It can be under-
stood from the fact that, both η and s get reduced due to the
weak magnetic field, with the reduction of η being more than
that of s, thus resulting in an overall decrease of η/s in the
said regime. However, in the additional presence of chemical
potential, η/s becomes slightly greater than that at μ = 0,
eB = 0, but still not very far from the lower bound. Thus,
the hot QCD matter shows the characteristic of a nearly per-
fect fluid in the said regime. The ratio ζ/s is found to be
very small as compared to the ratio η/s and it exhibits a non-
monotonic behavior at low temperatures (Fig. 8b). Above
the phase transition temperature Tc = 0.16 GeV, there is a
broad smooth minimum in the ratio ζ/s and then, this ratio
gradually increases at higher temperatures. The presence of
weak magnetic field slightly decreases the magnitude of ζ/s,
which corroborates the observations on ζ and s in the simi-
lar environment, whereas a comparatively large decrease is
observed in the additional presence of chemical potential.
Unlike eB = 0, μ = 0 case, no nonmonotonic behavior of
ζ/s near Tc is found in the presence of both weak magnetic
field and finite chemical potential.

The inclusion of magnetic field in the lattice QCD cal-
culations is an emerging area of research. To the best of our
knowledge, no lattice QCD results on viscosities are available
at finite magnetic field, so it may not be plausible to compare
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ba

Fig. 7 The variation of the entropy density (a) with magnetic field at a fixed temperature and (b) with temperature at different values of chemical
potential

ba

Fig. 8 Variations of (a) η/s and (b) ζ/s with temperature in the presence of weak magnetic field and finite chemical potential

our results on viscosities with the lattice QCD calculations
at the equal base. We may however update the lattice QCD
results at zero magnetic field. According to the lattice results
[17,82], η/s becomes minimum and ζ/s becomes maximum
near the phase transition temperature. Compared to the lat-
tice result of ζ/s in Ref. [82], our result in the presence
of weak magnetic field is smaller. Lattice calculation for an
SU(3) pure gauge model in Ref. [17] reports the upper bound
for η/s of QGP to be 1, and for the temperature range 0.16–
0.64 GeV, our result on η/s in weak magnetic field is slightly
less than the lattice result. Another lattice work in Ref. [18]
estimates η/s to be nearly 0.102 at T = 1.24Tc and 0.134
at T = 1.65Tc, whereas our weak magnetic field calculation
observes slight larger values of η/s at these temperatures.
Lattice calculation in Ref. [26] reports a very small value

of ζ/s (<0.15) except near Tc and even becomes extremely
small away from Tc, whereas our weak magnetic field result
lies below the lattice result on the ratio ζ/s. The Ref. [8] has
studied the SU(3)-gluodynamics shear viscosity temperature
dependence on the lattice and found that for a temperature
range Tc − 1.5Tc, η/s ranges 0.24–0.27 approximately. For
this temperature range, our calculation estimates η/s in the
ranges 0.113–0.14 at eB = 0 and 0.11–0.139 at eB �= 0.
Thus, lattice results lie above our results, and the presence
of weak magnetic field shifts η/s more towards the lower
bound (1/(4π)), thus making the medium to show nearly
perfect fluid characteristics. On the other hand, Ref. [9] has
studied the SU(3)-gluodynamics bulk viscosity temperature
dependence on the lattice and found a very small value of
ζ/s for T ≥ 1.1Tc and in fact this matches with our result
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at eB = 0, whereas the result at weak magnetic field is less
than the aforesaid lattice estimation in the same temperature
range. Since ζ/s vanishes for a conformal QGP, the decrease
of ζ/s in weak magnetic field drives the medium towards the
conformal symmetry of QGP phase.

5 Summary

The momentum transport properties of a hot and dense QCD
matter have been studied in terms of the shear and bulk vis-
cosities in the presence of weak magnetic field and finite
chemical potential using the kinetic theory approach. In gen-
eral, the emergence of magnetic field breaks the isotropy of
the medium and splits the shear viscosity into five compo-
nents (η0, η1, η2, η3 and η4) and the bulk viscosity into two
components (ζ0 and ζ1). Out of these seven components, η0

and ζ0 retain their forms same as in the absence of mag-
netic field. On the other hand, ζ1 vanishes, whereas η1, η2,
η3 and η4 are magnetic field-dependent, out of which η1 and
η2 are dominant shear viscosity coefficients, and η3 and η4

