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Abstract Despite coming across quite effective definitions
of complexity in terms of many modified theories of gravity, it
still has a question about its existence in f (T ) gravity, where
the torsion scalar T is accountable for gravitational impacts.
The emergence of complexity factor is due to division of
intrinsic curvature in an orthogonal way as described by Her-
rera (Phys Rev D 97:044010, 2018). To initiate the analysis,
we reckon the interior region is like a spherically symmetric
static configuration filled by the locally anisotropic fluid and
exteriorly associated with a spherical hypersurface. In this
framework, we acquire the f (T ) field equations and utilize
the already formulated relationship between the intrinsic cur-
vature and the conformal tensor to perform our analysis. We
bring into action the definitions of the two frequently availed
masses (Tolman and Misner–Sharp) for spherical composi-
tion and investigate the appealing correlation between them
and the conformal tensor. The impact of the local anisotropy
and the homogeneity and inhomogeneity of energy density
has substantial importance in this regard. We build up some
relation in terms of already defined variables and interpret
the complexity as a single scalar YT F . It deduce that this fac-
tor vanished when the fluid content is homogenous and also
when the impact of two anisotropic terms cancel out in the
case of inhomogeneous fluid content. We determine a few
definite interior solutions which fulfill the criterion of van-
ishing scalar YT F . Certain defined ideas in fulfillment of the
vanishing complexity factor constraint, are applied for f (T )

gravity.

1 Introduction

Even though the general relativity (GR) is appraised as a suc-
cessful theory of gravity, still, it encounters challenges both
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observationally, e.g., dark energy (DE), dark matter (DM),
etc, and theoretically, e.g., quantization, singularity, etc.
Numerous modified gravity theories (MGT’s) as an appropri-
ate strategy to resolve these oddities have been advised [2–
5]. MGT’s were analyzed by holding geometry unharmed
and reshaping the Einstein-Hilbert action (EHA). MGT’s
should permit retrieving GR at small scales with the result
that certain observational limitations are matched [6]. The
most simplest and remarkable theory is f (R) gravity [7,8] to
approach. In which the function of curvature scalar is used as
the Lagrangian density. In the same fashion, the teleparallel
equivalent of general relativity (TEGR) is formed, in which
the Lagrangian density shows its equivalence with the tor-
sion scalar T . It is observed that the teleparallel gravity (TG)
[9] and GR is identical at the level of their field equations.
The modification of TG by taking equivalence of Lagrangian
density with the function of torsion scalar, results in f (T )

gravity [10]. In contemplation to illustrate the inflation and
the late time accelerated expansion of the universe, the f (T )

gravity is the best substitute, where Weitzenböck connection
(which has non-zero value of torsion scalar) are utilized. The
f (T ) theory owes second-order field equations which makes
it a more straightforward and easy approach to handle than
f (R) theory.

Some diverse features of f (T ) gravity has been analyzed
in literature [11–13]. In the new version of modified grav-
ity, named f (T ), Yang [14] gave a review of three differ-
ent kinds of f (T ) gravity and showed their significance to
answer the cosmic acceleration including alluring attributes
of them. Bejarano et al. [15] exhibit that null tetrads work
as an important tool in f (T ) gravity. With the aid of these
tetrads, they manifest the existence of Kerr geometry as the
solution of a broad range of f (T ) families. Paliathanasis et
al. [16] evaluated the analytical solutions for homogenous
and isotropic spacetime which is filled with radiation and
dust fluid in the background of cosmological f (T ) theory.
Later on, they extended their case for anisotropic Bianchi-I
spacetime and utilized the method of differential equation in
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terms of movable singularities for this purpose. They deduced
that the solutions for isotropic spacetime are manifested in
forms of the Laurent expansion, where they obtained a class
of accurate Kasner-like solutions for anisotropic spacetime.
Bhatti et al. [17–19] contributed to understanding the role of
f (T ) theory on the stability of celestial objects supported
by the approach of perturbation. They build up fundamental
equations like field equations, junction, and dynamical equa-
tions in the background of f (T ) theory. They established the
fact that the character of stiffness parameter on the stabil-
ity of the celestial objects in f (T ) theory has considerable
importance. Ren et al. [20] inspected the magnification and
position of lensed images by using the covariant formulation
of f (T ) gravity. They also determined the angle of defection
in the lensing background. To achieve this objective, they
first attained the solutions for the symmetric sphere and then
computed the effects of lensing attributes in f (T ) gravity.
The study of the neutron star is also a hot topic in litera-
ture. In f (T ) gravity, the contribution about the inspection
of neutron star with the aid of model f (T ) = T (1 + αT ) is
carried out by Lin et al. [21]. They found that in the case of
a negative value of α, the large size of the matter is held by
the neutron star.

The complexity of any system is a topic of vast analy-
sis in all branches for decades. Many factors are associated
to analyze the complexity of any system. The primary con-
cept is related to measure the information and entropy of the
structure confined within a system. In the study of massive
objects, the idea of the complexity of the self-gravitating sys-
tem is also analyzed. While in physics, whenever, we take into
account a perfect crystal (which shows the periodic behav-
ior and is ordered symmetrically), the isolated gas (which
shows the disordering and maximum amount of information)
are sort of complex system with zero complexity. LopezRuiz
et al. [22] initiated the idea of disequilibrium for analyzing
the complexity of the system. Basically, it is the measure
of the “distance” from the equally probable dispersion of
the attainable form of the system. By defining complexity
as a combination of both of these terms, i.e., information
and disequilibrium, they deduced that the idea of complex-
ity dissolved in the case of an ideal gas and perfect crystal.
After seeing deficiency in all concepts of complexity to study
the self-gravitating system, Herrera [1] developed the new
concept of complexity which is based on fluid components
such as energy density, pressure, etc. In short, it is linked
with inclusive features of the composition of the fluid. The
complexity, in this case, is built with aid of the complexity
factor, which is one of the structure scalars attained from the
orthogonal division of the intrinsic curvature. Herrera et al.
[23] further enlarged this idea for dissipative fluid content.
They not merely analyzed the complexity of the system but
also determined the condition for the progression design of
minimal complexity. They found that in terms of dissipation,

the fluid is shearing and geodesic, and there exists a variety
of solutions.

