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Abstract We examine the evolution of cavities within
spherically symmetric cluster of stars in high curvature grav-
ity. For this purpose, we use f (R) gravity through the
Starobinsky model to incorporate dark matter effects in the
discussion. In particular, we check the physical significance
of the f (R) model by associating it with the observational
data of stellar object 4U182030. For evolution of the cavity,
we consider the purely areal evolutionary phase by assuming
that the proper distance (in a radial direction) among neigh-
boring stars remains constant. The analytical solutions are
obtained among which a few solutions fulfill the Darmois
conditions. It is found that the evolution of the cavity in a
cluster of stars is highly controlled by the influence of dark
matter.

1 Introduction

In modern cosmology, dark matter and dark energy have been
the most fascinating objectives. Planck’s collaborators pro-
vided observational data that indicates 5% seen matter, 71%
dark energy (DE) and 27% dark matter (DM)[1]. Dark energy
is a mysterious form of energy whose presence helps to com-
press the curvature of space which in turn speeds up the cos-
mic expansion. Baryonic matter refers to the visible matter
in the universe while DM is an invisible hypothetical type of
matter which does not interact with electromagnetic radia-
tions. It can only be observed via its gravitational effects on
the observable matter.

The theory of f (R) gravity, being an alternative candidate
of general relativity (GR), has received a lot of attention due
to its simplicity in describing the interaction of DE and DM
[2–8]. This theory is derived by modifying the Ricci scalar in
the Einstein Hilbert action to its generic function f (R) that
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represents the higher order curvature principle for a gravi-
tational framework. Many researchers used different models
of f (R) functions to describe the impact of DM and DE
[9–13]. In this context, Starobinsky [14,15] used the second
order curvature term, f (R) = R + εR2, to formulate Ein-
stein’s equations with a quantum one loop system. He used
this model to describe the exponential cosmic expansion and
current time cosmic acceleration for an early time as well as
the present time of power-law inflation. This model can also
deal with DM issues [16].

Until about a decade ago, star clusters in general, and glob-
ular clusters in specific were assumed to be basic formations
composed of gravitationally bound stars with a common ori-
gin [17]. Many observational surveys like the rotational loops
(out to tens of kpc), gravitational lensing (out to 200 kpc),
and heat in clusters showed that 95% of a cluster of stars is
made up of any unknown segment of DM [18–20]. The chal-
lenges of galactic rotational curves, stellar clusters and mass
differences lead to the presence of DM in cluster evolution
[21–23]. Thus it exhibits influence of DM in the evolutionary
mechanism. This may enable us to unveil some hidden facts
that are not yet detectable in the universe’s structure. In this
context, many useful theoretical works have been done to
explore the evolution and development of stellar structures
[24–29].

At the large scale, about 80% of the universe volume is
composed of cosmic voids. These voids are large spaces
between clusters of stars, which contain very few or no stellar
structures. Cosmic voids are not empty, but they are under-
dense enough that the phenomenon of gas-stripping galaxies
is extremely rare. In this way, these voids provide a unique
environment for the description of the evolution and forma-
tion of galaxies [30]. It is believed that the actual universe
has a sponge-like structure governed by the voids [31]. Many
observations indicate that voids of a characteristic scale of 30
h−1 Mpc exist in the present volume of the universe, where
h shows the dimensionless Hubble parameter, H0 = 100 h
km s−1Mpc−1 [32]. However, voids of different sizes, rang-

123

http://crossmark.crossref.org/dialog/?doi=10.1140/epjc/s10052-022-10678-2&domain=pdf
mailto:rubab.manzoor@umt.edu.pk
mailto:dr.rubab.second@gmail.com
mailto:saadia.icet@pu.edu.pk
mailto:daoudchoudhary1673@gmail.com


739 Page 2 of 15 Eur. Phys. J. C (2022) 82 :739

ing from minivoids [33] to supervoids [34] can be discov-
ered. According to � cold DM (� CDM) simulations, voids
should have a density of low-mass halos of about 1/10 the
cosmic mean. Many researchers also noticed that the galax-
ies have a poor tendency to get higher rates of star formation
towards void centers. It is important to notice that voids are
neither spherical nor empty in general. In simulation results
or deep redshift observations, voids are generally referred to
spherical vacuum cavities surrounded by a fluid.

The issue of cavity evolution followed by a central explo-
sion of a spherically symmetric distribution was firstly dis-
cussed by Skripkin [35]. Accordingly, a cavity appears
around the center of fluid distribution under a constraint
called the Skripkin condition. This topic has been studied
in detail, demonstrating that the scalar expansion disappears
under the Skripkin conditions (for isotropic fluid with the
constant distribution of energy density). A further detailed
study on this problem declared that expansion less fluid dis-
tribution requires the existence of a cavity within the system
[36]. Herrara et al. [37] studied the evolution of expansion-
free isotropic fluid and found that the Skripkin model is not
consistent with the Darmois junction conditions [38]. Also,
expansion-free homogeneous dust fluid fails to attain physi-
cal interest because of negative energy density. Herrera et al.
[39] also discussed the evolution of the cavity by using the
constant proper radial distance between fluid neighboring
particles. Sharif and Bhatti [41] described shear-free cav-
ity models with plane symmetry. Yousaf and Bhatti [42]
discussed the cavity evolution and instability of relativistic
systems. Sharif and Mumtaz [43–45] studied the dynamics
of collapsing gaseous masses with and without dissipative
effects.

In this paper, we discuss evolution of the cavity for a spher-
ically symmetric cluster of stars in the context of f (R) grav-
ity. For this purpose, we consider purely areal evolution in
which variation of the proper radial distance between any
two infinitesimally small particles of fluid per unit of proper
time vanishes [39]. We are particularly interested in analyt-
ical models that, despite being relatively simple to assess,
incorporate some of the key characteristics of an actual situ-
ation. It should be noted that we are only interested in the evo-
lution of cavity, not in the dynamics and conditions of its for-
mation. In this context, the fluid is constrained by two hyper-
surfaces. The external hypersurface separates the fluid distri-
bution from a Schwarzchild or Vaidya spacetime (depending
on whether we assume the evolution to be adiabatic or dissi-
pative) and the internal one is taken as Minkowski spacetime
that delimits the cavity.

