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Abstract Neutrinos, dark matter, and long-lived neutral
particles traverse the particle detectors unnoticed, carrying
away information about their parent particles and interac-
tion sources needed to reconstruct key variables like reso-
nance peaks in invariant mass distributions. In this work, we
show that a k-nearest neighbors regressor algorithm com-
bined with deep neural network classifiers, a kNNNN, is able
to accurately recover binned distributions of the fully lep-
tonic WW mass of a new heavy Higgs boson and its Standard
Model backgrounds from the observable detector level infor-
mation at disposal. The output of the regressor can be used
to train even stronger classifiers to separate signals and back-
grounds in the fully leptonic case and guarantee the selection
of on-mass-shell Higgs bosons with enhanced statistical sig-
nificance. The method assumes previous knowledge of the
event classes and model parameters, thus suitable for post-
discovery studies.

1 Introduction

Uncovering the nature of dark matter and neutrinos will
undoubtedly reveal a deeper structure of fundamental physics.
If dark matter exists, it should permeate the universe and fly
by our detection devices, just like the neutrinos do; however,
detecting them already proved to be a challenging task. An
alternative is to produce dark matter and neutrinos in large
colliders and design detectors to infer their properties to get
clues about the underlying structure of the physical laws.

Multi-purpose detectors, like ATLAS [1] and CMS [1],
can accurately detect many types of particles like photons,
electrons, muons, and hadrons, but not neutral weakly inter-
acting particles, like neutrinos and dark matter. This fact
poses a problem to the particular quest for new physics man-
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ifesting as dark states. The escape of neutrinos out of the
detectors prevents us from performing some key observa-
tions that could benefit from low backgrounds. For exam-
ple, the Higgs boson mass and width could be even more
accurately measured if the information from fully leptonic
WW, Z Z → �+�′−ν�ν̄�′ , �(�′) = e, μ, modes were recov-
erable. Instead, apart from Z Z → 4�, we need to rely
upon the semi-leptonic or fully hadronic modes to per-
form those measurements with a significantly higher level
of backgrounds. Identifying bumps and sharp thresholds in
the invariant mass distribution of observable and dark states
would also help disentangle new physics signals like heavy
Higgs bosons [2], Higgs pair production with one invisible
Higgs [3,4], sleptons and charginos [5,6], and new gauge
bosons decays neutrinos and/or dark matter from their asso-
ciate backgrounds [7,8], to name a few possibilities. Another
important example where a fully-leptonic mode benefits from
a clean environment is the measurement of the scattering
angles for W, Z bosons in polarization studies [9].

In processes where Nν neutrinos are produced in the hard
scattering, there are 4Nν unknowns that should be recovered
to reconstruct the parent particles. The missing transverse
momentum, calculated from the imbalance in the sum of
visible transverse momenta of reconstructed physics objects,
furnishes two constraints, despite not exactly equal the sum of
neutrinos transverse momentum due to detector effects, con-
tamination from neutrinos, and other missing particles from
hadronic jets, for example. Mass constraints must provide
the complementary information necessary for reconstruction.
The number of mass constraints Nm other than Nν : p2

ν = 0,
from neutrinos, is process dependent though, and in many
cases, they do not suffice to recover the four momenta of the
neutrinos if 3Nν ≥ Nm + 2. Even in cases where sufficient
mass constraints exist, like fully leptonic t t̄ signals [10,11],
the misresconstruction of the neutrinos transverse momen-
tum, combinatorial particle assignment, and ambiguities aris-
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ing from the quadratic nature of the equations do not guar-
antee meaningful solutions for all events.

In a process-independent way, one approach to circum-
vent the impossibility of recovering the four-momenta of all
the escaping particles is to design kinematic variables and
methods that correlate with the lost information, for example,
with the masses of the parent particles. Many such variables
are smartly crafted to provide useful hints about decaying
particles in many situations [12–22]. Yet, none of them, by
construction, is capable of recovering a resonance peak.

Another possible approach is using a regression algorithm
to predict the neutrinos four-momenta or some variable of
interest from the observed information. One might tackle
tasks of that type by training an algorithm to parameterize a
multivalued function f : Rn → R

m , a neural network, for
example [23–26]. Methods of density estimation [27] might
also be useful.1 As a matter of fact, in Ref. [31], neural net-
work regressors were used, in the framework of the standard
model, to reconstruct the lepton polar angle defined in the W
rest frame from leptonic or semi-leptonic decays in vector
boson scattering at the LHC. The fractions of transversely
and longitudinally polarized W bosons can then be inferred
from the measurement of the lepton polar angle distribution.
An additional difficulty in the case where we interested in
detecting a new particle, is that we need to infer the signal
parameters, mainly its mass, prior to the training of the regres-
sors. Despite this inference could be performed at the same
time of the kinematic variable regression using some con-
ditional model, we will assume that it is performed directly
from data.2