To further evaluate the role of complexity on different
geometries, Herrera et al. [24] utilized the axially symmetric
geometry and found three factors responsible for complexity
in this case. They established the relation between complex-
ity and symmetry. They also attained few analytical answers
in this peculiar case. Additionally, the idea of complexity to
investigate the evolution of spherically symmetric non-static
geometry either in terms of dissipation or non-dissipation is
studied by Herrera et al. [25]. They adopted the condition
of quasi-homologous which is a link between areal radius
velocity and areal radius. They developed certain models and
calculated their suitable implications for understating evolu-
tion. Contreras and Fuenmayor [26] inspected the stability
of self-gravitating spherical objects in terms of gravitational
cracking by taking into account this technique. They carried
out a detailed analysis to review the impacts of compactness
of the source and alternation in decoupling parameters on
the radial force. Herrera et al. [27] expanded the idea of the
complexity factor on the hyperbolically symmetric geometry
and also analyzed the role of other structure scalars which
are acquired by the orthogonal division of the intrinsic cur-
vature. They took into account the Misner–Sharp mass along
with the Tolman mass on this geometry. They ended with the
conclusion that the Tolman mass indicates negative nature
in this scenario. Many researchers utilized this approach of
complexity not only in GR, but also evaluated results for
different geometries in the background of MGT’s. In back-
ground of f (R, T, Q) (where R is a Ricci scalar, T is trace of
stress-momentum tensor and the relation of Q is defined by
Q = Rμ�Tμ�), the idea of Herrera is generalized by Yousaf
et al. [28,29]. Foremost, they developed the field equations
in the context of modified theory and later on studied the
impacts of this theory on the complexity factor. They con-
sidered two different geometries to perform this analysis and
also developed relations among the conformal scalar, Tol-
man mass, and complexity factor. Whereas the impact of
complexity factor on the terms of f (G) theory (where G is
Gauss–Bonnet term) without or with charge is investigated
by [30,31].

When energy is conserved in the stellar matter, then
the correspondence between the stellar composition and
the metric results in a famous equation labeled Tolman–
Oppenheimer–Volkoff (TOV) equation. In addition, the
equation of state (Eos) also has considerable importance in
the investigation of stellar objects. The Eos must be nec-
essarily anisotropic and it has considerable importance in
attaining the solutions of hydrostatic equilibrium equations.
For anisotropic fluids, the study of polytropic Eos [which
tells about the relationship between density and pressure and
whose solution results in a Lane–Emden equation (LEEq)]
has gained much significance [32,33]. Chandrasekhar [34]
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was the pioneer to build up the polytropes in Newtonian the-
ory with the aid of thermodynamical laws for spheres. To
attain the new class of solutions for spherical geometry cor-
responding to different polytropic indexes, the contribution
is made by Ngubelanga and Maharaj [35]. Thirukkanesh and
Ragel [36] set up a scheme to transform the Einstein field
equations and attained two models in an exact form with
the aid of polytropic Eos. They determined that the results
in terms of energy density and mass which are attained for
index n = 2 have correspondence with the observed experi-
mental results. Herrera and Barreto [37] provided a general
formulation of the polytropic model for relativistic compact
objects equipped with anisotropic fluid. They deduced that all
types of polytropic Eos turn down into the LEEq in Newto-
nian approximation. Furthermore, they inspected the impact
of pressure anisotropy, energy density, and Tolman mass on
the relativistic structure. Thirukkanesh et al. [38] determined
new class of solutions for spherical geometry which satis-

fied the polytropic Eos Pr = κρ1+ 1
n − β. They found the

solution when the geometry behaves parabolic and exhib-
ited that in this particular celestial model the radial pressure
commands the tangential one. Ramos et al. [39] examined
the Karmarkar or class-I solutions subsidized by anisotropic
polytropes. They attained solutions of the LEEq for a distinct
set of variables in the non-isothermal and isothermal patterns.
They calculated the Tolman mass and analyzed the impact of
the Karmarkar condition on the Tolman mass and mass func-
tion in accordance. The motivation behind the manuscript
and the addressed points are as below.

1. We build up the novel definition of complexity in the
framework of f (T ) gravity by taking inspiration from
Herrera [1] work. We Implied the condition of minimal
complexity in this scenario.

2. The association of f (T ) dark source components and
implication of two models with minimal complexity con-
straint is investigated.

To line up our manuscript, we utilized the subsequent layout.
The novel definition of complexity for the anisotropic sphere
in the background of f (T ) theory is developed. In Sect. 2, the
fundamental formulation of f (T ) together with the geome-
try and fluid basics to carry out this study is presented. We
formed the f (T ) equations for an anisotropic sphere. Later
on, we calculated the TOV equation and developed certain
relations with aid of Misner–Sharp mass in f (T ) theory. The
matching conditions in f (T ) theory at the hypersurface �

flourished in Sect. 3. We took the exterior Schwarzschild
structure and combined it with an interior sphere at hyper-
surface �. The continuity of metrics and extrinsic curvature
revealed the existence of the Darmois constraints. The Sect. 4
is devoted to build up relations among mass, Tolman mass,

and the conformal tensor in terms of f (T ) gravity. From
where it is evident that all these components have substantial
value in investigating the character of complexity. In Sect. 5,
through the breakdown of the intrinsic curvature, the struc-
tural parameters for anisotropic fluid in the background of
f (T ) gravity are determined. Later on, one of the parame-
ters among all is designated as the complexity factor, which
is responsible for inspecting the role of complexity. Section 6
deals with the constraint of the minimal complexity and its
link with two models to calculate the solutions in f (T ) the-
ory. In Sect. 7, the concluding remarks are given.