In general, voids are neither spherical nor empty but for
simplicity, we can model vacuum spherical cavities within
the cluster of stars as a predecessor of voids. The paper is
formatted as follows. Section 2 describes general formalism
of f (R) theory. The next section deals with a spherically

symmetric cluster of stars in the f (R) model along with junc-
tion conditions. In Sect. 4, we apply the Strobinsky model
whereas Sect. 5 deals with the purely areal evolution as com-
pared to the radial velocity and describes different models
of the cavity in a cluster of stars. Section 6 summarizes our
results.

2 The f (R) theory

The f (R) theory is followed by the action [2–8]

S f (R) = 1

κ

∫
d4x

√−g f (R) + SM . (1)

Here κ shows the coupling constant, SM represents the matter
related segment and f (R) describes a non-linear Ricci scalar
part. The metric f (R) field equations are obtained by varying
(1) with respect to gιω as follows

Rιω f (R) − 1

2
f (R)gιω + (gιω� − �ι�ω) fR = ωTιω, (2)

where Rιω represents Ricci tensor, fR = d f
dR , and Tιω shows

ideal energy momentum tensor for matter distribution given
by

Tιω = − 2√−g

δSM
δgιω

. (3)

Equation (2), in terms of Einstein tensor, can be composed
as

Gιω = κ

fR
[(Tιω + T (D)

ιω )], (4)

with

T (D)
ιω = 1

κ
∇ι∇ω fR − � fRgιω + ( f − R fR)

gιω

2
, (5)

where the superscript D represents dark source parts (may
be DE or DM).

3 Model of cluster of stars

To discuss cavity formation in the cluster of stars, we consider
a cluster that is composed of compact stars and exotic mate-
rial like DM. These types of clusters are found in some dwarf
irregular galaxies [40]. Since clustering of stars involves a
strong gravitational field thus we model the cluster of stars
as a system of self-gravitating fluid having DM and stars as
fluid particles. Specifically, we assume a spherically symmet-
ric distribution of star cluster, circumscribed by a spherical
surface. The system is considered to be locally anisotropic,
experiencing dissipation as a heat flow in diffusion approx-
imation. The general interior metric (in comoving coordi-

123



Eur. Phys. J. C (2022) 82 :739 Page 3 of 15 739

nates) is given as

ds2 = −A2dt2 + B2dr2 + C2(dθ2 + sin2 dφ2), (6)

where A, B and C are positive functions of t and r . We
take the coordinates x0 = t, x1 = r, x2 = θ, x3 = φ. The
coordinatesC and r have the same dimensions whereas A and
B are dimensionless. According to Eq. (6), the term

∫
Bdr

denotes proper radius inside any spherical hypersurface 
(e)

andC is the areal radius. The energy-momentum distribution
inside 
(e) is given by

T (−e f f )
ιω =

(
μe f f + Pef f

⊥
)
VιVω + Pef f

⊥ gιω

+
(
Pef f
r − Pef f

⊥
)

χιχω + qef fι Vω + Vιq
ef f
ω . (7)

Here μe f f , pef fr , qef fι , V ι and χι represent energy density,
radial pressure, dissipation term describing heat flux, four
velocity and radial unit four-vector, respectively. The four
vectors satisfy the following identities

V ιVι = −1, V ιqι = 0, χιχι = 1, χιVι = 0. (8)

Moreover

μe f f = (μD + μ), (9)

qef f = (qD + q), (10)

Pef f
r = (PD

r + Pr ), (11)

Pef f
⊥ = (PD⊥ + P⊥), (12)

where superscript D represent DM contributions and the
terms without superscript indicate baryonic matter terms.

The f (R) field equations for the line element (6) are given
by

G00 = μe f f = κ

fR
(T00 + T D

00 )

= A2R

2
− 1

f (R)

(
fR;r;r − B Ḃ ḟR

− B ′

B
f ′
R − κA2μ + A2 f

2

)
, (13)

G11 = Pef f
r = κ

fR
(T11 + T D

11 )

=
(
B2 f

2
− fR;r;r + B Ḃ

A2 ḟ R + B ′

B
f ′
R

+κB2Pr
) 1

f (R)
− B2R

2
, (14)

G22 = Pef f
⊥ = κ

fR
(T22 + T D

22 )

=
(
R2 f

2
− fR;θ;θ − RṘ

A2 ḟ R + RR′

B2 f ′
R

+κR2P⊥
) 1

f (R)
− R3

2
, (15)

G01 = qef f = κ

fR
(T01 + T D

01 )

= − 1

f (R)

(
fR;t;0 − 2A′

A
ḟR − Ḃ

B
f ′
R + κABq

)
. (16)

The prime and dot denote differentiation with respect to r and
t , respectively. The kinematics of an evolving cluster can be
described with the help of four acceleration (aα), expansion
scalar (θ ) and shear tensor (σιω) given by

aι = Vι;ωV ω, θ = V ι
;ι, (17)

σιω = V(ι;ω) + a(ιVω) − 1

3
θhιω, (18)

where

hιω = gιω + VιVω (19)

represents the projection tensor. For the metric (6), we have

V ι = A−1δι
0, q ι = qB−1δι

1, χι = B−1δι
1. (20)

From Eqs. (17) and (20), the only non-zero four acceleration
component and its scalar are written as

a1 = A′A−1, a = (aιaι)
1
2 = A′(AB)−1, (21)

also the expansion scalar is

θ = 1

A

⎛
⎝2

(
Ċ
C

)
+ Ḃ

B

⎞
⎠ . (22)

The non-zero components of shear tensor yield

σ11 = 2

3
B2σ, σ22 = σ33 sin−2 θ = −1

3
R2σ, (23)

and its scalar is given by

σ ιωσιω = 2

3
σ 2, (24)

where

σ = 1

A

(
Ḃ

B
− Ċ

C

)
. (25)

The shear tensor can also be written in terms of projection
tensor as

σιω = σ

(
χιχω − 1

3
hιω

)
. (26)

For the sake of convenience [46,47], the energy momen-
tum tensor (7) can be rewritten in the following form

T−(e f f )
ιω = μe f f VιVω + P̂e f f hιω

+�e f f
ιω + qef f (Vιχω + χιVω), (27)

with

P̂e f f = 1

3
hιωT

(e f f )ιω = Pef f
r + 2Pef f

⊥
3

, (28)
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�(e f f )ιω =
(
h(ι

γ h
ω)
δ − 1

3
hιωhγ δ

)
T (e f f )γ δ

= �(e f f )
(

χιχω − 1

3
hιω

)
, (29)

�(e f f ) = Pef f
r − Pef f

⊥ . (30)

Misner and Sharp [48] introduced a mass function m(t, r)
which represents energy within a system [49] given by

m = C3

2
R23

23 = C

2

[(
Ċ

A

)2

−
(
C ′

B

)2

+ 1

]
. (31)

In order to discuss the dynamical characteristics of the sys-
tem, we use the proper time and radial derivatives given by
[48].

