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Abstract In canonical quantum gravity, the wave function
for a hypersurface inside a Schwarzschild black hole can be
obtained by solving the Wheeler–DeWitt equation. What is of
prime importance is the behavior of the wave function for the
future boundary near the singularity, and the DeWitt bound-
ary condition implies that it should vanish here. In this paper,
we provide several generalizations, and new interpretations,
of the DeWitt boundary condition. First, we summarize exist-
ing works on the wave function inside the black hole to jus-
tify the DeWitt boundary condition. Next, we investigate the
wave function for the collapsing null shell to show that due
to the reflection symmetry in space and time, there exists
a destructive interference near the singularity and hence a
vanishing boundary condition can be natural. If we extend
this point of view to the black hole spacetime itself, then the
DeWitt boundary condition is equivalent to saying that there
exists a symmetric anti-black hole contribution, such that
eventually these two geometries are annihilated-to-nothing
near the quantum transition surface. This symmetric model
can be realized within black hole models of loop quantum
gravity with a novel interpretation for the arrow(s) of time.

Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . 1
2 Preliminary: wave function inside a vacuum Schwarzschild

black hole . . . . . . . . . . . . . . . . . . . . . . . 2
2.1 Steepest-descent up to the singularity . . . . . . 2
2.2 BKL conjecture and the DeWitt boundary con-

dition . . . . . . . . . . . . . . . . . . . . . . 3

a e-mail: suddhasattwa.brahma@gmail.com
b e-mail: b97202056@gmail.com
c e-mail: innocent.yeom@gmail.com (corresponding author)

3 DeWitt boundary condition for collapsing matter . . 4
3.1 Hajicek–Kiefer wave packet . . . . . . . . . . 4
3.2 Interpretation: shell-antishell pair annihilation . 5
3.3 Extending this interpretation to the black hole

spacetime itself? . . . . . . . . . . . . . . . . . 6
4 Black holes and the DeWitt condition in loop quan-

tum gravity . . . . . . . . . . . . . . . . . . . . . . 6
4.1 Brief history of understanding black holes in

loop quantum gravity . . . . . . . . . . . . . . 6
4.1.1 Ashtekar–Bojowald model . . . . . . . . 7
4.1.2 Black hole fireworks . . . . . . . . . . . 8
4.1.3 Homogeneous bouncing black hole models 8
4.1.4 Introducing a new paradigm: annihilation-

to-nothing . . . . . . . . . . . . . . . . . 9
4.2 Embedding collapsing shells into loop quantum

black holes . . . . . . . . . . . . . . . . . . . 10
4.3 New interpretation in the light of the DeWitt

boundary condition . . . . . . . . . . . . . . . 11
5 Conclusion . . . . . . . . . . . . . . . . . . . . . . 12
References . . . . . . . . . . . . . . . . . . . . . . . . 13

1 Introduction

Black holes have been a driving force behind developing
quantum theories of gravity. This is particularly so since
understanding the nature of the singularity inside a black
hole is an outstanding central problem of quantum gravity,
and indeed, in modern physics [1]. It is also closely related
to resolving the information loss problem of black holes [2].

One of the most conservative ways to deal with the black
hole singularity is to canonically quantize the internal space-
time of a black hole [3]. On imposing a specific metric ansatz,
one can derive and solve the quantum Hamiltonian con-
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straint equation, or the so-called Wheeler–DeWitt equation
[4–7]. The problem becomes tractable when considering only
the interior of the Schwarzschild black hole, which can be
assumed to be described by an anisotropic, and yet homoge-
neous, metric [8]. In this case, there remain only two dynam-
ical (metric) degrees of freedom and the Wheeler–DeWitt
equation reduces to a partial differential equation with two
canonical variables. Homogeneity plays the crucial role of
reducing it to a manageable minisuperspace model.

Although solving the Wheeler–DeWitt equation for full
quantum gravity poses a tremendously difficult problem,
minisuperspace models have been met with much more con-
siderable success, in both cosmology [9] and black hole
spacetimes [10], due to their symmetry-reduced nature. In
order to find solutions for the Wheeler–DeWitt equation, one
needs to consider the boundary condition(s) of the wave func-
tion. One of the natural boundary conditions is to assume that
the wave function must behave as classical at the event hori-
zon. In other words, the steepest-descent of the wave function
should coincide with the classical solution [11–13]. This con-
dition is synonymous with the physical requirement that for
macroscopic black holes, one does not expect any large quan-
tum gravity effects to appear at the horizon. As soon as we
impose this condition, as well as assume the bounded nature
of the solution, the wave function is uniquely defined and the
steepest-descent follows the classical solution down to the
singularity. This, in turn, means that assuming such a rea-
sonable boundary condition as above would imply that the
Wheeler–DeWitt quantization fails to resolve the classical
black hole singularity.

The question, therefore, is as follows – Where can one
expect to see quantum gravitational effects? A way to avoid
the above conclusion would simply be to accept the fail-
ure of simple Wheeler–DeWitt quantization and assume that
one needs further inputs regarding the quantum nature of the
underlying spacetime in order to find such effects. However,
before resigning ourselves to such a drastic eventuality, let
us note that there have been a series of recent developments
within the Wheeler–DeWitt picture which offer an alternative
resolution.

Firstly, it was shown that there exists a quantum “bounce”
near r ∼ M hypersurface, where r denotes the usual radius
and M is the black hole mass [11–13]. In addition, there was
another proposal such that the wave function should vanish at
the singularity r ∼ 0 itself [14,15]. The takeaway message
from these papers is that it is possible to have an annihi-
lation of the wave function on specific hypersurfaces with
suitable assumptions. If these proposals are correct, then it
is reasonable to think that imposing a vanishing boundary
condition at the singularity, or the so-called DeWitt bound-
ary condition [3], is a generic nature of the Wheeler–DeWitt
wave function. To be clear, the claim is that the wave function
solution of the Wheeler–DeWitt equation vanishes naturally

at the singularity. However, do we have any strong argument
or evidence that this is generic, when considering realistic
gravitational collapses or within a fundamental approach to
quantum gravity?