2 Anisotropic sphere in f (T ) gravity

The influence and importance of f (T ) gravity in inflation and
the late-time acceleration of our universe has been widely
seen in the literature. The formal scheme of f (T ) grav-
ity will be presented in this section. Afterwards, a locally
anisotropic sphere adjoint with few kinematical variables will
be explained. In [40,41], EHA in terms of f (T ) gravity is
interpreted as

S f (T ) =
∫

d4x

(
LM + f (T )

2κ2

)
|h|, (1)

here |h| = det (hμ
� ), while h

μ
� treats as the dynamic field of

f (T ) theory. The Lagrangian for matter field is given byLM ,
where the coupling constant is given by κ and f (T ) is for dif-
ferentiable function of torsion scalar T . The relation of metric
tensor with the set of these orthonormal vectors is as follows
g�μ = θi jh

i
�h

j
μ adjoint θi j = diag(1,−1,−1,−1). In this

scenario, the label for tangent space is used as (μ, �, . . .)

and label for manifold space is used as (i, j, . . .). The role
of Weitzenböck connection in f (T ) theory has substantial
impact which follows from subsequent relation

T σ
μ� = 
̄σ

�μ − 
̄σ
μ� = h σ

i (∂�h
i
μ − ∂μh

i
�),

where

S μ�
σ = �

μ
σ

2
T β�

β − �
�
σ

2
T βμ

β + 1

4

(
Tμ�

σ + T �μ
σ − T μ�

σ

)
.

We attain torsion scalar with the aid of the following relation

T = S μ�
σ T σ

μ�,

where the defined property of tensor T σ
μ� is as T σ

μ� = −T σ
�μ.

When we apply the variation on the EHA of Eq. (1) with aid of
tetrad field, then the resultant equation takes the subsequent
form
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h σ
i S μ�

σ ∂μT fT T + f

4
h

�

i + fT
h

∂μ(hh σ
i S μ�

σ )

+h σ
i T α

μσ S
�μ

α fT = κ2

2
h σ
i T �(m)

σ , (2)

where, fT ≡ ∂ f
∂T , fT T ≡ ∂2 f

∂T 2 . The fluid stress-energy ten-

sor (S-ET) has the representation of the form T �(m)
σ . In the

covariant formulation of f (T ), the field equations based on
the argument that the difference between the Ricci scalar and
the torsion scalar has the same impact as the covariant form
of f (T ) gravity are acquired as follows

ϒμ� fT T − T

2

(
fT − f

T

)
gμ� + Gμ� fT = κ2T (m)

μ� ,

where ϒμ� = S σ
μ� ∇σ T , while the value of Einstein tensor is

as Gμ�. The modification of Eq. (2) provides

Gμ� = κ2

fT

(
T (T )

μ� + T (m)
μ�

)
, (3)

where correction terms in f (T ) gravity is

T (T )
μ� = − 1

κ2

{
ϒμ� fT T + 1

4

(
R fT − ϒ fT T + T

)
gμ�

}
.

(4)

Here we can attain the TEGR equations by implying the
limit f (T ) = T . We take into account a static spherically
symmetric geometry as an interior region (Z−) of the form

ds2− = eηdt2 − eξdr2 − r2(dθ2 + sin2θdφ2), (5)

where η and ξ depend only on r . In form of unequal stresses,
the S-ET in its conventional form turn out as

T (m)
μ� = uμu�ρ − Phμ

� + �μ
� ,

where hμ
� is the orthogonal projection tensor, �

μ
� is the

anisotropic tensor and P represents the isotropic tensor.
The four vectors along coordinates are defined by the rela-

tion uμ = (e− η
2 , 0, 0, 0); sμ = (0,−e− ξ

2 , 0, 0); kμ =
(0, 0,−r, 0); lμ = (0, 0, 0,−rsinθ) and assured the sub-
sequent features uμuμ = 1, sμsμ = −1, kμkμ =
−1, lμlμ = −1, uμsμ = 0. We established the two
new subsidiary parameters of the form P⊥ = kμk�Tμ� and
Pr = sμs�Tμ� in order to analyze the anisotropic fluid. The
immediate effects of the above parameters on the conven-
tional form of S-ET results into

Tμ� = (P⊥ + ρ)uμu� − P⊥gμ� − (P⊥ − Pr )sμs�, (6)

with the subsequent supporting relations of the form

�μ� = �

(
sμs� + hμ

�

3

)
, � = −(P⊥ − Pr ),

P = 2P⊥ + Pr
3

, hμ
� = δμ

� − uμu�.