Assuming the previous knowledge about the signal res-
onance, its mass and possibly its width, the most straight-
forward approach to reconstructing a mass variable involv-
ing escaping neutrinos is by interpolating a support set of
events from simulations instead of adjusting the parameters
of some function that should generalize from training to test
datasets. Such an accurate and efficient algorithm for super-
vised regression is the k-nearest neighbors algorithm, as we
will demonstrate in this work. As we argued, the caveat of
this approach, like any other supervised regression algorithm,
is that we need to know what type of event is produced in
the collisions beforehand to select the correct support set
for interpolation of the variable. Our approach takes advan-
tage of the exquisite power of neural networks to classify
the events. In principle, it is possible to identify signal events
without any previous knowledge using outliers detection and
unsupervised methods; however, as we discussed, without

1 For more regression algorithms and applications, see [28–30].
2 An interesting possibility is using a Variational Autoencoder for
Regression as in Ref. [32].

knowing the mass parameters, reconstructing a mass peak is
challenging.3

In this work, we show how to combine neural networks
for classification and kNN for regression is useful in recon-
structing a new heavy Higgs boson decaying to W+W− →
�+�′− + ν�ν̄�′ , �(�′) = e, μ, a fully leptonic final state with
two escaping neutrinos, and its main SM backgrounds. We
will show that the predicted mass of the charged leptons and
neutrinos can be reliably used as a powerful new attribute to
clean up the backgrounds further while enabling the selection
of on-mass shell Higgs bosons.

The work is organized as follows. In Sect. 2, we describe
the kNN regression algorithm; in Sect. 3, we provide details
of the combined construction of regressors and classifiers
to identify the heavy Higgs boson and its main SM back-
grounds, while in Sect. 4 we present our final results in terms
of improvement of the statistical significance of the signal
hypothesis; Sect. 5 is devoted to conclusions and prospects.

2 Details of the kNN regression

The k-nearest neighbors regressor [34] is a simple but effec-
tive algorithm for interpolation. First of all, we define a sup-
port dataset S = {(Xi , F(Xi )), i = 1, . . . , Ns}, these are
the exemplars which will be used to predict the value of the
function of interest. Second, we define a distance metric,
Dist (X,Y), to decide which exemplars of S are closer to a
new point, Xnew, where X, in our case, is a Rn vector. Third,
we choose how many nearest neighbors to Xnew will be used
to compute F(Xnew), the target of our regression, according
to a weighted mean

F(Xnew) =
∑k

m=1 F(Xm)/Dist (Xnew,Xm)
∑k

m=1 1/Dist (Xnew,Xm)
. (1)

Substituting Dist (Xnew,Xm) = 1 in the formula above cor-
responds to an arithmetic mean estimator for F . The weighted
or arithmetic option will be decided in the tuning stage of the
analysis.

In principle, once we have chosen the distance metric, the
number of nearest neighbors, k, used to compute F(Xnew)

is the only hyperparameter of the algorithm. Note that this
model has no parameters to be adjusted contrary to a neural
network. This is the reason we do not need a training phase.
However, the distance metric, k, and possibly other hyperpa-
rameters should be adjusted to get a good regressor by mini-
mizing some error function. All F(Xm), m = 1, . . . , Ns are
known thus, we are in the realm of supervised learning.

3 Regression with unlabeled data is possible when the marginal distri-
bution of the target is known [33].
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In our case, the target function of the regression, F , is
the leptonic �+�′−ν�ν̄�′ , invariant mass, M��νν . The input
of this function is the observable information obtained from
the electrons and muons four-momenta, pe and pμ, respec-
tively. The representation of the events was chosen as the
energies and 3-momentum of the charged leptons plus high
level functions construed from that low level information:
X = ( fi j (p�, p�̄), i = 1, . . . , Nev, j = 1, . . . , M) repre-
senting Nev events with M features.

If the number of dimensions of the features space is large,
distance-based models like kNN might perform poorly. For
that reason, it is usual to project the features space onto a
latent space of reduced dimensionality. There are various
ways to do that. We chose to linearly transform the original
features using a principal component analysis (PCA) [35] and
looking for the nearest neighbors in the transformed space of
the first P < M variables which best explain the variance of
the data, Xpca = TP (X). We also adjust P to obtain the best
regressors. Let us now construct the regressors for the signal
and the backgrounds.

3 Reconstruction of fully leptonic resonances

The dataset consists of 400,000 simulated signal events
pp → H2 → W+W− → �+�′− + ν�ν̄�′ , �(�′) = e, μ,
where H2 is a new Higgs boson produced via gluon fusion,
for each one of the three different mass values: 1, 1.5 and 2
TeV and two fixed total H2 width, 1% and 10% of the mass
parameter, totaling 2.4 million signal events. The dataset also
contains 5.2 million of the corresponding SM backgrounds.

Our goal is twofold: (1) to show that the resonance can
be reliably reconstructed, and (2) that using it can boost
both ML classifiers’ accuracy (and other metrics), and more
importantly, the signal significance compared to a baseline
classifier without the M��νν regression. The actual value of
the statistical significance depends on the number of signal
events, which is model dependent. Because we are interested
in showing how much the signal significance increases after
using kNNNN compared to a baseline analysis, we fix the
number of signal events to illustrate our method. Our sole
supposition is that the leptons plus neutrinos signals are dom-
inated by the WW mode with negligible interference with the
corresponding SM backgrounds.4

We consider the following background sources in our
analysis: (1) the dominant irreducible component, pp →
W+W−, (2) the subdominant irreducible, pp → Z Z(γ ∗),
(3) the dominant reducible contribution, pp → t t̄ →
W+W−bb̄. All the signals and backgrounds partonic events

4 A non-negligible interference with the SM Higgs boson is expected
with wide scalar resonances of masses below 1 TeV or so. This should
not pose any difficulties for the kNN regression, however.

are simulated at leading order using MadGraph5 [36].
Hadronization is simulated withPythia8 [37], while detec-
tors effects are simulated with Delphes3 [38]. We generate
around 1.3 million events for each one of those background
classes.