DT = 1

A

∂

∂t
, (32)

DC = 1

C ′
∂

∂r
. (33)

Using Eq. (32), we may define the velocity U of a collapsing
or expanding fluid distribution as the differential of areal
radius w.r.t the proper time given as

U = DTC < 0, U = DTC > 0, (34)

Equation (31), through the above equation, can be expressed
as

E = C ′B−1 =
(

1 − 2m

C
+U 2

) 1
2

. (35)

Moreover, Eq. (31) along with the field equations (32) and
(34) gives [36]

m′ = 4�

(
μe f f + qef f

U

E

)
C ′C2, (36)

whose integration yields

m = 4�

∫ r

0

(
μe f f + qef f

U

E

)
C2C ′dr. (37)

Here we consider a regular center for the system and hence
m(0) = 0. Using Eqs. (16), (22) and (25), we get

qef f B = 1

3
(θ − σ ′) − σC ′

C
, (38)

which can be rewritten with the help of Eq. (33) as

qef f = E

(
1

3
DC (θ − σ) − σ

C

)
. (39)

The Weyl tensor describes the effects of tidal forces due to
gravitational effects within the system. It is denoted byCαμβν

and evaluated in terms of Riemann tensor Rρ
αβσ , Ricci tensor

Rρ
β and Ricci scalar R as

Cρ
αβσ = Rρ

αβσ − 1

2
Rρ

βgασ + 1

2
Rαβδρ

σ

−1

2
Rασ δ

ρ
β + 1

2
Rρ

σ gαβ + 1

6
R(δ

ρ
βgασ − gαβδρ

σ ).

(40)

The Weyl tensor can further be converted into the electric
Eαβ and magnetic parts Hαβ . For spherically symmetric dis-
tribution, the magnetic part vanishes whereas the electric part
is defined as

Eιω = CιμωνV
μV ν, (41)

or it can be written in terms of four vectors as

Eιω = ε

(
χιχω − 1

3
hιω

)
. (42)

Here

ε = 1

2A2 [C̈C−1 − B̈ B−1 − (ĊC−1 − Ḃ B−1)

×( ȦA−1 − ĊC−1)]12B2[A′′A−1 − C ′′C−1

+(B ′B−1 + C ′C−1)(C ′C−1 − A′A−1)] − 1

2C2 . (43)

This equation, through the field equations and Eq. (31), can
be written in terms of mass function as [36]

ε = 4π(μe f f − Pef f
r + Pef f

⊥ ) − 3m

R3 . (44)

3.1 Junction conditions

We assume Vaidya spacetime as an exterior spacetime (i.e.,
we consider massless outgoing radiation case) defined by

ds2 = −
[

1 − 2M(υ)

r

]
dυ2 − 2drdυ

+r2(dθ2 + sin2θdφ2), (45)

where M(υ) and υ denote the total mass and retarded time,
respectively. In the absence of thin shell geometry, Darmois
junction conditions are used for the the matching of Vaidya
spacetime to the non-adiabatic sphere, along the surface
r = constant = r
(e) . These junction conditions include
consistency of the 1st and 2nd fundamental forms, based on
matching hypersurfaces [38]. The results of Darmois condi-
tions yield

m(t, r)

(e)

= M(υ), (46)

2

(
Ċ ′

C
− Ḃ

B

Ċ

C
− Ċ

C

A′

A

)

= − B

A

[
2
C̈

C
−

(
2
Ȧ

A
− Ċ

C

)
Ċ

C

]

+ A

B

[(
2
A′

A
+ Ċ

C

)
C ′

C
−

(
B

C

)2
]

, (47)

and

qef f

(e)
= L

4πe f f r
. (48)
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Here L represents the total luminosity of cluster given by

L =
(

1 − 2m

r
+ 2

dr

dυ

)−1

L∞, (49)

with

L∞ = dm

dυ
, (50)

as the entire luminosity determined by an observer in the state
of rest at infinity. Equation (47) along with the field equations
provides

qef f

(e)
= pef fr . (51)

In the case of cavity formation, we also apply matching con-
ditions between the solution and the Minkowsky spacetime
to delimit this cavity on the boundary surface. If 
(i) denotes
the boundary surface between the cluster fluid and the cavity,
then matching conditions associated with Minkowski space-
time within the cavity and the cluster distribution give

m(t, r)

(i)

= 0, (52)

qef f

(e)
= Pef f

r . (53)

Let us consider an empty cavity, then we have L
(i)= 0, which
gives

qef f

(e)
= p

ef f 
(e)
=

r 0. (54)

4 The Starobinsky model

The f (R) theory of gravity is consistent with DM and DE
at a large scale (stellar object scales like clusters). Starobin-
sky generalized Einstein Hilbert’s action with higher order
curvature term to construct field equations related to quan-
tum one loop distribution. This derived model can describe
cosmic exponential expansion as well as current time cosmic
acceleration for both early and current times of power-law
inflation. It is defined as

f (R) = R + εR2, (55)

with ε as a positive real number. It can solve various issues
like inflation, cosmic acceleration and DE [14,15]. Moreover,
it has been shown that the respective model can be used for
DM problems according to WMAP data for ε = 1

6M2 with

M = 2.7 × 10−12 GeV, (ε = 2.3 × 1022Ge/V 2). The
square-order curvature term behaves like an extra degree of
freedom (scalar graviton) whose interaction with standard
model particles yields an abundance of the thermal energy
which provides DM regions. The scalar graviton of mass
M < 10−12 generates Yukawa force of attraction between
DM particles having dissimilar masses [16]. For f (R) → R,