The Eq. (3) together non-zero constituents of S-ET of the
form T 0

0 = ρ, T 1
1 = −Pr , T 2

2 = −P⊥ generate the
subsequent field equations of f (T ) theory

− (e−ξ + 1)

r2 + ξ́e−ξ

r
= 8πeη

fT

×
[
ρ + 1

16π

{
(T fT − f ) − fT T e

−ξ

(
ή

4
− 2

r

)
T́

}]
,

(7)

(e−ξ + 1)

r2 + ήe−ξ

r
= 8πeξ

fT

[
Pr − 1

16π
(T fT − f )

]
, (8)

e−ξ

2

(
η′′ + η′2

2
− ξ ′η′

2
+ η′

r
− ξ ′

r

)

= 8πr2

fT

[
P⊥ − 1

16π
{(T fT − f )

+e−ξ fT T
2

(
3

r
− η′

)
T ′

}]
, (9)

where the notions for the differential function of T and the
derivative w.r.t. r are f (T ) and prime, respectively. We attain
the hydrostatic equilibrium equation (or generalized TOV
equation) of the underneath form

P ′
r + (ρ + Pr )

η′

2
− 2(Pr − P⊥)

r
+ X (D)

1

8π
= 0, (10)

where the notion used for extra terms of f (T ) theory is
denoted by X (D)

1 and presented in Appendix A. Now, to
discuss the energy distribution of the geometry and grav-
ity, we used the Misner–Sharp mass [42]. It is the quasi-local
(defined on the edges of the specific domain of the spacetime)
version of the mass and derived by using the mass transfor-
mation across the matter to the gravitational region in the
way of collapsing process. The mathematical description of
the above-stated mass for our geometry is given as

2m(r) = (1 + e−ξ )r. (11)

The substitution of the Eq. (11) into (7) and applying process
of the differentiation and integration, respectively results as

m(r) = 4π

∫ r

0

r2

fT

[
ρeη + �

(T )
00

]
dr, (12)

where �
(T )
00 is set out in Appendix A. The combination of

Eqs. (8) and (11) gives

η′ =
⎡
⎣2

{
4π
fT

(Prr3 − (2m − r)r2 × �
(T )
11 )

}

(2m − r)2 − m

⎤
⎦ , (13)
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where �
(T )
11 is written in Appendix A. By inserting the value

of η′ into Eq. (10) grant the subsequent result

P ′
r = −(Pr + ρ)

[
2

{
4π
fT

(pr r3−(2m−r)r2×�
(T )
11 )

}
(2m−r)2 − m

]

2

−2(Pr − P⊥)

r
+ X (D)

1

8π
= 0. (14)

3 Matching conditions at hypersurface �

The matching hypersurface is a separation between two sec-
tions Z− and Z+ of the manifold Z by the 3D timelike hyper-
surface �. To match the distinct geometries of the stellar
objects at the hypersurface �, a variety of matching condi-
tions are available in the literature. Among them, the Dar-
mois [43] conditions are the most appropriate ones. We take
into account the Schwarzschild spacetime for exterior region
(Z+) as

ds2+ = YdT 2 − 1

Y
dR2 − R2(dθ2 + sin2θdφ2), (15)

where Y = (1 − 2M
R ). The conditions are given as

• The metrics must hold continuity over the hypersurface
�, i.e.,

[ds2+]� = [ds2]� = [ds2−]�. (16)

• Also, the extrinsic curvature (EC) must possess the con-
tinuity over the hypersurface �, i.e.,

[Kab]� = [Kab]− = [Kab]+, (a, b = 0, 2, 3). (17)

The value of EC is as

K±
ab = −n±

β

(
∂2xβ

±
∂χa∂χb

+ 
β
σγ

∂xσ±∂xγ
±

∂χa∂χb

)
,

(β, σ, γ = 0, 1, 2, 3), (18)

where χa , n±
β and xβ

± are the hypersurface components, out-
ward unit vector for both regions, and components of the Z−
and Z+ sections, respectively. By implying Eqs. (16), (17)
and (18) at r� = r = constant , we get

e−ξ �=
(

1 − 2M

r

)
, eη �=

(
1 − 2M

r

)
,

P(e f f )
r

�= 0, M
�= m, (19)

where P(e f f )
r

�= 8π
fT

(Pr +�
(T )
11 ), here �

(T )
11 = −1

16π
× (T fT −

f ) are dark source terms of f (T ) theory.

4 Relation of conformal tensor, mass and Tolman mass

The intrinsic curvature, the Ricci scalar and the conformal
tensor is defined by the subsequent expression

Rτ
μ�σ = Cτ

μ�σ + 1

2
Rτ

�gμσ − 1

2
Rμ�δτ

σ + 1

2
Rμσ δτ

�

−1

2
Rτ

σ gμ� − 1

6
R(δτ

�gμσ − gμ�δτ
σ ). (20)

The conformal tensor deduces information relating to the
tidal forces, when any kind of object passes over the geodesic.
It can be measured by looking at the distance variation of the
adjacent geodesic. The conformal tensor is the only compo-
nent of intrinsic curvature that deals with gravitational wave
transmission employing regions lacking matter. One another
feature is that it is trace-free. It consists of 256 components
and among them 10 components are expressed independently
in 4D. By involving a four-velocity vector, we can split 10
components into two tensors of rank two. The conformal ten-
sor is a composition of two parts, one is electric and another
one is magnetic. When we deal with spherical geometry, the
effect of the magnetic part is not considered. Because during
the analysis of the flow, the behavior of expansion of lines
has no dependency on each other. So, in this way, the collapse
revolves around the fluid components. The conformal tensor
along with its scalar has subsequent expression

Cσξντ = (gσξμ�gντπθ − ησξμ�ηντπθ )V
μVμE�θ ,

where gσξμ� = gσμgξ� − gσ�gξμ and the expression for the
Levi-Civita tensor is given as ησξμ�. The conformal tensor
can be re-arranged as below Eμ� = ψ(sμs� + 1

3hμ�), along
with corresponding value of conformal scalar ψ

ψ = e−ξ

4

(
ξ ′η′

2
− η′′ − η′2

2

)
+ e−ξ

2r

(
η′

2
− 1

r

)

− 1

2r

(
e−ξ ξ ′

2
+ 1

r

)
. (21)