The partonic events are used to obtain the ground truth
M��νν distributions once the neutrinos momenta are avail-
able. Note that this distribution explicitly assumes that miss-
ing energy is all due to escaping neutrinos produced in the
hard scattering, but not the misreconstruction of observable
momenta or the missing of other particles. However, the lep-
tons momenta and the event’s missing energy, which feed the
algorithms, include all the simulated effects. Therefore, part
of the mismatch between the kNN prediction and the true dis-
tributions can be explained this way. As we are going to see,
however, the partonic predictions present good precision.

We adopt the following basic acceptance cuts to select
events with two opposite charge leptons and missing energy

pT,� > 20 GeV, |η�| < 2.4, �R�� > 0.4,

M�� > 30 GeV, �ET > 40 GeV, |�η��| < 3.0, (2)

where pT,� and η� denote the transverse momentum and
pseudo-rapidity of the leptons, respectively, while M��, �ET

and �R�� denote the invariant mass of the charged leptons,
the missing transverse energy and the distance in the η × φ

plane of the event. The last cut, on the rapidity gap between
the charged leptons, was imposed to suppress weak boson
fusion backgrounds, which are neglected in the subsequent
analysis. The M�� helps to suppress the low mass leptons
backgrounds from Zγ ∗, which showed to be a source of
contamination among the events classes.

In Fig. 1, we show the distributions of some features
chosen to represent the events and predict their classes and
M��νν . Along with the energies and the components of the 3-
momenta of the charged leptons, we also include their trans-
verse momentum, and the following variables:

• M��, the charged leptons invariant mass,
• �ET , the missing transverse energy,
• �R�� = √

(�η��)2 + (�φ��)2, where �η�� and �φ��

represent the rapidity and azimuthal angle differences
between the charged leptons,

• cos θ∗ = tanh
(

�η��

2

)
, proposed in Ref. [39],

• √
ŝ(0) =

√
E2

�� − p2
T,��+ �ET , proposed in Ref. [15],

• MReco =
√

M2
�� + 2pT,��

√
M2

�� + p2
T,�� − pT,��, where

pT,�� is the transverse momentum of the charged lepton
pair,

• the number of jets tagged as a bottom jet to suppress t t̄
events.
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Fig. 1 Some of the kinematic distributions of Higgs bosons and its corresponding SM backgrounds chosen to represent the events for regression
and classification
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Fig. 2 The logarithm of the Higgsness variable defined in Eq. (3) for
a 2 TeV Higgs boson and its SM backgrounds

Beside these kinematic variables, we also constructed the
Higgsness5 variable [40] to denounce the presence of a heavy
Higgs boson decaying to W±W ∗∓ → �+�−′ + ν�ν̄�′ . The
idea is to search for the neutrinos 4-momenta of an event
which minimize

Higgsness ≡ argmin
pν ,pν̄

[
(M2

�+�−νν̄
− m2

H )2

δ4
H

+ min

(
(M2

�+ν
− m2

W )2

δ4
W

,
(M2

�−ν̄
− m2

W )2

δ4
W

)]

,

(3)

where δH and δW , in principle, represent experimental uncer-
tainties, but for our purposes, they can be treated as free
parameters. In fact, the value of these parameters matters for
the Higgsness distributions, and we adjust them for maxi-
mum discernment among the classes.

In Fig. 2, we show the distribution of the logarithm of
Higgsness for a 2 TeV Higgs boson and the WW , Z Z and t t̄
backgrounds. We used a simplex algorithm from SciPy [41]
to search for the minimum of the Higgsness variable. As
expected, Higgsness is very small for signal events, while it
is much bigger for a background event.

For each class, we construct a regressor function accord-
ing to Eq. (1). At this stage, we employed 0.9 and 1.2 million
events for signals and backgrounds, respectively. To ensure
that the dataset’s size would not play a role in the results,
we separated 80% of that data for tuning the regressors. We
adjusted, with a grid search, the number of nearest neigh-
bors, k, the distance metric6, Dist , the number of PCA trans-

5 Topness was another variable proposed in this reference to better tag
t t̄ events.
6 For a good account on kNN and its options, including the distance
metrics available, see sklearn page. Our results are, in fact, insensitive

formed variables, P , and the weighted or arithmetic option in
Eq. (1) in order to minimize the mean square error between
the predicted and the true binned M��νν distributions. The
space of hyperparameters in the grid search is the following

k ∈ [1, 5], Dist ∈ {Minkowsky,Manhattan,
Chebyshev,Canberra,Braycurtis},

P ∈ [1, 8], weight ∈ {uniform,weighted}. (4)

We display, in Fig. 3, some results of the tuning of the
number of nearest neighbors, k, and the number of principal
components to demonstrate the quality of the kNN regression
for the cases of the SM WW background and a 2 TeV Higgs
boson. The other backgrounds and signals present very simi-
lar behavior. The best hyperparameters were chosen as those
with the smaller mean squared error (MSE) between the true
and predicted histograms of the target variable.