In this paper, we would like to answer these questions.
First, in Sect. 3, we consider the thin-shell collapse and quan-
tize the shell dynamics using the approach of Hajicek and
Kiefer [17,18]. The DeWitt boundary condition for collaps-
ing matter can be shown to follow explicitly, although we
need to revisit the interpretation. Second, in Sect. 4, we con-
sider the possibility of having a vanishing boundary con-
dition near the singularity in the context of loop quantum
gravity inspired models. Recently, several models have been
proposed in which there is a big bounce near the putative sin-
gularity due to the loop quantum gravity corrections [19–21].
It is shown that these models can have a new interpretation in
light of the DeWitt boundary condition. Finally, we speculate
how the annihilation of the wave function can be made com-
patible with dynamical signature-change in loop quantum
gravity [22–24], while invoking a final-state like condition
for black holes [25]. But before that, in the next section, we
will first begin with a lightening review of previous literature
and the intricacies of the DeWitt boundary condition for the
vacuum Schwarzschild spacetime.

2 Preliminary: wave function inside a vacuum
Schwarzschild black hole

We first show how the wave function can get annihilated
inside a vacuum black hole spacetime due to destructive inter-
ference of the wave function. In particular, we show that on
including extra ingredients to the Wheeler–DeWitt equation
as one approaches the singularity, it is possible to recover the
DeWitt boundary condition within such a formulation.

2.1 Steepest-descent up to the singularity

In this subsection, we briefly review the picture of vanishing
wave functions inside black holes, as first described in [11–
13]. This picture is based on some particular solutions of
the Wheeler–DeWitt equation such that the steepest-descent
of the wave function follows the classical trajectory at the
horizon. We choose the Kantowski–Sachs anisotropic metric
ansatz for the spacetime inside the horizon as follows [8]:

ds2 = −N 2(t)dt2 + a2(t)dr2 + r2
s b2(t)

a2(t)
d�2 , (1)

where N (t) is the lapse function, rs is the Schwarzschild
radius, and a(t) and b(t) denote two canonical variables.
Here, the classical Schwarzschild solution corresponds to
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the following relation:

1

b
= a + 1

a
, (2)

where this relation is invariant with respect to the choice of
the lapse function N (t). From this metric ansatz, one can
derive the Wheeler–DeWitt equation [4–7]:(

∂2

∂ X2 − ∂2

∂Y 2 + 4r2
s e2Y

)
� (X, Y ) = 0 , (3)

where X = ln a and Y = ln b.
In order to solve the partial differential equation, one

first introduces the usual separation of variables, say � =
φ(X)ψ(Y ), for which the Wheeler–DeWitt equation takes
the form: (

d2

d X2 + k2
)

φ(X) = 0 , (4)

(
d2

dY 2 − 4r2
s e2Y + k2

)
ψ(Y ) = 0 , (5)

where k2 is the separation constant. Interestingly, this set of
equations is equivalent to the two-dimensional Schrödinger
equation of quantum mechanics, where X is a time-like direc-
tion and Y is a space-like direction with the potential barrier
∼ e2Y .

As is evident from above, there is only a potential bar-
rier along the Y -direction, and it is divergent as Y goes to
infinity. Hence, if there is an incoming mode along the +Y -
direction, then there must be an outgoing mode along the
−Y -direction (unless there exist divergent contributions in
the Y > 0 region). The classical observer will follow the
Ehrenfest theorem, i.e., the peak of the wave function should
correspond to the classical solution. Therefore, at the hori-
zon, we need to impose the boundary condition that the wave
function has a peak at the classical solution. By imposing
these properties, and without loss of generality, we obtain
the following form of the solution [11]:

�(X, Y ) =
∫ ∞

−∞
f (k) e−ik X Kik

(
2rseY

)
dk , (6)

where Kik is the hyperbolic Bessel function. If we choose

f (k) = 2Ae−σ 2k2/2

�(−ik)r ik
s

, (7)

then the classical solution is located at the Gaussian peak
of the wave function at the event horizon (X, Y → −∞),
where σ is the standard deviation and A is the normalization
constant.

This solution implies that the steepest-descent of the wave
function (the ridge of the wave function) follows the clas-
sical trajectory. However, since there is a potential barrier
along the Y -direction, there exists a quantum bounce around
r = rsb/a ∼ M . At this surface, it is possible to impose the

DeWitt-like boundary condition inside the black hole. What
we mean by the “DeWitt-like boundary condition” is that
we find a wave function solution that has a hypersurface on
which the wave function annihilates. Of course, unlike in the
original proposal by DeWitt, this is not the r = 0 hypersur-
face, and therefore, one does not find that the wave function
annihilates at the singularity. Also, it is worthwhile to men-
tion that this is the future boundary condition; hence, we do
not prepare this boundary condition at the past hypersurface,
but this is a result by solving the Wheeler–DeWitt equation.