The relation of the mass using Eqs. (7)–(9), (11) and (21)
yield

3m(r)

r3 = 4π

fT

[
(ρeη + Pre

ξ − r2P⊥)

−(�
(T )
00 − �

(T )
11 + �

(T )
22 )

]
− ψ. (22)

Here, �
(T )
22 is set out in Appendix A. It is evident that the

mass function has a dependence on the conformal scalar ψ ,
fluid constituents, and dark source components of fT theory.
After implying the process of differentiation w.r.t. r on the
above result and utilizing Eq. (11), it turns out to be
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ψ = 4π

fT

[
(ρeη + Pre

ξ − r2P⊥)

−
∫ r

0
(2�

(T )
00 − �

(T )
11 + �

(T )
22 )dr

]

+ 4π

r3

[∫ r

0
(
eηρ

fT
)′ + (

�
(T )
00

fT

′
)

]
r̃3dr̃ . (23)

This equation indicates that the conformal scalar ψ resides
only on the dark source components of f (T ) theory and fluid
components like density inhomogeneity and local anisotropy.
It reveals that the density inhomogeneity and anisotropy have
substantial influence in the analysis of stellar bodies. On sub-
stituting back Eq. (23) into (22) bring out following result

m(r) = 4πr3

3 fT

[∫ r

0
(2�

(T )
00 − �

(T )
11 + �

(T )
22 )dr

−(�
(T )
00 − �

(T )
11 + �

(T )
22 )

]

− 4π

r3

[∫ r

0

(
eηρ

fT

)′
−

(
�

(T )
00

fT

′)]
r̃3dr̃ . (24)

The above result shows that the mass has correspondence
with dark source components of f (T ) theory, density inho-
mogeneity, and a homogenous form of density. An additional
version of the mass, i.e., TolmanWhittaker mass (TW-M) is
employed to proceed with our analysis. It was built to cal-
culate the total energy accumulation of the system, and that
is why referred to as “active gravitational mass”. This mass
formula is an appropriate version of the mass formula to
carry out the analysis of anisotropic fluid distributions. To
deal with the slow progression or staticity of the system, the
subsequent formation of the TW-M inside the sphere with
radius r is used

mT = 4π

∫ r

0
e

(η+ξ)
2 r̃2(ρ + Pr + 2P⊥)dr̃ . (25)

When we take into account the Eqs. (7)–(9) into (25) and
after implying the technique of integration, it brings out

mT = fT
2
e

(η−ξ)
2 r2η′ − 4π

[
X (D)

2 (r)+
∫ r

0

{
X (D)

2 (r)dr̃
}

,1

]
,

(26)

where value of X (D)
2 is set out in Appendix A. The use of

value η′ from Eq. (13) and eξ from (19) in above equation
bring out the result of the following form

mT = fT
2
e

(η+3ξ)
2

{
4π

fT
(Prr

3 − (2m − r)r2�
(T )
11 ) − m

}

− 4π

[
X (D)

2 +
∫ r

0

{
X (D)

2 (r)dr̃
}

,1

]
. (27)

It is prominent from the above equation that the TW-M has
true understating as “active gravitational mass”. Now, we
imply the derivative of Eq. (25) with regard to r and utilized
the Eq. (26) to furnish the following result

ḿT − 3

r
mT = − fT

2
r2

{
ψ + 4π(Pr − P⊥)

−4π�
(T )
00 − 4π�

(T )
22

}

− 12π

r

{
X (D)

2 (r) +
∫ r

0

{
X (D)

2 (r)dr̃
}

,1

}
.

While after integrating, we attain

mT = (mT )�

(
r

r�

)3

+ r3
∫ r�e

r

×
[
e

η+ξ
2

r̃
fT (4π(Pr − P⊥) + ψ− 4π�

(T )
00 − 4π�

(T )
22 )

− 1

4πr4

{
X (D)

2 (r) +
∫ r

0

{
X (D)

2 (r)dr̃
}

,1

}]
. (28)

The above equation exhibit that the TW-M has correspon-
dence with the fluid components, dark source components of
f (T ) and the conformal scalar ψ .

5 Correlation of structure scalars and the conformal
scalar within fT theory

To understand the behavior of the anisotropic fluids appropri-
ately, we use a few structural parameters. These parameters
are attained by dividing the Riemann tensor in an orthogo-
nal direction. Herrera et al. [44] took the initiative to build
up the strategy to evaluate these structural parameters. These
are trace and trace-free components of the three tensors and
each one corresponds to a unique significance. To carry our
analysis within f (T ) gravity, we utilized the expression of
the three tensors Xμ�, Yμ� and Zμ� of the form already given
in [1]. The division of Eq. (20) by making use of f (T ) field
equations is given by

Rμσ
�ρ = Cμσ

�ρ + 16π(T (T ) + T (m))
[μ
[� δ

σ ]
ν]

+ 8π(T (T ) + T (m))(
1

3
δ
μ
[�δσ

ρ] − δ
[μ
[�δ

σ ]
ρ] ). (29)

When we utilize Eqs. (4) and (6) into (29), we obtain

Rμσ
�ρ = Rμσ

(I ) �ρ + Rμσ

(I I )�ρ + Rμσ

(I I I )�ρ,

here

Rμσ

(I ) �ρ = 16πρV [μV[�δ
σ ]
ρ] − 16π Ph[μ

[� δ
σ ]
ρ]

+ 8π

(
ρ − 3P + (T fT − f )

16π
δμ�
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− fT T
8π

Sμτ∇τT

)
+ 8π

(
1

3
δ
μ
[�δσ

ρ] − δ
[μ
[�δ

σ ]
ρ]