The kNN regressor is robust against most parameter vari-
ations while being very accurate for predictions. Overall, for
all backgrounds and the signals, the nearest neighbor to a new
point in the latent space of PCA transformation is the most
accurate prediction for our target variable. We tested various
alternatives to kNN as gradient boosting and neural networks
regressors, and the nearest neighbors approach showed itself
superior in approximating the true distribution of masses. We
also found that neural networks present an improved gener-
alization performance across classes compared to other algo-
rithms, especially the kNN algorithm, which is very depen-
dent on the class of the event. For example, we found that
training a neural network with WW backgrounds might be
useful to obtain M��νν for the other classes, especially the
backgrounds, but its performance on signal events is still not
competitive with much simpler proxy variables that correlate
with the resonance mass, as

√
ŝ(0) [15] and other transverse

mass variables. The significant advantage of algorithms with
good generalization performance is being agnostic towards
the other classes, depending less on the previous knowledge
of the types of events.

The number of PCA dimensions where the original data
representation is projected onto showed a more significant
variation. While for the Z Z background and the 1 TeV
Higgs, the smaller MSE could be reached with just a one-
dimensional latent space, the WW background performed
better in a two-dimensional PCA space, the t t̄ and a 1.5 TeV
Higgs with 3 PCA dimensions, and the 2 TeV Higgs with
6 PCA dimensions. We thus observe that as the particles
get heavier, the higher should be the dimension of the PCA
space. The choice of the distance metrics has no impact on
the performance of the algorithms once the uniform weights
performed better than the weighted option in all experiments.

Footnote 6 continued
to the distance metric option as explained in the text, we show them just
for completeness.
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Fig. 3 Results for the tuning of the number of nearest neighbors, k, and number of principal components (PCA) of the latent space. In the four
upper panels we display k = 1, 3, and 5, keeping PCA fixed at its best value. In the four lower panels we display PCA = 2, 5, and 8, keeping k fixed
at its best value

It means that the prediction is a simple arithmetic mean of
the nearest neighbors of a given point projected on the prin-
cipal component space of the events. We also tested non-

linear transformations to the latent space as TSNE, but with
marginal gains at the cost of much longer computation time.
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Fig. 4 The true (shaded areas) and predicted (solid lines) M��νν distributions for the 2 TeV Higgs (upper left), WW (upper right), Z Z(γ ∗) (lower
left) and t t̄ background (lower right). The regression is based on true samples, in this case

In Fig. 4, we display the true and the predicted M��νν

masses for a 2 TeV Higgs boson, with 
H/mH = 10%, and
theWW , Z Z(γ ∗), and t t̄ backgrounds. As we see, the regres-
sors work very well for each class of events. We checked that
the width of the resonances affects too little the accuracy of
the regression from 
H/mH = 1% up to 10%.

3.1 Pre-regression classification

The construed M��νν regressor of a given class can predict the
target distribution of events that pertain to that class exclu-
sively. If one feeds a background regressor with a signal
event, for instance, the background regressor will find the
target value of the background distribution, which is closer
to the signal event. In order to predict the classes’ targets
correctly, we need first to predict the classes as accurately as
possible. We also need to know the mass of the resonance.

The classification of events was performed with neural
networks (NN) [30,42] based on the same features used for
regression. We took 1.5 million signals and 4 million back-

grounds events to tune, train and test the algorithms. As we
will discuss later, this body of data was further split to inde-
pendently adjust, train, and test a second neural network; that
is why we need such a large number of simulations.

We used Keras [43] with the Tensorflow2.0 [44]
backend to build multiclass NN classifiers. The tuning of
the architecture and hyperparameters were done with 30
Hyperopt [45] runs. An initial learning rate was adjusted
following a schedule halving every ten epochs. The training
was halted if no improvements on the validation loss were
observed over 20 epochs or a maximum of 100 epochs was
reached. The model delivering the smaller validation loss was
selected during the training phase. We trained different mod-
els to identify the Higgs boson of 1, 1.5, and 2 TeV masses.
The hyperparameters and the neural network architectures
are shown in Table 1. We split the data in proportion to 70%,
20%, and 10% for training, testing, and validation of the clas-
sifiers, respectively. What we learn is that the 1 TeV Higgs
bosons need a more regularized model to be discerned from
backgrounds in the test samples compared to heavier masses

123



746 Page 8 of 16 Eur. Phys. J. C (2022) 82 :746

Table 1 Hyperparameters and architecture of the neural network classifiers to clean Higgs boson signals of 1, 1.5 and 2 TeV masses from its SM
backgrounds. No dropout layers were needed in the 1.5 and 2 TeV cases