Let us end this section with two take-home messages.
Firstly, we show that in a non-perturbative quantization
scheme of the vacuum Schwarzschild spacetime following
the Wheeler–DeWitt equation, it is indeed possible to find
quantum effects due to which one cannot faithfully follow
the peak of the wave function down to the singularity. This
demonstrates that the quantum solution can lead to nice sur-
prises and does not necessarily imply the existence of a sin-
gularity as in the classical case, even on imposing a clas-
sical boundary condition at the event horizon. In particu-
lar, we find that there is a hypersurface r ∼ M where the
wave function goes to zero. Around the annihilation surface,
there appears two pieces of classical branches of the wave
function; for each branch, one can impose an arrow of time.
Interpreting the arrows of time, one finds two wave pack-
ets – one originating from the event horizon and the other
from the singularity – which destructively interferes at the
r ∼ M hypersurface. This was termed as the annihilation-
to-nothing picture in [11]. However, what is also apparent
from the preceding discussion is that one cannot impose the
classical DeWitt condition to have the wave function go to
zero at the singularity, once classicality is imposed at the
horizon, unless some additional ingredients are invoked. In
the next subsection, we show how one can impose the orig-
inal DeWitt boundary condition within this approach once
the Belinsky–Khalatnikov–Lifshitz (BKL) is taken into con-
sideration.

2.2 BKL conjecture and the DeWitt boundary condition

If we do not take into account the quantum bouncing
hypersurface, the steepest-descent of the wave function will
approach the singularity, just as in the classical solution. As
mentioned earlier, it would then seem that the boundary con-
dition of imposing classicality at the horizon is going to be
incompatible with the vanishing of the wave function at the
singularity. However, the way out of this puzzle is in the
way of the following realization: As the solution approaches
the singularity, the anisotropic cosmological metric ansatz
Eq. (1) of Kantowski–Sachs becomes increasingly worse. In
other words, such an ansatz breaks down while approaching
the singularity and the spacetime is fractured into small parts
according to the BKL conjecture [26]. Rather than having a
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smooth approach towards the singularity, BKL stipulates that
the collapse is generically chaotic and leads to the individual
sub-regions not interacting with each other.

This fact has been recently incorporated by Perry [14,15]
to study the feasibility of imposing the DeWitt boundary con-
dition for a vacuum black hole spacetime (see also [16]).
Here, we briefly restate his arguments for completeness.
According to [14,15], the wave function for each of these
small parts, following a Kasner spacetime metric, will satisfy
the Wheeler–DeWitt equation corresponding to a Hamilto-
nian constraint given by:

H = 1

2

(
π2

ρ + v2

ρ2

(
π2

u + π2
v

))
, (8)

where πρ,u,v are canonical momenta of the coordinates ρ, u,
v, respectively. Furthermore, dynamics is restricted within
a spatial sub-volume such that one must impose vanishing
boundary conditions for this compact spatial region over the
uv-hypersurface. Due to this, the eigenvalues for the spatial
direction � is positive definite and(

−ρ2 d2

dρ2 − 2ρ
d

dρ
− �

)
� = 0 (9)

along the direction ρ, where the increasing ρ direction cor-
responds to the increasing time direction. As we solve the
generic solution of �, the wave function must go as some
inverse-power of ρ which goes to infinity at the singularity.
Therefore, the wave function for each part necessarily goes
to zero and resembles precisely the condition due to DeWitt.
Thus, considering only the Wheeler–DeWitt equation, one
finds that the wave function can go to zero at the singular-
ity provided we are willing to change the metric ansatz of
the spacetime within the black hole, as one approaches the
singularity, according to the BKL conjecture.

In conclusion, if the BKL conjecture is true and one
imposes the vanishing boundary condition for the local spa-
tial boundary, the wave function should vanish at the sin-
gularity. Note that one does not actually impose the DeWitt
boundary condition in this case as an additional input; rather,
the BKL conjecture naturally leads to the DeWitt condition
on suitably modifying the Wheeler–DeWitt equation as one
approaches the singularity.

Given this nice result, one can ask two questions:

1. Can we generalize this result to find the DeWitt boundary
condition beyond the vacuum case for the more realistic
scenario of gravitational collapse?

2. Is the DeWitt boundary condition consistent with other
quantum gravity approaches, e.g., loop quantum gravity?

As we shall demonstrate in the rest of the paper, we will
indeed find the answer to both of these questions to be in the
affirmative.

3 DeWitt boundary condition for collapsing matter

3.1 Hajicek–Kiefer wave packet

Following Hajicek and Kiefer [17,18], we start from the
action for a null shell

S =
∫

dτ (puu̇ + pvv̇ − npu pv) , (10)

where u is the in-going null direction, v is the out-going
null direction, pu and pv are conjugate momenta of u and v,
respectively, and n is a Lagrange multiplier, where pu pv =
0 is the necessary constraint. On quantizing the shell, we
introduce the inner product

〈φ|ψ〉 =
∫ ∞

0

dp

p
φ∗(p) ψ(p) , (11)

where this p is a continuous variable for the representation.
Thanks to this choice of the inner product, after some com-
putations, one can show that the eigenvalue of the operator
pt = pu + pv is −p. Hence, this p, the eigenvalue that con-
jugates to the time variable, can be interpreted by the total
energy of the system (see more details in [27]).

Given the radius r = (−u + v)/2, we construct the radial
operator

r̂2 = −√
p

d2

dp2

1√
p

. (12)

Then, we obtain the relation r̂2〈r |p〉 = r2〈r |p〉. From this,
we find:

〈r |p〉 =
√

2p

π
sin r p . (13)

Therefore, for a given wave packet φ(p), the normaliza-
tion condition translates into

1 =
∫ ∞

0

dp

p
|φ(p)|2 . (14)

Note that t = (u + v)/2. After the integral transformation of
the time-dependent wave function φ(p)e−i pt , we obtain

�(t, r) =
√

2

π

∫ ∞

0

dp√
p

φ(p) e−i pt sin r p , (15)

which is again a normalized wave function.
We can take two explicit examples:

1. If we choose the normalized Gaussian wave packet
(Fig. 1)

φ(p) =
(

2

πσ 2

)1/4 (
1 + erf

(
p0√
2σ

))−1/2

×√
p e− (p−p0)2

4σ2 , (16)
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Fig. 1 |�|2 of the Gaussian wave packet form (Eq. (16)) for p0 =
σ = 1

after the integral transformation, we obtain a bouncing
condition at the singularity, where p0 is the peak of the
Gaussian wave function, σ is the standard deviation in
the p-space, and erf is the error function.