)
,

Rμσ

(I I )�ρ = 16�
[μ
[� δ

σ ]
ρ] + 1

8π(
(T fT − f )

2
δ
[μ
[� δ

σ ]
ρ] − fT T S

[μτ
[� δ

σ ]
ρ]∇τT

)
,

Rμσ

(I I I )�ρ = 4V [μV[�Eσ ]
ρ] − ψμσ

α ψ�ρβE
αβ,

with

ψμσ� = V αηαμσ�, ψμσ�V
� = 0,

with the help of the above stated results, we can derive the
values of three tensors Xμ�, Yμ� and Zμ� in form of the
physical variables as

Xμ� = −8π

3
ρhμ� + 4π�μ� − Eμ� + X (D)

3 , (30)

Yμ� = 4π

3
(ρ + 3P)hμ� + 4π�μ� + Eμ� + X (D)

4 , (31)

Zμ� = 0, (32)

where, the value of X (D)
3 and X (D)

4 is set out in Appendix
A. We can divide them in their trace-free and trace parts as
follows

Xμ� = XT
hμ�

3
+ XT F

(
sμs� + hμ�

3

)
;

Yμ� = YT
hμ�

3
+ YT F

(
sμs� + hμ�

3

)
,

where expressions for XT , XT F , YT and YT F are as given

XT = 8πρ + X (D)
5 , XT F = 4π� − ψ + X (D)

6 ,

YT = 4π(ρ + 2P⊥ + Pr ) + X (D)
7 ,

YT F = 4π� + ψ + X (D)
8 , (33)

where the values of X (D)
5 , X (D)

6 , X (D)
7 and X (D)

8 are set out
in Appendix A. Using the value of scalar YT F from Eq. (33)
and value of ψ from Eq. (23), it leads to

YT F = 4π� + X (D)
8 + 4π

fT

×
[
(ρeη + Pre

ξ − r2P⊥)

−
∫ r

0
(2�

(T )
00 − �

(T )
11 + �

(T )
22 )dr

]

− 4π

r3

[∫ r

0

(
eηρ

fT

)′
+

(
�

(T )
00

fT

′)]
r̃3dr̃ . (34)

The local anisotropy of fluid can be seen from this result

YT F + XT F = 8π� + X (D)
8 + X (D)

6 .

To understand the importance of the scalars YT and YT F , we
utilize Eqs. (28) and (33), to attain

mT = (mT )�e

(
r

r�

)3

+
∫ r�e

r

eη+ξ

r̃
fT (YT F + X (D)

9 )dr̃

(35)

mT =
∫ r

0
e

η+ξ
2 r̃2(YT + X (D)

7 )dr̃ . (36)

Where X (D)
9 = −X (D)

8 + X (D)
8I , and value of X (D)

8I is given in
Appendix A. It is evident from the above results that the YT
and YT F has correspondence with TW-M.

6 Vanishing complexity factor with few models for
sphere

In this section, two models admitting the vanishing of com-
plexity factor will be presented. Since the inspection of
complexity is widely carried out in the literature. Here, in
our strategy, one of the scalars attained through orthogo-
nal division of the Riemann tensor is associated to describe
the complexity of the system. The scalar YT F is desig-
nated as a complexity factor because of its significant fea-
tures. It involves the impact of TW-M on the anisotropy and
density inhomogeneity of the fluid content. This system of
f (T ) modified equations consists of the five parameters like
(η, ξ, Pr , ρ, P⊥). After implying the vanishing complexity
factor constraint YT F = 0, the need to get one more condi-
tion is still there. The vanishing complexity constraint from
Eq. (34) turns out as

� = 1

fT

[
(ρeη + Pre

ξ − r2P⊥)

−
∫ r

0
(2�

(T )
00 − �

(T )
11 + �

(T )
22 )dr

]

− 1

r3

[ ∫ r

0

(
eηρ

fT

)′
+

(
�

(T )
00

fT

′) ]
r̃3dr̃ + X (D)

8

4π
.

(37)

The above equation reveals the correspondence of the vanish-
ing complexity constraint to the anisotropic fluid with density
inhomogeneity and dark source components of f (T ) theory.
Now we shall present two models for an anisotropic sphere.
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6.1 The Gokhroo and Mehra constraint-satisfactory model
for anisotropic sphere

Gokhroo and Mehra [45] inspected the interior solutions of a
sphere with anisotropic pressure. The state of energy density
is not constant but it is variable. To analyze the behavior
of stellar bodies in terms of energy density, we utilized the
supposition made by Gokhroo and Mehra given as

ρ =
(

1 − r2K

r2
�

)
ρ0, (38)

where ρ0 treated as constant and K set ranges between 0 and
1. Making use of Eq. (38) into (12), we attain

m = 4πeη

fT
× r3ρ0

3

(
1 − 3K 2

r

5r2
�

)

+ 4π

∫ r

0

r2

fT
× �

(T )
00 dr − X (D)

10 .