Hyperparameter/arch Search space 1 TeV 1.5 TeV 2 TeV

L2 regularization [10−8, 10−4] 5.5 × 10−6 4.7 × 10−8 3.3 × 10−8

Initial learning rate [10−8, 10−2] 2 × 10−3 8.2 × 10−3 9.6 × 10−3

Batch size [32, 64, 96, 128, 160, 256, 384, 512, 1024] 160 160 128

Dropout×rate [True,False]×[0.0, 0.9] 0.03 – –

Weight initialization [Uniform,Normal] Normal Uniform Uniform

Layer activation [ReLU,Tanh,Softplus] Tanh ReLU Tanh

Number of layers [1, 2, 3, 4] 4 4 4

Number of neurons/layer [32, 64, 96, 128, 160, 256, 384, 512, 1024] (64, 32, 16, 8) (160, 80, 40, 20) (128, 64, 32, 16)

Total of parameters 4188 20,544 13,748

Fig. 5 Confusion matrix of the classification and the output scores of the neural network before M��νν regression at the left and right panels,
respectively, for a 2 TeV Higgs boson and its main SM backgrounds

with a stronger L2 regularization, dropout layers, and a less
complex architecture. It reflects the fact that it is harder to
separate lighter resonances from the SM backgrounds.

In Fig. 5, we display the confusion matrix of the NN clas-
sifier (let’s called it NN1) trained to recognize the signals
of a broad 2 TeV Higgs boson resonance, with 
H = 200
GeV, against the WW , Z Z and t t̄ events at the left panel,
and the output scores of each class at the right panel. As
expected, WW and t t̄ → W+W− + bb̄ events are more
frequently mistagged by the classifier, with 13(11)% of the
t t̄(WW ) sample tagged as aWW (t t̄) event. Looking at Fig. 1,
we indeed see that WW and t t̄ events look similar once the
decay of the top quark to a W boson plus a b-jet. On the other
hand, around 1/3 of all t t̄ events have no tagged b-jets, the
most important discriminant against W pair production. This
similarity is summarized in the right panel of Fig. 5 where
we see that the scores distributions of WW and t t̄ events
overlap.

However, the most mistagged class is Z Z , where 19%
of the sample is classified as a WW event. On the other
hand, only 3% of signal events are wrongly assigned to back-
ground classes. The same behaviour was observed for the
other two mass values. This somewhat large misidentifica-
tion of Z Z(γ ∗) events might be explained by the introduction
of Higgsness as a feature of the dataset. As we see in Fig. 2,
while being very powerful to discern the signals, Higgsness is
very similar for background classes. Withdrawing Higgsness
from the data representation decreases the true positive rate of
the 2 TeV Higgs boson from 97 to 94%, while also decreasing
the proportion of Z Z events to be labeled asWW events from
19 to 6%. Apparently, singling out signal events with Hig-
gsness make the background classes less discernible among
themselves.

With the NN classifier in hand, we can reconstruct the
M��νν mass of the events. We emphasize that it is necessary
to know the class of the events before the regression once the
target variable can only be correctly estimated when interpo-
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Fig. 6 The true (shaded areas), regressed from true samples (solid lines), and regressed from samples identified with NN1 (dashed lines) M��νν

distributions for the 2 TeV Higgs (upper left), WW (upper right), Z Z(γ ∗) (lower left) and t t̄ background (lower right)

lated over the proper support dataset of the kNN algorithm.
In other words, the nearest neighbors regressor does not gen-
eralize from one class to another.

If one presents instances never seen by the regressor, the
lack of necessary correlations will result in meaningless out-
puts. For example, in the Higgs rest frame, the sum of the
charged leptons energy and the energy of the neutrino equals
the Higgs mass, E∗

�� + E∗
νν = mH . In this case, the regres-

sor can only learn the simple relation E∗
νν = mH − E∗

�� to
recover the missing information from the observed one if it
is trained on signal events with known mH .

In Fig. 6, we show the predicted M��νν mass of the events
classified by the neural network model for a 2 TeV Higgs.
Again, the results for other masses and total widths are nearly
the same. We note clear contamination by signal events in
the tail of the distributions for WW and t t̄ events. This is
expected, once 1.7 and 1.4% of signal events are classified
as WW and t t̄ events, respectively. Only 0.19% of H2 events
are classified as Z Z events, though and that’s why we do not
observe a clear peak in the tail of the Z Z distribution. By

its turn, 4.1 and 3.7% of WW and t t̄ sample, respectively, is
mistagged as a signal event, populating the low mass bins of
the H2 distribution above the true distribution. In practice, if
one is interested in identifying Higgs bosons, requiring the
score to be greater than 0.5 or larger is effective to mitigate
the contamination of background distributions permitting a
reliable estimate of backgrounds in the resonance region.
However, the signal contamination is not affected much, yet,
once the signal distribution contamination occurs for low
mass bins, the resonance region estimate is also reliable.

A way around these contaminations in order to improve
the confidence in the mass estimates is presented in the next
section.

3.2 Post-regression classification and the kNNNN
algorithm

How can we get rid of the mistagged contamination in back-
grounds and signal distributions? In Ref. [46], an ensemble
of classifiers was used to boost the classification accuracy of
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Fig. 7 Flow chart of the combined classification/regression algorithm
with stacking – kNNNN for short. All kinematic variables described in
Sect. 3 are passed to the Regressor except Higgsness

Higgs boson events with a performance almost as good as
deep neural networks [47]. We used the same idea to boost
the performance of our classifier by stacking another neural
network model on the top of the first classifier described in
the previous section. For a good review of ensemble methods,
see [48].