2. In the original Hajicek–Kiefer paper, the following wave
packet was introduced (Fig. 2):

φ(p) = (2λ)κ+1/2

√
(2κ)! pκ+1/2 e−λp . (17)

For this case, we obtain the following analytic form of
the wave function

�κλ (t, r) = 1√
2π

κ!(2λ)κ+1/2

√
(2κ)!

[
i

(λ + i t + ir)κ+1

− i

(λ + i t − ir)κ+1

]
, (18)

where κ is a positive integer and λ is a positive number.

For both cases, the broad physical properties are the same.
If we evaluate the probability |�|2, which is shown respec-
tively in Figs. 1 and 2 for the above two examples, the
steepest-descent has four classical branches: (1) t = −r for
t → −∞, (2) t = r for t → +∞, (3) t = −r for t → +∞,
and (4) t = r for t → −∞. Here, (1) and (2) are connected
via a quantum bounce region, and (3) and (4) are connected
via another quantum bounce region. (1) and (2) are discon-
nected to (3) and (4) because of the destructive superposition
of waves. In addition, note that if the mass of the shell is
greater than the Planck scale, the classical part of the shell
can cross the event horizon.

Fig. 2 |�|2 of original Hajicek–Kiefer paper (Eq. (18)) for λ = κ = 1

3.2 Interpretation: shell-antishell pair annihilation

The first observation is that what we considered above is
not the quantization of spacetime, but rather the quantization
of the shell. This is the reason why t and r are coordinate
variables. In particular, there is another notion of time, called
causal time τ . In the standard Penrose diagram, the forward
direction of causal time τ always points upward. In fact, the
coordinate variables t and r can denote the field value if they
denote the location of the shell. Therefore, this model cannot
certainly resolve the space-like singularity.

Therefore, in Fig. 3, it is reasonable to interpret the trajec-
tory (1) as the collapsing shell. However, due to the ambiguity
of the arrow of time, the trajectory (2) can be interpreted in
two ways. One is that a positive tension shell moves from the
white hole region to the infinity forward both in its causal and
coordinate time (denoted by (2) in Fig. 3); the other is a nega-
tive tension shell moves from a black hole to the past infinity
backward in its causal time τ , but forward in coordinate time
t (denoted by (2)′ in Fig. 3).

Then the solution shows that two classical branches could
collide as a quantum bounce. Before and after the quantum
bounce, which branches are connected? One possibility is to
connect from (1) to (2) in the Left of Fig. 3. The issue is that
this would require the shell to cross the space-like singularity.
However, as we mentioned, this approach does not quantize
the spacetime itself; hence, it cannot change the structure of
the space-like singularity.

The only sensible interpretation is to interpret that the
second branch (2)′ moves backward in its coordinate time.
This is not impossible because there is no intrinsic arrow of
time. For (1), we assume that the initial condition corresponds
to the collapsing shell from the past infinity; hence, we can
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Fig. 3 Left: possible trajectories for (1) t = −r for t → −∞ and (2)
t = r for t → +∞ on the Penrose diagram. The second branch can
be interpreted in two ways: shell moving forward in causal time τ or

moving backward in τ . Right: the only physically sensible connection
of two branches is to connect (1) and (2)′. The yellow-colored region
corresponds to the Minkowski spacetime

choose this by construction. However, for (2), there is no such
a principle and it is still consistent to connect (1) to (2)′.

This implies that as the positive tension shell collapses,
there exists a counter-shell which has the negative tension
but locates beyond the Einstein–Rosen bridge. Two shells
then collide inside the event horizon; this corresponds to the
quantum bounce. Two shells are annihilated and eventually
a pure Schwarzschild black hole remains. (For the shell-anti-
shell pair creation of the time-like shell, see [28,29].)

The existence of the anti-shell is not necessarily explicit.
Since �κλ (t, r) is the wave packet, one can further consider
the following superposition, in the meantime maintaining the
destructive behavior near the singularity:

� ′
κλ (t, r) ∝ �κλ (t, r) − �κλ (−t, r) . (19)

The probability for this superposition is shown in Fig. 4. Now
four classical branches are all disconnected. There exists an
anti-shell contribution that provides a destructive superposi-
tion, but it is hidden beyond the r = 0 boundary.

3.3 Extending this interpretation to the black hole
spacetime itself?

The Hajicek–Kiefer wave function describes the vanishing
boundary condition near the singularity; this can be inter-
preted as a destructive interference between the matter shell
and the anti-matter shell. The quantized wave function is
symmetric up to the change of t → −t and r → −r , and
hence, if there is a steepest-descent of a collapsing matter
shell, there must exist a steepest-descent of an anti-matter
shell. The collision of the two shells makes the vanishing
boundary condition at r = 0 inevitable.

Therefore, the origin of the vanishing boundary condition
of the matter shell is due to the reflection symmetry in space
and time itself. Indeed, this is not surprising because if we
impose the vanishing boundary condition, it is equivalent

to say that there exists a symmetric pulse that induces the
destructive interference. If this correspondence is true for
the collapsing shell, then perhaps it is also true for the black
hole geometry itself. In other words, can we interpret the
DeWitt boundary condition of the black hole as a destructive
interference due to the symmetric anti-geometry? Indeed, as
we shall now show, this can be explicitly realized within
models of loop quantum gravity.