When we substitute this equation into Eq. (11), it turn out as

e−ξ = 1 − 16πeηr2σ

fT
+ 48πKeηr4σ

5r2
� fT

− 8π

r

∫ r

0

r2

fT
× �

(T )
00 dr + 2

r
X (D)

10 ,

where σ = ρ0
3 . From the and Eq. (9), we acquire the subse-

quent form

8π

fT
(Pr − P⊥) =

(
e−ξ + 1

r2

)

− e−ξ

2

(
η′′ + η′2

2
− ξ ′η′

2
− η′

r
− ξ ′

r

)

− 8π

fT

(
�

(T )
11 − �

(T )
22

)
, (39)

we initiate the subsequent variables

eη(r) = 1

e
∫
( 2
r − 2y)dr

; e−ξ = z,

with aid of the above variables, Eq. (39) brings out

2

y

(
1

r2 − 8π�

fT

)
= z′ + z

[
2y′

y
+ 2y − 6

r
+ 4

yr2

]

+ 2

y
× 8π

fT
(�

(T )
11 (z) − �

(T )
22 (z)). (40)

Which has solution of the subsequent form in terms of � and
y as

ds2 = 1

e
∫
( 2
r − 2y)dr

dt2

− y2e
∫

2y+ f rac4yr2
dr

r6(2
∫
( 1−8π�r2

r2 fT
)− 8π

fT
(�

(T )
11 (z)−�

(T )
22 (z))e

∫
2y+ 4

yr2 dr+c1

× dr2 − r2(dθ2 + sin2dφ2)

where c1 is constant of integration. The above equation
indicates the importance of generating functions � and y in
term of f (T ) gravity. The physical variables in this frame-
work turn out as

m′(r) = 4πr2

fT

[
eηρ − �

(T )
00

]
,

4π

fT

r

(2m − r)

[
Pr − 1

16π
(T fT − f )

]

= y(2m − r − r2) − m + r

r3 ,

8π P⊥ = fT
r2

[(
2m

r
− 1

)(
y′ + y2 − y

r
+ 1

r2

)

+y

(
m′

r
− m

r2

)
+ r2

2 fT
X (D)

11

]
,

where value of X (D)
11 set out in Appendix A.

6.2 Polytropic Eos-satisfactory model for anisotropic
sphere

This section is fixed for investigating the role of polytropic
Eos in framework of f (T ) theory. Foremost, the following
supposition are made

Pr = Kρθ = Kρ1+ 1
n , (41)

where K, ρ, n, θ are polytropic constant, energy density,
index and exponent respectively. We utilized the subsequent
dimensionless parameters to transform the TOV equation
into dimensionless form

β = Prc
ρc

, r = ζ

C
, C2 = 4πρc

β(n + 1)
,

θn = ρ

ρc
, υ(ζ ) = m(r)C3

4πρc
, (42)

where the term c refers that the calculations are done at the
center. Taking account these values into TOV, we acquire the
subsequent result

2ζ 2 dθ

dζ
N 2ρ + 4πρ2

cβζθ

fT (n + 1)
L − θnβζ

(1 + n)
× N 2L�

(T )
11
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+ 2πρ2
c θ

nυL

βC2(n + 1)
− 2πζ

β(1 + n)
N 2 + X (D)

1 C

8πβ(1 + n)
N 2 = 0,

(43)

where L = (1 + βθ) and N = (1 − 2υr(n+1)
ζ

). Now putting
the values of variables from Eq. (42) into Eq. (11), we acquire
the subsequent result for the mass function

dυ

dζ
= ζ 2

fT

(
θneη + �

(T )
00

ρc

)
. (44)

The combination of the above Eqs. (43)–(44) result in the
LEEq. It is the description of the polytropic objects in state
of hydrostatic equilibrium. We get the value for diminishing
complexity factor by inserting parameters from Eq. (42) into
(37) as

� = 1

fT

[(
θnρce

η + Kθ1+nρ
1+ 1

n
c eξ − C2

ζ 2 P⊥
)

−
∫ r

0
(2�

(T )
00 − �

(T )
11 + �

(T )
22 )dr

]

− C3

ζ 3

[∫ r

0

(
eηθnρc

fT

)′
+

(
�

(T )
00

fT

′)]

× ζ̃ 3

C3 × d

(
ζ̃

C

)
+ X (D)

8

4π
. (45)

The complexity of the above Eqs. (43)–(45) is evident from
their expressions. It is not essay to attain accurate analyt-
ical solutions. Their numerical values can be acquired by
taking different values of the above-described parameters.
The extension of the Newtonian to relativistic polytropes
accepts two feasibilities, one along the different parameters is

explained in Eq. (41) and other one is Pr = Kρθ
a = Kρ

1+ 1
n

a .
The values of the TOV equation and �, in this case, would
turn out as

2ζ 2 dθa

dζ
N 2ρ + 4πρ2

cβζθa

fT (n + 1)
L

− θna βζ

(1 + n)
× N 2L�

(T )
11 + 2πρ2

c θ
n
a υL

βC2(n + 1)

− 2πζ

β(1 + n)
N 2 + X (D)

1 C

8πβ(1 + n)
N 2 = 0, (46)

� = 1

fT

[(
θna ρce

η + Kθ1+n
a ρ

1+ 1
n

c eξ − C2

ζ 2 P⊥
)

−
∫ r

0
(2�

(T )
00 − �

(T )
11 + �

(T )
22 )dr

]

− C3

ζ 3

[∫ r

0

(
eηθna ρc

fT

)′
+

(
�

(T )
00

fT

′)]
ζ̃ 3

C3

× d

(
ζ̃

C

)
+ X (D)

8

4π
, (47)

where θna = ρa
ρac

. The Eqs. (44), (46) and (47) deals with
the polytropic Eos with zero complexity of stellar objects in
framework of f (T ) gravity.