GR solutions are recovered. The field equations (13)–(16) for
this model become

G00 = μe f f = 1

1 + 2εR

[
μA2κ + A2

(
−εR2

2

)
− 2εA2R′′

B2

+
(

2Ċ

C
− Ḃ

B

)
2ε Ṙ +

(
2C ′
C

− B′
B

)
2εA2R′

B2

]
, (56)

G01 = qef f = 8π

R + εR2

[
2εA′
A

(C ′ + Ċ) + 2εC ′
B

(B′ − Ḃ)

− 2εC ′· + k ABq
]
, (57)

G11 = Pef f
r = 1

1 + 2εR

[
Pr B

2κ − B2

(
−εR2

2

)
+ 2εB2 R̈

A2

−
(

2Ċ

C
+ Ȧ

A

)
2εB2 R̈

A2 − 2εR′
(

2C ′
C

+ A′
A

)]
, (58)

G22 = Pef f
⊥ = 1

1 + 2εR

[
P⊥C2κ − C2

(
−εR2

2

)
− 2εC2R′′

B2

+2εC2 R̈

A2 −
(
Ċ

C
− Ḃ

B
+ Ȧ

A

)
2εC2 Ṙ

A2

−
(

2C ′
C

+ A′
A

)
2εC2R′

B2

]
. (59)

4.1 Physical significance of the f (R) model

Here we examine physical importance of the function
f (R) = R + εR2 for stellar bodies. For this purpose, we
analyze the viability of parameter ε associated with a com-
pact object. Thus we consider a simple model that relies on
spatial astral density (a theory same as the de Vaucoulour’s
statement in the exterior zone that avoids a fixed center).
Hernquist and Jaffe [50,51] firstly proposed such kinds of
models with central astral densities proportional to r−1 and
r−2. These models lead to a variety of energy density distri-
butions with various central slopes described by

μ̃(r) = (3 − τ)M α̃

4πr τ (r + α̃)4−τ
. (60)

Here α̃ represents a scaling radius and M shows the total
mass which is in proportion to r τ at the center. The value
of τ is fixed as [0, 3) whereas τ = 1 and τ = 2 restricts
the model to Hernquist and Jaffe models, respectively. The
Krori–Barua anstaz method is used to investigate the met-
ric functions related to interior spacetime [52]. The interior
spacetime is given by

A = eã, B = eb, C = r, (61)

where ã = B̃r2 + C̃ and b = Ãr2. To represent a
realistic model for compact stellar object, we employ the
Schwarzschild spacetime as exterior geometry having an
asymptotically flat and static outside area. The Schwarzschild
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metric is given by

ds2 =
(

1 − 2M

r

)
dt2 −

(
1 − 2M

r

)−1

dr2

−r2
(
dθ2 + sin2 θdφ2

)
. (62)

We are now applying boundary conditions to both spacetimes
associated with exterior and interior geometries. At the con-
dition r = R, the continuity of exterior and interior line
elements produces

g−
t t = g+

t t , g−
rr = g+

rr ,
∂g−

t t

∂r
= ∂g+

t t

∂r
, (63)

where the superscripts (−) and (+) represent the interior and
exterior surfaces of the stellar object, respectively. Thus, Eq.
(63) implies

Ã = −ln

(
1 − 2M

r

)
1

R2 , B̃ = M

R3

(
1 − 2M

r

)−1

, (64)

C̃ = ln

(
1 − 2M

r

)
− M

R

(
1 − 2M

r

)−1

. (65)

Here we examine the physical significance of the function
f (R) = R + εR2 for stellar systems. For this, we analyze
the viability of parameter ε associated with a compact object.
So, we consider a simple model that relies on spatial astral
density (a theory same as the de Vaucoulour’s statement in the
exterior zone that avoids a fixed center). Hernquist and Jaffe
[50,51] firstly proposed such kinds of models with central
astral densities proportional to r−1 and r−2. These models
lead to a variety of energy density distributions with various
central slopes described by

Ã = 0.010906441192 km−2, (66)

B̃ = 0.0098809523811 km−2, (67)

C̃ = −2.0787393571141 km−2. (68)

Substituting the values of Ã, B̃ and C̃ in Eqs. (56)–(59),
we can explore the behaviors of energy density, radial, and
tangential pressures associated to the matter distribution.

5 The purely areal evolution condition and radial
velocity

Here we discuss a new definition of collapsing velocity U ,
previously, it is defined as the change of areal radius (C)
per unit proper time. The velocity can also be defined as a
variation of the infinitesimal proper radial distance between
two adjacent points (δl) per unit of proper time, i.e., DT (δl).
It has been shown that this infinitesimal rate of change is
related to the shear and expansion effects, given by [36]

DT (δl)

δl
= (2σ + �)

3
, (69)

which, through Eqs. (22) and (25), becomes

DT (δl)

δl
= Ḃ

AB
. (70)

Using Eqs. (22), (25), (34) and (70), we obtain

σ = DT (δl)

δl
− DTC

C
= DT (δl)

δl
− U

C
, (71)

and

� = DT (δl)

δl
+ 2DTC

C
= DT (δl)

δl
+ 2U

C
. (72)

This shows that the areal velocityU , being the variation of C
(areal radius) of a layer of fluid particle, is generally differ-
ent from DT (δl) which is the relative velocity of neighboring
layers of fluid particles present within the clusters. Equation
(71) shows that the collapsing stars cluster, having U < 0,
becomes shearless if DT (δl) < 0, i.e., the relative distance
between the layers of cluster particles vanishes in such a way
that it cancels out the values of U . Equation (72) describes
that an expansion-free situation is possible if the areal veloc-
ityU cancels out the relative velocity DT (δl). So for collaps-
ing expansion-free case, we have U < 0 and DT (δl) > 0.
Alternatively, for the outgoing case (U > 0), expansion-free
condition is possible if DT (δl) < 0. Moreover, it has been
shown that the existence of a cavity requires a purely areal
evolution condition described by DT (δl) = 0 with U 	= 0
[39]. Thus, to derive cavity solutions within cluster distribu-
tion, let us assume the condition DT (δl) = 0 with U 	= 0.
This, along with Eqs. (71) and (72), implies θ = −2σ . Using
this result in Eq. (16), we get

σ ′ + σC ′

C
= −4πqef f C ′

E
, (73)

whose integration with respect to r gives

σ = ζ(t)

C
− 4π

C

∫ r

0
qef f

CC ′

E
dr, (74)

with ζ(t) being an integration function. It can be noticed that
in the situation when all the spherical surfaces of a cluster of
stars including the center (r = 0) is filled with baryonic as
well as non-baryonic fluids, we should imply the regularity
condition (ζ = 0). As we are interested in the formation of
the cavity around the center, such condition is not needed. In
other case, Eq. (74) with (71) leads to

U = −ζ + 4π

∫ r

0
qef f

CC ′

E
dr. (75)

Hence, for non-dissipative case (qef f = 0 ⇒ qM = qD =
0), the purely areal evolution condition suggests U = U (t).
This result is certainly unsuitable with a regular symmetry
center except (U = 0). To have a purely areal evolution
condition to be compatible with a time dependent stage (U 	=
0), this yields
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• The cluster has no symmetry center.
Or

• The center is encircled by a compact spherical region of
other spacetime, appropriately matched to the rest of the
fluid inside the cluster.