4 Black holes and the DeWitt condition in loop
quantum gravity

Loop quantum gravity is a non-perturbative quantum gravi-
tational theory based on the canonical quantization approach.
It is characterized by the discretized spectra of the geometri-
cal operators that constitute the spacetime from the quantum
point of view. A direct consequence of such discretized spec-
tra is that there exists a fundamental area gap in the theory.
In the semi-classical regime, effective loop quantum gravity
models can be constructed in ways that the quantum area
gap plays a crucial role in introducing Planckian nonlocal-
ities such that curvatures become bounded, and therefore,
sheds light on ameliorating classical singularities in generic
black hole spacetimes.

4.1 Brief history of understanding black holes in loop
quantum gravity

In this subsection, we give a very brief (historical) review of
the status of black holes in the loop quantum gravity com-
munity. There have been several paradigm changes, but there
is a constant common factor: quantum-geometry effects typ-
ically result in new spacetime symmetries which eventually
guide the causal structure. Let us quickly explain what we
mean by this statement. As we shall show, there are two types
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Fig. 4 Left: |� ′|2 for λ = κ = 1. Right: The physical interpretation of � ′

of models seemingly coming out of loop quantum gravity.
The first class of these models posit a black hole bounce
into a white hole, where there a symmetry exists between the
black hole and the white hole geometries which will play a
crucial role in our analysis going forward. Another class of
models not only consider the homogeneous interior, but also
take into account the modified gauge transformations which
result from the holonomy corrections implied by loop quan-
tum gravity. In these models, one finds a Euclidean core in the
interior of the black hole due to dynamical signature-change,
resulting in a new spacetime structure, which follows from
the deformed symmetries of the theory. In summary, quan-
tum gravity effects are crucial for determining the spacetime
symmetries and causal structure of black holes in loop quan-
tum gravity.

4.1.1 Ashtekar–Bojowald model

In the loop quantum gravity community, the first major effort
to understand the evolution of black holes, from gravita-
tional collapse to complete evaporation, was introduced by
Ashtekar and Bojowald [30] (Fig. 5). If the space-like singu-
larity inside a black hole can indeed be resolved by quantum
gravitational effects, then the global causal structure must
be connected in some way. Ashtekar and Bojowald empha-
sized the symmetry between the black hole phase and the
white hole phase. The main input is that although these
two black hole and white hole phases are classically dis-
connected, quantum geometry corrections can lead to them
being smoothly connected akin to what happens in bounc-
ing models of loop quantum cosmology. Although the con-

crete model in which the singularity-resolution was explicitly
demonstrated was purely geometric without the addition of
any matter (and due to spherical symmetry, lacked dynamical
graviton degrees of freedom as well), it was argued that the
main qualitative features of singularity-resolution would also
hold when considering matter fields and removing the restric-
tion of being confined to the interior of the Schwarzschild
spacetime. In order to draw the complete global causal struc-
ture, the main task is how to connect the infinity. In their
picture, they connected past and future infinities with the
physical motivation that the black hole will evaporate in a
finite amount of time. Therefore, in terms of the information
loss paradox, it was argued that since the black hole evapo-
rates in a finite amount of time, the future null infinity lies
to the future of the deep quantum regime where the classical
singularity originally was, and there are family of observers
who shall recover the apparently ‘lost’ information. These
observers reside entirely in the asymptotic region going from
the past null infinity to the future null inifinity and they never
go near the deep quantum regime. This picture is somewhat
similar to what has been discussed by Stephens, ’t Hooft and
Whiting [31].

Nowadays, however, we think that this picture is incom-
plete and it does not resolve the information loss paradox.
Firstly, if almost all of the information is squeezed near the
singularity and Hawking radiation carries almost no infor-
mation, then the entropy of the quantum gravitational region
must be almost infinite, and this, in turn, suffers from the typ-
ical problems of black hole remnants [32]. On the other hand,
even if Hawking radiation carries information away in some
way, it cannot still rescue us from the problem of information
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Fig. 5 Ashtekar–Bojowald
model: The gray colored region
is the place where quantum
gravitational treatments applied

duplication [33,34]. There have been several trials to demon-
strate the Ashtekar–Bojowald-like spacetime based on reg-
ular black holes [35–40]; however, it is very subtle whether
their metric ansatz can be justified even for dynamical cases
beyond the Vaidya-like approximation [41,42]. Finally, the
holonomy corrections which lead to singularity-resolution
in loop quantum gravity in the first place, seem to severely
deform the spacetime geometry so that the black hole has an
Euclidean core (known as dynamical signature-change [22–
24]) where Cauchy evolution breaks down [43,44]. We shall
briefly come back to this point later on.

Despite these criticisms, it is worth mentioning that the
Ashtekar–Bojowald picture emphasizes two issues: (1) we
need to extend beyond the singularity and ask how can we
connect the interior to the outside spacetime and (2) the
spacetime symmetry can guide us towards a solution for the
problem. Notwithstanding the issue of resolving the informa-
tion loss paradox, and the problem of signature-change, the
Ashtekar–Bojowald picture does provide a fresh perspective
on singularity-resolution in black hole spacetimes.

4.1.2 Black hole fireworks

In order to connect inside to the exterior of the black hole,
Haggard and Rovelli proposed a more radical idea [45,46]
(Fig. 6). After resolving the singularity, we need to connect
from inside to outside; in other words, to connect from a
black hole phase to a white hole phase. However, in order
to cut-and-paste the spacetime smoothly, Haggard and Rov-
elli cut and paste not only inside the event horizon, but also
outside the event horizon. This can, of course, only work if
we believe that quantum gravity effects can leak outside the
event horizon. The authors named this process as a black hole
firework or a horizon spark.