We show a flowchart of our proposed algorithm from
beginning to end in Fig. 7. The original dataset comprising
the kinematic features, X, described in Sect. 3, plus the Hig-
gsness variable is first split into many subsets to train/validate
the classifiers and the regressor. Two subsets are used to train
the first classifier, depicted as NN1 in Fig. 7, and the kNN
Regressor. In this scheme, the Regressor is fed by kinematic
features, but Higgsness, and also with the output scores, p,
provided by the NN1 to decide what support set should be
used to calculate M��νν of a given event. After this stage, the
algorithm has thus produced two important pieces of infor-
mation, which are appended to X: the scores vector, p and
M��νν , resulting in a new data representation, X′. This new
representation is then used to train a second neural network,
NN2. Because of the combination of a kNN regressor with
Neural Network classifiers, we call it kNNNN algorithm.
Note that the output of NN2 is the final output of the algo-
rithm, the output of kNNNN itself.

In Fig. 8, we display the confusion matrix and the score
outputs of the NN2 classifier. The separation of the classes
is improved after the second classification. To confirm that
improvement, we calculate the overall accuracy and the score
asymmetry defined as

N (score > 0.5) − N (score < 0.5)

N (score > 0.5) + N (score < 0.5)
, (5)

where N is the number of events of the class.
We also compute the positive and negative likelihood

ratios, as defined in Ref. [49]

LR+ = Sensitivity

1 − Specificity
= Sensitivity

False Positive Rate
, (6)

LR− = 1 − Sensitivity

Specificity
= False Negative Rate

Specificity
. (7)

These two metrics are aimed to measure how effective
a classifier is in predicting the classes in a binary problem.
Sensitivity, the ratio between the number of events correctly
classified as positives and the total number of events clas-
sified as positives, measures how good the classifier is in
identifying the positive class, our H2 events. Specificity, by
its turn, is the ratio between the number of events correctly
classified as negatives and the total number of events classi-
fied as negatives, our backgrounds. In order to apply these
metrics, we gather all background events into a single neg-
ative class. Analogously to sensitivity, specificity measures
how competent the classifier is in correctly identifying neg-
ative instances.

For the signals, LR+ summarizes how many times more
likely signals are correctly predicted to be signals than back-
grounds are wrongly predicted to be a signal. On the other
hand, LR− summarizes how many times less likely signals
are wrongly predicted to be backgrounds than backgrounds
events are correctly predicted to be a background. A bet-
ter classifier must therefore maximize LR+ and minimize
LR−. In the comparison of two classifiers, let’s say, NN1

and NN2, if LR+(NN2) > LR+(NN1) and LR−(NN2) <

LR−(NN1), then NN2 is better than NN1 in the confirmation
of both positives and negatives. When the inequality of the
first condition still holds but the second flips, then NN2 is bet-
ter than NN1 in the confirmation of positive class but worse
for the negative class. At the same time, if the inequality of
the first condition flips but the second still holds, then NN2

is worse than NN1 in the confirmation of positive class but
better for the negative class.

In Table 2, we display the accuracy, the asymmetry, the
positive and negative likelihood ratios, and the area under
curve (AUC) for all the three Higgs boson masses investi-
gated in our work. All metrics indicate an overall improve-
ment of NN2 over NN1, but the gain in performance is
more pronounced in the 1 TeV case. Lighter masses present
attributes less discernible than the backgrounds, so profit
more from an ensemble of classifiers that use more distinctive
features like the classification scores and the M��νν mass.

The improvement is more significant for the signals and
the WW background compared to Z Z(γ ∗) and t t̄ events.
This can be further confirmed by looking at the Fig. 9, the
difference between the confusion matrices of the NN1 and
NN2 classifiers. First of all, we want the diagonal of Fig. 9 to
be all positive, which means that NN2 increases the true pos-
itive rate compared to NN1. At the same time, negative non-
diagonal entries mean less misclassification among classes.
Overall, taking into account the results for the three Higgs
masses, we see a clear improvement of NN2 compared to
NN1. Except for the Z Z(γ ∗) class in the 1 and 1.5 TeV cases,
all diagonal entries are positive, with a major improvement
of WW classification. Moreover, the 1 TeV signal class ben-
efits more from NN2 than the heavier masses. This is a good
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Fig. 8 Confusion matrix of the classification and the output scores of the second neural network at the left and right panels, respectively, for a 2
TeV Higgs boson and its main SM backgrounds

Table 2 Comparison of metrics performance of models trained (NN1 and NN2) to identify Higgs boson of all the three masses considering in this
work