Here we are going to reject the first case because this indi-
cates the unusual geometry of a star cluster without a cen-
ter. Furthermore, for the second case, we select Minkowski’s
inner vacuum spherical vacuole. It can be noticed that dissi-
pation due to DM (qD) might be some sort of squandering of
non-baryonic particles. This type of dissipation is due to the
gravitational energy of DM. Now a question arises here, can
we consider a non-dissipation case in the presence of DM?
The evidence of DM is based upon its gravitational effects
so the dissipation due to DM gravitational effects can not be
neglected easily. Hence during the evolution of the cluster of
stars having DM, the non-dissipative case is very special or
unusual.

Let us now assume an alternative case that entirely belongs
to areal dissipative evolution (DT (δl) = 0). If the gravitating
fluid (for baryonic as well as non-baryonic parts) fills the
entire spherical cluster, we get a symmetry center and there
is no cavity surrounding the center. In this situation, we need
to put ζ = 0 such that Eq. (75) becomes

U = 4π

∫ r

0
qef f

CC ′

E
dr, (76)

which is congruent with a regular symmetric center. For this
situation, we shall consider a cavity enclosing the center
in an ad hoc manner. The following subjective argument
can propose this assumption. Consider an outwardly dissi-
pative condition (qef f > 0) which implies that all the terms
inside the integral are positive such that Eqs. (72) and (76)
give � > 0, U > 0. Inversely, for qef f < 0, we get
� < 0, U < 0. Since we are dealing with dissipation
due to matter and DM so one of the sources for this dis-
sipation is the gravitational energy. Moreover, according to
Kelvin–Helmholtz evolution phase [55], when all the outgo-
ing dissipative flux originates from the gravitational energy,
we should anticipate contraction instead of expansion. In
contrast, inwardly directed flux of dissipation leads to expan-
sion. The above discussion shows that dissipation due to heat
flux behaves differently from dissipation due to gravitational
energy. So the outgoing dissipation due to DM (qD > 0)
contributes to the contraction phase of the evolution and
inversely, qD < 0 helps in expansion of the evolving cluster.
Hence, we observe that the condition DT (δl) = 0 (purely
areal evolution phase) shows up to be particularly appropri-
ate for describing evolution of a cluster of stars with a cavity
enclosing the center [39]. Finally, using Eqs. (71) and (72)

in (26), the purely areal evolution phase can be described as

σιω = −�

2

(
χιχω − 1

3
hιω

)
. (77)

Next, we shall explore some models for cluster of stars having
purely areal evolution.

5.1 Models of cavities in clusters

In this section, we explore the general characteristics of mod-
els of clusters that satisfy the purely areal evolution case.
Here we use the general concept similar to that suggested
by Skripkin [35]. According to his proposal, an explosion at
the center causes an overall expansion throughout the fluid,
resulting in the development of a cavity around the center.
But, here is the distinction that we are considering purely
areal evolution DT (δl) = 0 rather � = 0. In this context,
Eq. (70) implies Ḃ = 0 (Ċ 	= 0) which gives B = B(r)
and we can take B = 1 without the loss of generality. As
previously indicated, the physical importance of this sort of
model comes from the fact that the condition Ḃ = 0 requires
the existence of a center-based cavity. For this case, the field
equations become

8πμ = A2

1 + 2εR

[
1

A2

(
Ċ

C

)2

− 2
C ′′

C
−

(
C ′

C

)2

+ 1

C2

]

−
[

2εA2R′′ +
(

2Ċ

C

)
2ε Ṙ +

(
2C ′

C

)
2εA2R′

]
,

(78)

8πq = A

1 + 2εR

(
Ċ ′
C

− Ċ

C

A′

A

)

−
[

2εA′

A
(C ′ + Ċ) + 2εC ′ − 2εC ′·

]
, (79)

8π Pr = − 1

1 + 2εR

[
2
C̈

C
−

(
2
Ȧ

A
− Ċ

C

)
Ċ

C

]

+
(

2
A′

A
+ C ′

C

)
C ′

C
− 1

C2

−
(−εR2

2

)
+ 2ε R̈

A2 −
(

2Ċ

C
+ Ȧ

A

)
2ε R̈

A2

−2εR′
(

2C ′

C
+ A′

A

)]
, (80)

8π P⊥ = − 1

(1 + 2εR)A

(
C̈

C
− Ȧ

A

Ċ

C

)
+ A′′

A

+C
′′

C
+ A′

A

C ′

C
− C2

(−εR2

2

)

−2εC2R′′ + 2εC2 R̈

A2 −
(
Ċ

C
− Ȧ

A

)
2εC2 Ṙ

A2
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−
(

2C ′

C
+ A′

A

)
2εC2R′

]
. (81)

Also, the non-zero parts of the Bianchi identitiesT (e f f )−αβ

;β =
0 are given by

1

A

[
μ̇ + 2

1 + 2εR

{(
μA2 + P⊥C2) κ

+ (
A2 − C2) (

f − R + 2εR2)

−2εR′′ (A2 + C2) + 2εA2 Ṙ

A2

(
2Ċ

C

)

+2εC2 R̈

A2 −
(
Ċ

C
+ Ȧ

A

)
2εC2 Ṙ

A2

+
(

2C ′

C

)
εA2R′ −

(
2C ′

C
+ A′

A

)
εC2R′

}
Ṙ

R

]
+ q ′

+ 2

1 + 2εR

[
Aκq + 2εA′

A

(
C ′ + Ċ

) + 2εC ′

−2εC ′·] (AR)′

AR
= 0, (82)