There are several problems in this picture. First, despite
some efforts from the spin-foam approach, there is still no
good mechanism to justify the firework from first principles.
Like the firewall picture [47], general relativity must be vio-
lated even near the horizon scale, where these effects can be
quite pronounced [48,49]. Also, as we rely on the cut-and-
paste technique, it is inevitable that this leads to finding quan-
tum corrections not only near the horizon, but also asymptot-
ically away from it near the infinity [50]. And this conclusion
not only stands for this particular model of [45,46], but more
generally to such black-to-white hole transitions which can
originate from shock waves or other similar effects [51,52].

One may think this model may be too adventurous an idea,
but in any case, this remains a logical possibility to connect
from a black hole phase to a white hole phase. However, note
here that connecting two such spacetimes in the presence of
any realistic matter component, while assuming continuity
of the spatial metric (one of the Israel junction conditions),
typically indicates that either there must be some quantum
gravity effects leaking outside the horizon or one must have
an inner horizon developed in the dynamical process of such
a transition [53–55].

4.1.3 Homogeneous bouncing black hole models

Another possibility which remains is to extend the space-
time inside the horizon, while we do not explicitly connect
the internal spacetime with the future infinity. In this case,
the black hole geometry is explicitly connected to the white
hole spacetime only inside the horizon. The advantage of
this picture is that it is mathematically very clean and such a
bouncing geometry can be explicitly derived within minisu-
perspace models of loop quantum gravity. (Some of the prob-
lems of only considering the interior of the Schwarzschild
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Fig. 6 Haggard–Rovelli model.
We cut the lower part of the red
curve (left) and the upper part of
the blue curve (middle); finally,
paste them (right). The gray
colored region is the place
where quantum gravitational
treatments applied; this reaches
outside the event horizon

Fig. 7 Ashtekar–Olmedo–
Singh/Bodendorfer–Mele–
Munch
model

spacetime as an anisotropic cosmological model and apply-
ing techniques of loop quantum cosmology have been illus-
trated in [43,44,53–56].) Nevertheless, depending on quan-
tization ambiguities, one can get such a bounce with two
different possibilities, i.e., with [57,58] or without the exis-
tence of an inner apparent horizon [19–21].

These types of bounces are essentially obtained when
treating the interior as a homogeneous spacetime and other
complications arise when considering deformations of the
Dirac algebra coming from quantum geometry corrections.
Keeping aside this subtlety for now, note that even for the
black-to-white hole bounce considered within the anisotropic
cosmology picture, different models relying on ‘polymeriz-
ing’ different variables would lead to a distinct outcomes. For
instance, in [19,20] a model was proposed which has only
one Dirac observable (the black hole mass being essentially
the same as the white hole one) (Fig. 7), whose consistency
has subsequently been questioned from different perspec-
tives [59–62], but one can consider another model with a
similar causal structure [21] (and its refinements [63–65])
which seem to be much more consistent [66,67].

Even if we first accept this approach, and come back to
its drawbacks later on, there are still several unanswered
questions. What is the causal structure for the evaporating
spacetime? What is the destiny of the information inside the
black hole? Is the white hole horizon stable against pertur-
bations? Nevertheless, despite multiple shortcomings, this
remains one of the most popular descriptions of curing the
singularity, and extend the black hole spacetime, within loop
quantum gravity [68–78].

4.1.4 Introducing a new paradigm: annihilation-to-nothing

Above, we have briefly reviewed some of the important
approaches often used to explore the black hole spacetime
in loop quantum gravity. The main message is that quan-
tum gravity effects, mainly in the form of holonomy cor-
rections which replace unbounded curvature components by
bounded functions of them, will resolve the classical singu-
larity. Even if singularity in the form of diverging curvatures
is avoided, the important question that remains is the fate
of the causal structure of the black hole spacetime due to
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Fig. 8 Annihilation-to-nothing interpretation. Left: two black hole
phases collide and are annihilated. Right: physical arrows of time can be
flipped around the quantum gravitational region (gray colored region)

such quantum geometry effects. How can the spacetime be
extended ‘beyond’ the singularity? A popular answer is that
the geometry beyond the singularity is something like the
time-reversal of the black hole geometry; in other words,
something which resembles a white hole. However, how can
we connect the past infinity and the future infinity? If two
infinities meet each other (Ashtekar–Bojowald paradigm or
the fireworks picture), they suffer from problems regarding
the information loss paradox. If two infinities do not meet
each other (as in the bouncing models in Sect. 4.1.3 above),
not only may one already lose the information, but also the
future of the collapsing matter is much less clear.

However, up until now, for all these paradigms, one neces-
sarily accepts that there exists only one arrow of time. How-
ever, as soon as one admits that there exists a quantum grav-
itational region where a semi-classical description of geom-
etry is unavailable, the notion of the arrow of time becomes
ambiguous and unclear. In fact, one can introduce two arrows
of time before and after the quantum bouncing point (in the
cosmological context, see [79–81]). This may open a new
way to understand the spacetime diagram of such quantum
black holes (right of Fig. 8).

Then in this picture, indeed, there are not one black hole
and one white hole geometries, but rather two black hole
phases. The two black hole phases collide at the putative sin-
gularity (left of Fig. 8). In other words, we have destructive
interference between these two geomtries such that there is
no outcome of the collision and the two black hole phases get
completely annihilated at this surface. This is the inspiration
behind naming this paradigm the annihilation-to-nothing
interpretation [11]. After the collision, the wave function
must completely vanish and therefore, at this point, this inter-
pretation is naturally connected to the DeWitt boundary con-
dition. In this case, the crucial new ingredient for us is the
ability to utilize the ambiguity in defining the arrow of time,
so as to have two arrows of time in the quantum gravity

setup, such that the wave function vanishes at the “bounc-
ing” hypersurface. Let us reiterate that we do not directly
invoke the DeWitt boundary condition but rather find it as a
consequence of introducing the new arrow of time. Finally,
note that typically in loop quantum gravity, the transition
hypersurface is space-like and this is what replaces the clas-
sical singularity, and for our new interpretation, it is on this
transition hypersurface that the wave function vanishes and
the DeWitt condition is naturally recovered.