7 Concluding comments

This paper attempts to build up the definition of complexity
based on the Herrera [1] strategy in the background of f (T )

gravity. This theory has been widely analyzed as an alterna-
tive way to explain the accelerated expansion of the universe.
To carry out our inspection, first of all, we provided the fun-
damental formulation of theory and expressions for a few
basic variables. Then, we established the f (T ) field equa-
tions in the presence of an anisotropic sphere. The general-
ized TOV equation is formed with the help of conservation
law to enhance our analysis at a higher range. We derived
the matching constraint for the static anisotropic sphere in
the framework of f (T ) gravity to combine the interior and
exterior regions. We utilized the two masses in the case of an
anisotropic sphere and developed certain relations in terms of
physical variables and the conformal tensor (which satisfies
EμσV σ ; E�

� = 0). The effect of the Misner–Sharp mass,
the conformal tensor, and the active gravitational mass on
the sphere coupled with anisotropic fluid content correspond
to the density inhomogeneity, anisotropy, and dark source
components of f (T ) theory is studied. To attain the com-
plexity factor labeled as YT F , we carried out the division of
the Riemann tensor in an orthogonal direction. We acquired
the structural scalars from the procedure and build up the
constraint of the diminishing complexity factor. We found
few models to attain the solutions in this scenario. We close
the discussion with subsequent comments.

The motivation to build a novel definition of f (T ) grav-
ity is that complexity is responsible to understand the sys-
tem excellently. Many factors are responsible for complexity,
including fluid anisotropy and density inhomogeneity. The
factor YT F includes the impact of density inhomogeneity,
f (T ) dark source components, and local anisotropy on the
total energy budget of the system. If we add up the charge,
then the impact of the charge will also be contributed in YT F .
We implied the process of orthogonal division of the Riemann
tensor to acquire the structure parameters introduced by Her-
rera et al. [44]. They established five structure parameters and
their corresponding features of them. They found solutions
in the case of these structure parameters. The idea is widely
extended in the case of dissipation or non-dissipation of the
non-static anisotropic sphere in [46]. They have done their
inspection in presence of an electric charge and determined
that the heat fluxes are dealt with scalar Z . To understand
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the progression of the shear and expansion tensor, the main
candidates are YT F and YT . Recently, this idea is extended in
the case of hyperbolic symmetry by the different contributors
[47–49].

In matching the diminishing complexity constraint, many
models can be applied as an extra constraint to analyze the
system. Our particular choice is concerned with “Gokhroo
and Mehra” and “polytropic Eos”. With the help of these
models, we acquired four unknowns from the five possible
unknowns (η, ξ, Pr , ρ, P⊥) of the system. In the “Gokhroo
and Mehra” model, we build up the expressions for physi-
cal parameters in the background of f (T ) theory. For this
concern, two unknown functions are utilized and deduced
that expressions for physical parameters can be found in
form of generating functions � and y. While in “polytropic
Eos”, we formed the system of equations for TOV, mass, and
diminishing complexity factor. We utilized the dimensionless
variables in this scheme. The motivation to investigate the
polytropic models for polytropic Eos has increased among
researchers. Within modified gravity, Henttunen et al. [50]
inspected the stellar structures in f (R) theory along a range
of polytropic Eos. They also determined effective solutions
within star’s core. While in Palatini f (R) theory, the contri-
bution made by Wojnar [51]. The dark source components
of f (T ) theory contributed in complexity factor as shown
in Eq. (34) and for fT = 0, the results are compatible with
Herrera et al. [1].
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8 Appendix A

The value of X (D)
1 , �

(T )
00 , �

(T )
11 and �

(T )
22 is listed below

X (D)
1 = − η′e−2ξ

32π

(
η′

4
− 2

r

)
T ′

+ξ ′e−ξ

16π
le f t[{T fT − f },1 − (T fT − f )

]

+ e−2ξ

r

[
fT T
16π

(
3

r
− η′

)]
,

�
(T )
00 = eη

16π

{
(T fT − f ) − fT T e

−ξ

(
η′

4
− 2

r

)
T ′

}
;

�
(T )
11 = − eξ

8π

(
T fT − f

2

)
,

�
(T )
22 = r2

16π

{
−(T fT − f ) + fT T

2

(
η′eξ − 3

r
e−ξ

)
T ′

}
;

where the value of X (D)
2 , X (D)

3 , X (D)
4 , X (D)

5 , X (D)
6 , X (D)

7 ,

X (D)
8 , X (D)

8I , X (D)
9 , X (D)

10 and X (D)
11 is as under

X (D)
2 = e

(η+ξ)
2

(
�

(T )
11 + �

(T )
00 + �

(T )
22

)
dr̃3,

X (D)
3 = 1

2

{(
T fT − f

2

)
δμ� + fT T Sμ�τ∇τT

}

− 1

3

{
fT T S

μτ∇τT −
(
T fT − f

2

)}
hμ�,

X (D)
4 = 1

2

{(
T fT − f

2

)
gμ� − fT T S

τ
�μ∇τT

+ fT T
2

(V� + Vφ − gμ�V
σ )Sτ

μ∇τT

}

− hμ�

2

{(
T fT − f

2

)
− fT T S

μτ∇τT

}
,

X (D)
5 = −1

9

{
fT T S

μτ∇τT −
(
T fT − f

2

)}
;

X (D)
6 = 1

2

{
fT T Sμ�τ∇τT +

(
T fT − f

2

)
δμ�

}
,

X (D)
7 = 1

6

{
fT T S

μτ∇τT −
(
T fT − f

2

)}
;

X (D)
8 = 1

2

{(
T fT − f

2

)
gμ� − fT T S

τ
�μ∇τT

+ fT T
2

(V� + Vμ − gμ�V
σ )Sτ

μ∇τT

}
,

X (D)
8I = −4π�

(T )
22 − 4π�

(T )
00 − 1

4πr4

×
{
+

∫ r

0
X (D)

2 (r)dr̃ + X (D)
2 (r)

}
,

X (D)
10 = 4π

∫ (
eη

fT

)′ r3ρ0

3

(
1 − 3K 2

r

5r2
�

)
dr,

X (D)
11 =

{(
T fT − f

)
+ fT T

2

(
3 − 2(2y − 1

)

×
(

2m

r
− 1

)2

T ′
}

,
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