Metric 1 TeV 1.5 TeV 2 TeV

NN1 NN2 NN1 NN2 NN1 NN2

Accuracy 81.1% 87% 81.3% 87.6% 80.6% 87.5%

Asymmetry, H2 0.821 0.933 0.887 0.944 0.917 0.941

Asymmetry, WW −0.903 −0.978 −0.933 −0.988 −0.939 −0.991

Asymmetry, Z Z −0.992 −0.996 −0.994 −0.997 −0.994 −0.999

Asymmetry, t t̄ −0.916 −0.984 −0.934 −0.992 −0.947 −0.994

LR+ 28.225 74.371 45.299 86.010 61.330 82.360

LR− 0.603 0.581 0.589 0.578 0.582 0.578

AUC(H2 × WW ) 0.9813 0.9977 0.9915 0.9988 0.9940 0.9991

AUC(H2 × Z Z ) 0.9965 0.9994 0.9975 0.9996 0.9975 0.9996

AUC(H2 × t t̄) 0.9822 0.9984 0.9929 0.9992 0.9950 0.9993

Fig. 9 Confusion matrices differences (NN2 − NN1) for models trained to separate Higgs bosons of mass 1 TeV (left), 1.5 TeV (center), and 2
TeV(right)

feature of kNNNN; it helps in the more difficult cases for the
signals. Concerning the non-diagonal entries, we observe a
clear trend – the Z Z(γ ∗) class is more accurately identified

by models whose task is to separate heavier Higgs signals.
In contrast, the other classes are less confused among them-
selves by NN2. On the other hand, the more accurateWW and

123



746 Page 12 of 16 Eur. Phys. J. C (2022) 82 :746

Fig. 10 The ROC curves of a 1 TeV Higgs (with 
H /mH = 0.1) signal against the background classes, WW , Z Z , and t t̄ . In legends, in parenthesis,
we show the AUC corresponding the first classifier, NN1, and the second classifier, NN2, with and without including the predicted mass

Z Z(γ ∗) classification comes at the cost of a slight increase
in mistagging of t t̄ events as WW .

The statistical significance of the signal hypothesis depends
roughly on the fraction of background events which are
rejected, rB = 1 − εB at a fixed signal acceptance, εS ,
εS/

√
1 − rB . In Fig. 10, we display the Receiver Operator

Characteristic (ROC) curves of a 1 TeV Higgs and
H/mH =
0.1 against the background classes. We see that, for a fixed
H2 acceptance, the backgrounds rejections increase with the
NN2 classification compared to NN1. The rejection is larger
when we include the regressed M��νν mass in the data repre-
sentation. The area under curve (AUC), which summarizes
the ROC curve, are shown at last row of Table 2 for all the
three Higgs masses. AUC increases from NN1 to NN2 in all
cases, and for other Higgs masses and total widths as well.

After the second classification, using the class scores of
NN1 and the predicted M��νν mass of the Regressor, the sec-
ond neural network NN2 now provides more accurate pre-
dictions to inform the Regressor which support set to use
for the regression task. As an outcome, the contaminations
from other classes get reduced, and the prediction of M��νν

improves. We show the predicted ��νν invariant mass after
the second classification in Fig. 11.

4 Improvement of the signal significance

Now that we have established a working algorithm to predict
the M��νν mass, we want to investigate whether it is helpful
to boost the statistical signal significance when employing a
machine learning classifier. The signal significance is com-
puted according to

Nσ = ε
(S)
cut × NS

√
∑

i ε
(i)
cut × NBi + (εB × ∑

i ε
(i)
cut × NBi )

2
, (8)

where NS and NBi , i = WW, Z Z , t t̄ denote the number

of signal and backgrounds events, respectively; ε
(S)
cut and

ε
(i)
cut , i = WW, Z Z , t t̄ denote the signal and backgrounds cut

efficiencies (both on kinematic variables and score outputs),
respectively; finally, εB represents a systematic uncertainty
in the backgrounds rates assuming, for simplicity, a common
uncertainty for all background sources.

The production cross sections of WW , Z Z(γ ∗), and t t̄ ,
at leading order are given by 102.8, 14.15 and 674.1 pico-
barns, respectively. The branching ratios for W → �ν,
Z → �+�−, Z → νν̄, and t → bW− are taken to be
10.68%, 3.37%, 20%, and 100%, respectively. Assuming the
basic cuts of Eq. (2), and an integrated luminosity of 500
fb−1, we estimate 2.35 × 106, 1.91 × 105 and 1.53 × 107

events, amounting to around 1.8 × 107 background events
at the 13 TeV LHC. Including NLO QCD corrections, these
numbers should increase by a few tens of percent. We fix
the number of signals events at 1000 for all masses for illus-
tration purposes. The actual signal production cross section
depends on the specific model of new Higgs bosons.

As discussed previously, we are interested in showing the
increase in the signal significance that our proposed algo-
rithm is expected to produce by including the predicted M��νν

mass in the data representation. The significance gain is
defined as

Significance Gain = Nσ (kNNNN)

Nσ (NN1)
, (9)

where Nσ (kNNNN) is the statistical significance after using
NN2 for classification with or without the inclusion of the
predicted M��νν mass as a feature. Moreover, we also wish
to check if the predicted masses cause an underestimation
or overestimation of the statistical significance compared to
what we could get if we knew the true M��νν distribution.