The reader might be confused at this point as to how
it is now that we find the vanishing of the wave function
on this transition hypersurface, even after imposing classi-
cality at the horizon. As mentioned earlier, in the case of
the usual Wheeler–DeWitt equation, one has to modify the
Kantowski–Sachs metric to a different Kasner spacetime in
order to do so. For the case of loop quantum black holes,
this is a consequence of having different evolution equa-
tions – the so-called effective equations – which have large
deviations from the standard Wheeler–DeWitt equation near
Planck scales. This is why something strongly reminiscent of
the DeWitt boundary condition can be found in loop quantum
gravity, given our new annihilation-to-nothing interpretation.

4.2 Embedding collapsing shells into loop quantum black
holes

As mentioned above, in the case of black holes, the space-like
singularity in the classical Schwarzschild black hole is shown
to be avoidable in several effective loop quantum black hole
models. Although the method of constructing effective black
hole models is not unique and there are several possibilities
depending on quantization ambiguities, one common feature
in the bouncing models is that the classical singularity can be
replaced by some sorts of transition surface, or a bouncing
surface inside the horizon. This kind of effective spacetime
structure may be connected to the picture of the vanishing
wave function mentioned in the previous section.

Generically, the spacetime metric of a loop quantum black
hole that has an interior bouncing surface can be described
using the following metric (we choose the explicit expression
in [21] for concreteness):

ds2 = −
[

1 − 2M(y)

b(y)

]
dt2 +

[
1 − 2M(y)

b(y)

]−1

dy2

+b(y)2d�2 , (20)

where b(y) is the areal radius and it is a function of another
radial variable y. The mass function M(y) is not a constant
anymore, but it should reduce to the ADM mass in the asymp-
totic region. The bouncing feature can be seen on realiz-
ing that the areal radius b has a non-zero minimum value at
y = 0. In the usual interpretation, the black hole region cor-
responds to a positive y. After crossing the transition surface,
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Fig. 9 If there is any principle to explain a quantum big-bounce near the singularity, one can accordingly explain the destination of the collapsing
shell

the spacetime has a negative y and the spacetime bounces to
the white hole region.

If one applies the quantized null shell picture of Hajicek–
Kiefer to the bouncing loop quantum black hole model, one
may naively write down y = (−u + v)/2 and the radial
operator is associated with ŷ:

ŷ2 = −√
p

d2

dp2

1√
p
. (21)

The eigenfunction 〈y|p〉 becomes

〈y|p〉 =
√

2p

π
sin yp. (22)

In this regard, the time-dependent wave function, after impos-
ing the wave packet Eq. (17), can be expressed as that given
in Eq. (18), while replacing all r with y. Therefore, the wave
function vanishes at the bouncing point y = 0. The corre-
sponding spacetime diagrams are exhibited in Fig. 9.

Here, let us strongly emphasize that this is a very heuris-
tic picture of including matter shell collapse into black hole
models of loop quantum gravity. In fact, one of the main out-
standing tasks is to find a closed algebra of constraints when
adding matter to spherically symmetric models of loop quan-
tum gravity. This is, of course, related to treating the entire

black hole spacetime and not just focusing on the interior
of the horizon, to which class of models the homogeneous
bounce models mentioned above reside. Thus, in order to
derive a full treatment of matter shells collapse in loop quan-
tum gravity, much is yet to be done. (For some preliminary
efforts in this direction, see [82,83].) But our above qualita-
tive argument gives us some hope that once this task is carried
out, it will still be possible to extend the DeWitt boundary
condition for such matter shell collapse models in loop quan-
tum gravity as well.

4.3 New interpretation in the light of the DeWitt boundary
condition

The putative singularity disappears due to the holonomy cor-
rections in loop quantum gravity. However, in the deep quan-
tum regime when these quantum geometry effects take over,
it is not strange to think that we loose a definite direction
of time. Here, interestingly, we can find several pieces of
quantum-modified spacetime, where one can impose differ-
ent arrows of time for each piece. So, if we believe that there
exists only one arrow of time, the gravitational collapse and
the geometry inside the horizon smoothly continue onto the

123



772 Page 12 of 14 Eur. Phys. J. C (2022) 82 :772

bouncing matter as well as the bouncing white hole geometry.
On the other hand, if we assume that there are two arrows of
time, then the two gravitational collapsing black hole geome-
tries are annihilated to nothing; at this annihilation surface,
there is a quantum bounce (in the point of view of loop quan-
tum gravity) or the vanishing boundary condition (i.e., the
DeWitt boundary condition). In other words, as two geome-
tries approach together, they are annihilated, and become
really quantum. In conclusion, the DeWitt boundary condi-
tion can be consistent with the loop quantum gravity inspired
black hole models, although there is an extra ingredient in
the form of interpretation of the arrows of time.