are called as Hall-type shear viscosity coefficients. In addi-
tion, we also calculated the shear (η) and bulk (ζ ) viscosities
using the ansatz method in weak magnetic field limit. In this
method, the magnetic field-dependence of the bulk viscosity
could be seen. This method under the weak magnetic field
limit gives only the dominant contribution of the shear vis-
cosity, because we found that η = η2(≈ η1). We observed
that the presence of weak magnetic field decreases both η and
ζ , thus reducing the transport of momentum across and along
the layer as compared to the zero magnetic field case. The
presence of finite chemical potential increases both η and
ζ . The presence of weak magnetic field makes the Prandtl
number (Pr) larger than its value in the absence of both mag-
netic field and chemical potential, however at finite chemical
potential, Pr becomes smaller and in all cases, Pr is found to
be greater than unity. Thus, the sound attenuation is mostly
governed by the momentum diffusion and the weak magnetic
field makes the dominance of momentum diffusion over ther-
mal diffusion stronger, whereas the chemical potential makes
this dominance weaker. The Reynolds number (Re) is found
to be increased in an ambience of weak magnetic field, but
it gets decreased at finite chemical potential and the flow
remains laminar. A meagre decrease due to the weak mag-
netic field and a noticeable increase due to the finite chemical
potential in the magnitude of η/s are observed. The magni-
tude of ζ/s and the nonmonotonicity in its variation with
temperature get waned in the presence of weak magnetic
field and finite chemical potential.
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A Derivation of Eq. (18)

Since magnetic field is taken along z-direction, no explicit
dependence of magnetic field on spatial velocity gradient
along z-direction can be observed. Now, J is calculated as

J = −βτ f f
0
f

(
1 − f 0

f

) [{
ω f

(
∂P

∂ε

)
− p2

3ω f

}
∂lu

l

+pl
(

∂l P

ε + P
− ∂l T

T

)
−T pl

ω f
∂l

(μ f

T

)
− pk pl

2ω f
Wkl

]
,

(A.1)

where Wkl = ∂kul + ∂luk − 2
3δkl∂ j u j . After substituting the

value of J (A.1) in Eq. (14) and then simplifying, we obtain

− p0 pxvx
p2

{
ω f

(
∂P

∂ε

)
− p2

3ω f

}
∂lu

l + pkvxWkx

2

+�xvx

τ f
− ωc�yvx − qEvx

− p0 pyvy
p2

{
ω f

(
∂P

∂ε

)
− p2

3ω f

}
∂lu

l + pkvyWky

2

+�yvy

τ f
+ ωc�xvy + ωcτ f qEvy

+�zvz

τ f
+ T pl

ω f
∂l

(μ f

T

)
− pl

(
∂l P

ε + P
− ∂l T

T

)
= 0,

(A.2)

where |p| = p and ωc is the cyclotron frequency, ωc = qB
ω f

.
Equating the coefficients of vx , vy and vz on both sides of
the above equation, we get

− p0 px
p2

{
ω f

(
∂P

∂ε

)
− p2

3ω f

}
∂lu

l + pkWkx

2

+�x

τ f
− ωc�y − qE = 0, (A.3)
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− p0 py
p2

{
ω f

(
∂P

∂ε

)
− p2

3ω f

}
∂lu

l + pkWky

2

+�y

τ f
+ ωc�x + ωcτ f qE = 0, (A.4)

�z

τ f
= 0. (A.5)

Now, �x , �y and �z can be obtained by solving Eqs. (A.3),
(A.4) and (A.5) as

�x = τ f

1 + ω2
cτ

2
f

p0 px
p2

{
ω f

(
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2
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3
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2
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, (A.6)

�y = τ f
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, (A.7)

�z = 0. (A.8)

Substituting the values of �x , �y and �z in Eq. (9) and then
simplifying, we get the nonequilibrium part of the quark dis-
tribution function as follows,

δ f f = qEτ f vxβ f 0
f

(
1 − f 0

f

)
+ vxβ f 0
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. (A.9)

B Derivation of Eq. (20)

The spatial component of Eq. (2) can be written as

�T i j =
∫

d3p

(2π)3 p
i p j

⎡
⎣∑

f

g f

(
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)
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⎦
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q + �T i j

q̄ + �T i j
g . (B.1)

Using the expression of δ f f (18), the quark part �T i j
q in

Eq. (B.1) is determined as follows,
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. (B.2)

In the weak magnetic field limit, the terms containing ωc and
its higher powers in the numerator can be dropped. Thus,