1

A

[
q̇ + 2

1 + 2εR

(
Aκq + 2εA′

A
(C ′ + Ċ) + 2εC ′Ċ − 2ε

)]

+Pr
′ + 1

2εR

[
(μA2 + Pr )κ + (A2)

(
εR2

2

)

−2εA2R′′ + 2ε R̈

A2 +
(

2Ċ

C

)
2ε Ṙ +

(
2C ′

C

)
2εAṘ

−
(

2Ċ

C
+ Ȧ

A

)
2εε Ṙ

A2 −
(

2C ′

C
+ A′

A

)
2εR′

]
A′

A

+ 2

1 + 2εR

[
(Pr + P⊥C2)κ + C2)

(
εR2

2

)

+2ε R̈

A2 −
(

2Ċ

C
+ Ȧ

A

)
2ε Ṙ

A2

−
(

2C ′

C
+ A′

A

)
2εR′ + 2εC2R′′

−2εC2 R̈

A2 +
(
Ċ

C
+ Ȧ

A

)
2εC2 Ṙ

A2

+
(
C ′

C
+ A′

A

)
2εC2R′

]
R′

R
= 0. (83)

In specific geodesic condition, we have A′ = 0 which
implies A = 1. At this point, the field equations (79)–(81)
become

8πμ = 1

1 + 2εR

[(
Ċ

C

)2

− 2
C ′′

C
−

(
C ′

C

)2

+ 1

C2

]

−
[

2εR′′ +
(

2Ċ

C

)
2ε Ṙ +

(
2C ′

C

)
2εR′

]
, (84)

8πq = 1

1 + 2εR

(
Ċ ′
C

− Ċ

C

)
− [

2ε(C ′ + Ċ)
]
, (85)

8π Pr = − 1

1 + 2εR

[
2
C̈

C
+

(
Ċ

C

)
Ċ

C

]

+
(
C ′

C

)
C ′

C
− 1

C2 −
(−εR2

2

)
+ 2ε R̈

−
(

2Ċ

C

)
2ε R̈ − 2εR′

(
2C ′

C

)]
, (86)

8π P⊥ = − 1

(1 + 2εR)

(
C̈

C

)
+ C

′′

C

+
(−εR2

2

)
− 2εC2R′′ + 2εC2 R̈

−
(
Ċ

C

)
2εC2 Ṙ −

(
2C ′

C

)
2εC2R′

]
. (87)

It follows from Eq. (31) that

2πμe f f = m

R3 + (2π Pr
ef f − 2π P⊥e f f ),

2π(μ + μD) = m

R3 (2π Pr + 2P⊥) + (2π PD
r − 2PD⊥ ). (88)

Equation (44) implies

2πμe f f = (2π Pr
ef f − 4π P⊥e f f ) − ε,

(μm + μD) = (2π(PM
r − 2PM⊥ )) + (2π(PD

r − 2PD⊥ )) − ε.

(89)

Thus, Eqs. (88) and (89) under conformally flat (ε = 0),
geodesic and isotropic case (Pef f

r = Pef f
⊥ = Pef f ) provide

m

C3 + 4π Pef f = 0. (90)

This along with Eq. (51) implies that the respective model
satisfies Dramois junction conditions only for its absorbing
dissipative energy behavior, i.e., qef f < 0 otherwise, we get
M = 0, m < 0. Furthermore, the condition qef f < 0
implies two possibilities either q < −qD or qD < −q.

5.2 Model consistent with Darmois conditions

Now we consider some simplified analytical models that are
not based upon thin shells either 
(e) or 
(i), but are con-
sistent with Darmois conditions. In this context, the non-
dissipative models are found to be the simplest ones. Taking
qef f = 0 along with Eq. (79), integration gives

A = Ċ

h1
, (91)

where h1(t) is an integration function of t . Without loss of
generality, after re-parameterizing t , we can assume

h1 = Ċ
(i) , (92)

with

A
(i) = 1. (93)
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It can be noticed from Eqs. (34) and (91) that the velocity U
becomes

U = h1 = Ċ
(i) , (94)

which remains same for all particles present in the cluster
fluid. This point has already been discussed with Eq. (75) in
the previous section. Substituting Eq. (91) into (79), (80) and
(81) and using Eqs. (32), (91) and (92), we get

8πμe f f = − 1

C2

(
2CC ′′2 + C ′2 − ˙C2


(i) − 1
)

, (95)

8π Pef f
r =

[
1

C2Ċ
DT

[
1

C2Ċ
DT

[
C(C ′)2 − ˙C2


(i) − 1
]]]

,

(96)

8π Pef f
⊥ = 1

2C Ṙ
(i)

DT

(
2CC ′′ + C ′2 − Ċ2


(i) − 1
)

. (97)

From Eqs. (96) and (97), it can be observed that

P⊥e f f = −DT (μe f f C2)

2CĊ
(i)

. (98)

Computing function of mass (31) with (91) and B = 1, we
have

m = −C

2
(C ′2 − Ċ2


(i) − 1), (99)

which turns Eq. (96) into

4π Pef f
r = − ṁ

C2C̈
. (100)

Moreover, this model automatically satisfies the junction

conditions P(e f f )
(e)

r = 0, P(e f f )
(i)

r = 0 with m
(e)

= M =
constant and m
(i)

= 0. Using Eq. (91) in (43), we find

ε = C

4Ċ
(i)

DT

[
1

C2 (2CC ′′ − C ′2 + Ċ2

(i) ) + 1

]
. (101)

We shall now explore some specific cases.

5.2.1 Conformally flat case

If the spacetime among r = r
(e) and r = r
(i) is confor-
mally flat, i.e., ε = 0, then Eq. (101) gives

2CC ′′ + C ′2 − W1C
2 + Ċ2


(i) + 1 = 0, (102)

where W1 is an arbitrary function of r . After integration, we
get

C ′2 = C

(∫
W1dC + h2

)
+ ˙C2


(i) + 1. (103)

Here h2(t) is an integration function of t . A comparison of
Eqs. (99) and (103) gives

m = −C2

2

(∫
W1dC + h2

)
, (104)

such that h2 can be obtained from the junction condition (52)
given by

h2

(i)= −

∫
W1dC. (105)

Consequently, this sort of models are described through a
single function W1(r) whose selection depends upon the sat-
isfaction of the remaining Darmois conditions. Furthermore,
the evolution is shear-free for isotropic non-dissipative spher-
ically symmetric conformally flat spacetimes. But this is not
applicable in anisotropic case. Thus, the models examined
here are necessarily considered anisotropic.