In Fig. 12, we show, at the left panels, the statistical sig-
nificance, assuming a εB = 10% systematic uncertainty in
the backgrounds rates, for a new Higgs boson of 1, 1.5, and
2 TeV mass, from top to bottom rows, respectively. To raise
the significance, we cut on the classifiers’ signal score output
represented in the plots’ horizontal axis. The 1st NN and 2nd
NN lines depict the significance of NN1 and NN2, respec-
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Fig. 11 The true (shaded areas), regressed from true samples (solid lines), regressed from samples identified with NN1 [NN2] (dashed lines)
[dotted lines] M��νν distributions for the 2 TeV Higgs (upper left), WW (upper right), Z Z(γ ∗) (lower left) and t t̄ background (lower right)

tively, without including the M��νν prediction. Even with-
out reconstructing the resonance, the stacking of the neural
networks boosts the significance, as expected. The statisti-
cal significance is much enhanced, including the predicted
mass, as shown in the top lines in all the left panels. As we
see from the dashed lines, the agreement with what should
be expected using the true masses in the data representation
is good. The agreement is better for lower masses, while a
more pronounced overestimation is observed in the 2 TeV
case. An insufficient number of simulated background sam-
ples might cause that effect. Yet, the quality of the resonance
reconstruction enables us to employ the method to select the
signal events better.

At the right panels of Fig. 12, we show the significance
gain relative to the first neural network classifier, NN1. While
not including the predicted M��νν mass leads to gains around
2, including them boosts the gains to up to 6, 8 and 10
for 1, 1.5 and 2 TeV masses, respectively. As noted in the
left panels, there is a more pronounced overestimation of
around 20 to 25%, depending on the cut score, for 2 TeV

Higgs bosons. Similar gains were observed when we var-
ied the Higgs bosons widths down to 
H/mH = 1%. The
train/test/validation dataset was randomly split five times to
assess the robustness of these results, and tiny variations were
observed in this cross-validation.

The importance of the reconstructed ��νν mass with
kNNNN is confirmed from a feature importance analysis
using Shapley values from theSHAP [50] package. In Fig. 13,
we display the feature importance hierarchy in the case of
a 1 TeV Higgs, but similar conclusions hold for the other
masses. The most useful features for the second neural net-
work meta-classifier appear at the left and their importance
decreases towards the right end. As we see, the regressed
mass is the most useful one when we included it in the data
representation followed by the pT of the harder lepton, and
the NN1 scores for the WW and H2 classes. It is also notice-
able the low ranking of the Higgsness variable which might
be due the multiclass nature of the classification algorithms
or a strong correlation with the other variables.
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Fig. 12 The statistical significance of the kNNNN algorithm as a func-
tion of the cut on the output score (left panels) and the gain in the sig-
nificance, Eq. (9), compared to the NN1 classifier (right panels) for a 1

(upper row), 1.5 (center row) and 2 TeV (lower row) Higgs mass. The
systematic uncertainty is fixed at 10%

5 Conclusions and prospects

As the search for new physics intensifies following the LHC
program schedule, new ways to identify particles that hide
information through invisible decays are surely welcome.
In this work, we designed an algorithm capable of recon-
structing the mass of a new heavy Higgs boson decaying to

W+W− → �+�−′ν�ν̄�′ and its main SM backgrounds using
a simple but adequately tuned nearest neighbors algorithm.
The algorithm assumes the previous knowledge of the event
classes and the Higgs boson mass; therefore, it is useful for
post-discovery studies, for example, an analysis that requires
a selection of on-mass shell Higgs bosons.
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Fig. 13 The feature importance plot. Predicted M��νν becomes the
most important feature for classification when it is included in the data
representation

More importantly, including the predicted kNN M��νν

mass as an attribute for a neural network classification
improves the accuracy, the true and false positives/negatives
rates, the likelihood of true class classifications when com-
pared to a neural network that does not have a clue about
the masses.We computed the ROC curves and confirmed
that the second classifier increases AUC compared to the
first one, especially when the predicted mass is included in
the data representation, improving the backgrounds rejection
for a fixed signal acceptance. A feature importance analysis
corroborates the role played by the regressed M��νν for the
meta-classifier NN2. The gain in the statistical significance
is the ultimate test for the proposed algorithm. We found a
gain factor in significance up to a factor of 10 for a 2 TeV
Higgs boson mass. For lighter masses, of 1 and 1.5 TeV, the
gains are less pronounced but also high, up to 6 and 8, respec-
tively, depending on the cut placed on the signal class score.
We checked that the predicted mass is reliable and robust
as a new feature for classification by comparing our results
against classifiers trained with the true M��νν masses. Not
only the invariant mass distributions agree but also the final
statistical significance agree within a few tens of percent, at
most.

The kNNNN algorithm can be applied to other observ-
able variables as well. For example, the scattering angle of
the W bosons can be obtained in the fully leptonic channel
beside the charged leptons angles. The masses of particles in
different topologies can also be obtained. For example, we
guess that sparticles’ mass distributions from decay chains of
various lengths might be recovered after their determination
with other methods.

The next step in this kind of investigation is to relax the
previous knowledge of the mass parameters and weaken the
level of supervision when training the classifiers and regres-
sors. Outlier detection and other unsupervised techniques can
be readily used to dismiss previous knowledge of the sig-
nal class, yet, using kNN for regression requires the knowl-
edge of mass parameters. A completely weakly supervised
regression algorithm that assumes just the knowledge of the
background classes is challenging once it involves general-
ization across classes with essential information loss. We are
currently investigating deep neural networks and variational
autoencoders for regression algorithms trained on a single
background class but still assuming previous knowledge of
signal mass parameters. These results will be presented else-
where.
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