123



797 Page 16 of 18 Eur. Phys. J. C (2022) 82 :797

Eq. (B.2) becomes
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Similarly, the antiquark part �T i j
q̄ is written as
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The gluon part �T i j
g retains its form same as that in the

absence of magnetic field,
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Adding Eqs. (B.3), (B.4) and (B.5) and then simplifying, we
get
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C Derivation of Cl , l = 1, 2, 3, 4

Making use of the relations ∇ · V = 0, Vi j bi b j = 0,
bi jviv j = 0, bibi = 1, bi j bi = 0 and bi j b j = 0 in Eq. (45),
we get

βω f Vi jviv j f0 (1 − f0)

= −2ωc

[
C1bi jv j Y

1
imvm + C2bi jv j Y

2
imvm

+C3bi jv j Y
3
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4
imvm

]

+ 1

τ f

[
C1Y

1
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2
i jviv j

+C3Y
3
i jviv j + C4Y

4
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]

= −2ωc
[
C1bi jv j (2Vim − 2Vikbkbm − 2Vmkbkbi ) vm

+C2bi jv j (2Vikbkbm + 2Vmkbkbi ) vm
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−Vklbmkbibl) vm

+C4bi jv j (2Vklbikbmbl + 2Vklbmkbibl) vm
]

+ 1

τ f

[
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(
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)
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+C2
(
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+C3
(
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−Vklbikb j bl − Vklb jkbi bl
)
viv j

+C4
(
2Vklbikb j bl + 2Vklb jkbi bl

)
viv j

]
. (C.1)

Now, Eq. (C.1) gets further simplified into

βω f Vi jviv j f0 (1 − f0)

= −2ωc
[
2C1Vikbi jv jvk − 2C1Vikbi j bkv j (b · v)
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+2C2Vikbi j bkv j (b · v) + 2C3Vi jviv j

−4C3Vi j biv j (b · v) + 2C4Vi j biv j (b · v)]

+ 1

τ f

[
2C1Vi jviv j − 4C1Vi j biv j (b · v)

+4C2Vi j biv j (b · v) + C3Vikb jkviv j + C3Vjkbikviv j

−2C3Vklbikblvi (b · v) + 4C4Vklbikblvi (b · v)] .

(C.2)

Comparing the same tensor structures on both sides of
Eq. (C.2), we have

−4ωcC3 + 2C1

τ f
= βω f f0 (1 − f0) , (C.3)

−2ωc (2C4 − 4C3) + 1

τ f
(−4C1 + 4C2) = 0, (C.4)

−2ωc (−2C1 + 2C2) − 1

τ f
(−2C3 + 4C4) = 0, (C.5)

−4ωcC1 − 2C3

τ f
= 0. (C.6)

After solving Eqs. (C.3), (C.4), (C.5) and (C.6), we get

C1 = βω f τ f f0 (1 − f0)

2
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1 + 4ω2
cτ

2
f

) , (C.7)

C2 = βω f τ f f0 (1 − f0)

2
(
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cτ

2
f

) , (C.8)

C3 = −βω f ωcτ
2
f f0 (1 − f0)(

1 + 4ω2
cτ

2
f

) , (C.9)

C4 = −βω f ωcτ
2
f f0 (1 − f0)

2
(

1 + ω2
cτ

2
f

) . (C.10)

D Thermal conductivity

In relativistic hydrodynamics there exist different frames.
The freedom to choose a specific frame creates arbitrariness.
To avoid arbitrariness, one needs the “condition of fit”, i.e.
if one chooses the Landau frame, then the condition of fit
in the local rest frame requires the “0” component of the
heat flow four-vector to be zero, i.e. Q0 = 0, which can be
understood from the fact that in the rest frame of the heat
bath or fluid, heat flow four-vector is orthogonal to the fluid
four-velocity, i.e. Qμuμ = 0, where uμ = (1, 0, 0, 0) in
the local rest frame. Thus in the rest frame of the fluid, the
heat flow is purely spatial. This concept has been used in
the study of the thermal conductivity. In this way, the results
also remain independent of the choice of frame in relativistic
hydrodynamics [83,84].

For a weakly magnetized hot and dense QCD matter, the
thermal conductivity is given [48] by

κ = β2

6π2

∑
f

g f

∫
dp

p4

ω2
f

×
[

τ f

1 + ω2
cτ

2
f

(
ω f − h f

)2
f 0
f

(
1 − f 0

f

)

+ τ f̄

1 + ω2
cτ

2
f̄

(
ω f − h̄ f

)2
f̄ f

0
(

1 − f̄ f
0
)⎤
⎦ . (D.1)
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