5.2.2 Tangential pressureless case

Considering Pef f
⊥ = 0, integration of Eq. (98) yields

μe f f = W2

C2
, (106)

where W2(r) is a function of r . Using Eq. (106) into (96), we
have

2CC ′′ + C ′2 + 8πW2 − Ċ2

(i) − 1 = 0. (107)

Also, Eq. (99) implies

m′ = 4πW2C
′. (108)

In order to get viable models, we need to consider a particular
type of energy density or mass function. For instance, let us
consider

W2 = c1 = constant > 0. (109)

In this way, Eqs. (37) and (106) imply

m = 4πc1(C − C
(i) ), (110)

M = 4πc1(C
(e) − C
(i) ), (111)

Ċ
(e) = A
(i) = A
(e) = 1. (112)

Using Eqs. (100), (106) and (110), we get

Pr = μe f f
(
Ċ
(e)

Ċ
− 1

)
. (113)

Substituting Eq. (110) into (99), we have

CC ′2 = ι(t)C + ω(t), (114)

where

ι(t) = Ċ2

(i) + 1 − 8πc1, ω(t) = 8πc1C
(i) , (115)

whose integration gives

[ιC(ιC + ω)]
1
2 − ωln[(ιR)

1
2 + ιC + ω)] 1

2 ]
= ι

2
3 [r − r0] . (116)
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Here r0(t) is an integration function of t . Assessing Eq. (116)
on 
(i), we get

[ι(Ċ
(i) + 1)] 1
2 − 8πc1ln[ι 1

2 + (Ċ
(i) + 1)
1
2 ]

−4πc1lnC]C
(i)= ι
3
2 (r − r0). (117)

This shows the 1st order nonlinear equation for C
(i) that
can be determined for every r0(t) function. The result of
this integration, combined with Eq. (116), provides the abso-
lute information required to get r and t dependency for all
metric and physical variables. It can be found that energy
density within the fluid distribution remains positive and reg-

ular. Additionally, the condition r0(t) with 0 <
Ċ


(i)

C −1 ≤ 1
guarantees the presence of positive pressure which is smaller
than the energy density.

6 Physical conditions for stellar object

The densities and gravitational fields of the whole star cluster
are different than its component star. Sometimes it becomes
complex to explore the entire density and gravitational effects
of the cluster of stars in strong field regimes. So for the sake
of convenience and to check the physical significance of the
obtained cavity model, we choose a binary star 4U182030
as a test star from the component of compact stars cluster
and check its physical features under the influences of DM.
In this way, we may suggest the mutual relation between
a compact star and DM in cluster of stars or galaxies. The
physical viability of a compact star depends on the following
conditions to be satisfied throughout the configuration:

• The metric potentials A(r), B(r) and the matter compo-
nents μ, Pr , P⊥ must be well defined at the center as well
as regular within star.

• The positivity of energy density, i.e., μ ≥ 0 is required
throughout the stellar object interior. Being positive at
the center, it should be monotonically decreasing to the
boundary inside the star, mathematically dμ

dr ≤ 0.
• The radial and the tangential pressures should be positive,

i.e., Pr ≥ 0, P⊥ ≥ 0, whereas their gradient must be
negative inside the stellar object configuration, i.e., dPrdr ≤
0 and dP⊥

dr ≤ 0. At the boundary, the radial pressure must
vanish while the tangential pressure may not be zero.

• For an anisotropic fluid distribution, fulfillment of the
following inequalities for either one of the energy condi-
tions inside the configuration is required:

1. Weak energy condition (WEC): μ > 0; μ+ Pr > 0.
2. Null energy condition (NEC): μ + Pr > 0.
3. Strong energy condition (SEC): μ + Pr ≥ 0; μ +

P⊥ ≥ 0; μ − Pr + 2P⊥.

4. Dominant energy conditions (DEC): μ ≥ Pr ; μ ≥
P⊥.

• The causality condition must be satisfied for physical via-
bility of the model, i.e., the velocity of sound should be
smaller than 1 in the stellar object interior. Mathemati-
cally, 0 ≤ Vr ≤ 1 and 0 ≤ V⊥ ≤ 1, where Vr = dPr

dμ
and

V⊥ = dP⊥
dμ

represent the radial and transverse velocity of
sound, respectively.

• The smooth matching of the interior and exterior metric
functions at the boundary is also required.

• The adiabatic index � must be greater than 4
3 for the

stability of stellar object configuration.

6.1 Physical analysis with observational data of
4U1820 − 30

Here, we discuss physical interpretation of the solutions
obtained for cavity model. For physical compatibility of stel-
lar model, we combine our calculations with the data obtained
for the pulsar 4U1820 − 30 [53,54].

6.1.1 Metric potentials

Firstly, we examine the physical viability of the model by
using Eqs. (61), (66)–(68) and explore the physical behav-
ior of gravitational potentials A(r) and B(r) graphically as
shown in Fig. 1. It is observed that this model has finite values
of A(r) = eB̃r

2+C̃ , B(r) = eÃr
2

at the center (r = 0) of the
star. One can also find that A′(r = 0) = 0, B ′(r = 0) = 0
which depict the regularity of metric potentials at the center
and also show that the metric is well-behaved throughout the
interior of star. This implies fulfillment of the requirement
for realistic star.

6.1.2 Energy density, pressures and their gradient

For the sake of physical analysis in f (R) gravity, let us begin
with the main components of matter distribution, i.e., energy
density and pressures (radial and tangential). To incorporate
DM effects, we take the Starobinsky model f (R) = R +
εR2. We have plotted graphical results in 3D with effects
of DM for anisotropic sphere in f (R) gravity by varying
radial component r as well as parameter ε (DM parameter).
In this way, we find their role in the emergence of various
physical factors. To provide a comparison between the stellar
object model in f (R) and GR, we use data of binary pulsar
4U1820 − 30. Moreover, the 2D illustration provides the
corresponding results in GR for ε = 0.