Let us elaborate a bit now on a common problem associ-
ated with these paradigms in loop quantum gravity. Typically,
one assumes a pivotal role of these so-called holonomy cor-
rections (which result from choosing a specific regularization
scheme of the Hamiltonian constraint operator) in the effec-
tive equations of motion governing the dynamics of the black
hole. On the other hand, the effects of such quantum geom-
etry corrections on the spacetime symmetries have remain
relatively less-explored. Recently, it has been shown that the
same holonomy modifications which result in singularity-
resolution in loop quantum gravity, also lead to deforma-
tion of the diffeomorphism symmetry of the background,
as evidenced from the Dirac constraint algebra [22–24]. In
other words, Riemannian line-elements are not sufficient
to describe the quantum geometry near the deep quantum
regimes in loop quantum gravity and one has to reconcile the
holonomy-corrected Hamiltonian constraint operator with a
deformed notion of covariance [84]. One has to suitably mod-
ify the classical line-elements and the classical gauge con-
ditions, as would be appropriate for gauge-transformations
generated by the quantum-corrected Hamiltonian constraint
operator [57]. The bottom line is that incorporating the effects
of such modified gauge-transformations typically results in
a dynamical signature-change of the metric and one ends up
with a Euclidean core in the deep quantum regime of the
loop-quantized black hole [43,44].

In light of the DeWitt boundary condition, this, in fact,
turns one of the weaknesses of bouncing black hole models of
loop quantum gravity into a strength. To see how this comes
about, first note that in the context of the gravitational path
integral, it is not at all straightforward to distinguish between
the past and the future time slices. This, of course, is related
to the ambiguity of the arrow of time mentioned earlier. On
the other hand, if we take the approach of the Hartle-Hawking
wave function for minisuperspace cosmologies [85], then one
finds a universe emerge from ‘nothing’. In this case, it is also
common to assume two different arrows of time to find two
universes being created from nothing. However, since the two
universes are disconnected in the sense that the wave func-
tion of the universe vanishes at the initial point, one can only
focus on our universe and not worry about the other one. In

a similar vein, one might just focus at the surface on which
the DeWitt boundary condition is satisfied, and then consider
only one of the black holes and not worry about whether there
is a bounce picture for this paradigm. As mentioned earlier,
the Euclidean core found in the deep quantum regime of
black hole models of loop quantum gravity seems to indicate
that a simple bounce picture maybe lacking. However, if it
is still possible to impose the DeWitt boundary condition on
this signature-changing hypersurface, one would have a real-
ization of something like the final-state condition for black
holes as proposed in [25]. We do not go into details of via-
bility of the final state condition and the DeWitt boundary
condition for models of loop quantum gravity which take the
dynamical signature-change (as an inescapable implication
of the modified gauge structure of spacetime in loop quantum
gravity) into account, and leave it for future investigations.
However, having a signature-change has been shown to bring
cosmological loop models closer to the no-boundary formal-
ism [86,87].

Finally, let us end this section by mentioning that there
have been previous attempts of naturally finding the DeWitt
boundary condition in minisuperspace models of loop quan-
tum cosmology [88]. In that case, it was shown that the
difference equation (the analogue of the Wheeler–DeWitt
equation in loop quantum cosmology), in the pre-classical
(deep quantum) regime, automatically implies a DeWitt-like
boundary condition if one is to demand classical behaviour of
the wave function at late times. Therefore, it was then claimed
that loop quantum cosmology arrives at the DeWitt bound-
ary conditional dynamically. Although there have been mul-
tiple paradigm-changing developments in the field of loop
quantum gravity since the appearance of this paper over two
decades ago, it is nice to see that we are also discovering
that the DeWitt condition appears naturally in loop quantum
black holes as well.

5 Conclusion

In this paper, we first reviewed how the DeWitt boundary
condition can be applied for the region inside the event hori-
zon. In the anisotropic metric ansatz, one can find a surface
where the quantum wave function annihilates, but not at the
singularity. However, as the Kantowski–Sachs metric ansatz
becomes progressively worse, while approaching the singu-
larity, one has to invoke the BKL conjecture and then the
DeWitt boundary condition emerges naturally near the sin-
gularity. Our first task was to consider the extension of this
to the case of gravitational collapse models.

In order to explore gravitational collapsing cases, we fol-
lowed the approach of Hajicek and Kiefer to quantize the
null shell. One can provide the vanishing boundary condi-
tion at the singularity, but we need to consistently embed
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the shell dynamics into the Penrose diagram. We finally
conclude that the Hajicek–Kiefer wave packet explains the
shell-antishell pair-annihilation at the singularity due to the
destructive interference of the wave function.

From this analysis, we observe that the time-symmetry of
the solution is related to the destructive interference which,
in turn, leads to the vanishing boundary condition. If we
extend this idea to the generic DeWitt boundary condition,
one may think that this annihilation condition is the result of
the destructive interference between two wave packets, where
the existence of not one but two wave packets is justified due
to the time-symmetry. If we apply this idea to the space-like
singularity of a black hole, then it is not surprising to con-
clude that the DeWitt boundary condition implies that there
exists a black hole and white hole pair-annihilation inside the
event horizon. Interestingly, this can be realized in the recent
developments of loop quantum gravity inspired black hole
models provided we are allowed two arrows of time as has
often been done in the past for cosmological models.

In this paper, we reasonably provided a novel interpre-
tation of the loop quantum gravity inspired black holes
as well as gravitational collapses of the thin-shells. As a
result, we find indications that the DeWitt boundary con-
dition appears a generic and consistent description inside a
black hole, even including gravitational collapses, and neces-
sarily requiring quantum gravitational effects. The next inter-
esting question to consider is if the DeWitt boundary condi-
tion can be applied as a final-state condition without requir-
ing to invoke the anti-shell (or white-hole) dynamics. This
would be particularly suited to the phenomenon of dynamical
signature-change in loop quantum gravity which arises as a
consequence of non-Riemannian geometries near Planckian
regimes. Looking ahead, we would like to answer the most
important and physically relevant question of all – what does
such an annihilation-to-nothing interpretation of the DeWitt
boundary condition mean for the information loss para-
dox? We leave these interesting questions for future research
topics.
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