First of all, we analyze the behavior of energy density
graphically corresponding to DM (ε 	= 0) as well as baryonic
matter (in GR limits ε = 0). The behavior of matter density
μ with DM effects as a function of r and ε is shown in
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Fig. 1 Behavior of the metric potentials A(r) and B(r) versus r

Fig. 2 (upper panel). It can be seen that the energy density
remains positive throughout the star’s interior and decreases
monotonically towards the boundary inside the stellar object
interior but does not vanish at the boundary as ε increases.

The pressures under the influence of DM in the radial and
tangential directions are also shown in Fig. 2 (middle and
lower panels, respectively). It is noticed that the radial and
the tangential pressures remain positive, i.e., Pr ≥ 0, P⊥ ≥ 0
throughout the cluster. For increasing values of ε, the radial
pressure associated with DM rise to the maximum value at the
center but vanishes at the boundary for all choices of ε (mid-
dle panel). Furthermore, the behavior of matter tangential
pressure is also shown in Fig. 2 (lower panel). The tangential
pressure decreases throughout the star but at the center, its
value reaches a maximum as the value of ε increases. Thus,
the pressures for both cases remain decreasing in the radial
direction while the radial pressure disappears at the boundary
as it should be.

We also present our results with ε = 0 for energy den-
sity and pressures in GR limits (Fig. 3). The resultant illus-
tration in 2D represents the positivity of all matter compo-
nents throughout the cluster. All the three matter components
remain positive throughout the interior and tend to decrease
towards the boundary, whereas the tangential pressure van-
ishes at the boundary. Also, they attain maximum value at the
center but not more than the values with DM effects ε 	= 0.
It is noticed from the above analysis that for the increasing
values of ε, the energy density and pressure components of
DM become dominant in contrast to the matter-energy den-
sity and pressures. Thus, the results in presence of DM are
more consistent with observations on a cluster of stars like

Fig. 2 Behavior of energy density, radial and tangential pressure with
DM in f (R)
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Fig. 3 Behavior of energy density, radial and tangential pressure with-
out DM

Table 1 Gradients of energy density, radial and tangential pressure with
ε = 100

r dμ
dr

d Pr
dr

d P⊥
dr

0.1 −0.1802510975 −2.6069049 × 108 −25.14206024

2 −0.1402021472 −0.2855379697 −0.5892772307

9.8 −0.5445930614 −0.003436029882 −0.8503533168

galaxy rotational curves, according to which, at the center of
the cluster the density and pressure become enormous [56].

For physical viability of our cavity model, the energy den-
sity and pressure gradients should also be negative. Here
we show the results for gradients in tabular form with DM
effects. Table 1 shows that dμ

dr ≤ 0, dPr
dr ≤ 0 and dP⊥

dr ≤ 0
within the cavity by taking ε = 100 and different choices of
radii.

The result for energy density and pressure gradients with
ε = 0 is given in Fig. 4 which shows consistency of our
results with GR, i.e., negativity of gradients within the cluster.

6.1.3 Energy conditions

We also analyze the viability of the stellar object model by
energy conditions to be satisfied by the matter components of
DM. It is mentioned here that for WEC, the energy density
is always positive, i.e., μ ≥ 0 throughout the interior of a
cluster as already discussed, thus we need to find the behavior
of remaining energy conditions for DM. The values of energy

Fig. 4 Behavior of gradient of energy density, radial and tangential
pressure without DM

conditions for DM with various choices of r and ε = 100
are shown in Table 2.

For DM, it is observed that WEC, NEC and SEC are sat-
isfied in the presence of DM. Moreover, DEC is violated at
the center, whereas μ− Pr ≥ 0 and μ− P⊥ ≥ 0 for all other
choices of r in the interior of the star. We have plotted the
behavior of energy conditions for the matter case (ε = 0)
graphically as shown in Fig. 5. We find that all the energy
conditions are satisfied throughout the star’s interior in GR
limits.

6.1.4 Velocity of sound

For the physical acceptability of the respective model for
star, we examine causality conditions to be satisfied within
the interior. The radial and transverse velocities are defined
by

Vr = dPr
dμ

, (118)

V⊥ = dP⊥
dμ

. (119)

We provide the behavior of radial and transverse velocities
versus r and ε = 100 in Table 3.

It can be observed, from the table, that in the presence of
DM we have 0 ≤ Vr ≤ 1 and 0 ≤ V⊥ ≤ 1 at the bound-
ary. This shows that the DM affects the propagation of the
speed of sound. For matter case, we also perform a graphical
analysis and observe the fulfillment of causality condition,
i.e., 0 ≤ Vr ≤ 1 and 0 ≤ V⊥ ≤ 1 (Fig. 6). It is mentioned
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Table 2 Energy conditions with DM

r μ + Pr μ + P⊥ μ − Pr + 2P⊥ μ − Pr μ − P⊥

0.005 63695.82429 0.1322992 997.657158 332.3902 −665.135

7 0.1103568897 0.06443724160 0.01851759348 0.00776 0.0537

9.8 0.05236487184 0.02622272593 0.0000805800146 0.015740 0.04188

Fig. 5 Energy conditions for ε = 0

Table 3 Sound velocities with DM

r Vr V⊥

0.005 1.999999414 −0.9999998211

7 2.220043251 1.315799558

9.8 0.8957328381 0.1401016905

here that the requirement of smooth matching of the inte-
rior and exterior metric functions at the boundary is already
performed in Sect. 5.2.

6.1.5 Adiabatic index

The adiabatic index is related to the stability of a relativistic
anisotropic stellar object configuration. Mathematically, it is
defined as

� = μ + P

P

dP

dμ
. (120)

For physical viability of stellar object model, � must be
greater than 4

3 leading to stable configurations. We analyze

Fig. 6 Radial and transverse velocities versus r in GR

123



739 Page 14 of 15 Eur. Phys. J. C (2022) 82 :739

Table 4 Adiabatic index with DM for ε = 100

r � for ε = 10 � for ε = 100

0.005 2.999223808 3.000165896

7 2.233458361 4.776060977

9.8 1.993202103 2.561380308

Fig. 7 Adiabatic index versus r without DM

the behavior of � with DM effects as given in Table 4 which
appears consistent with the required condition.

We plot the behavior of adiabatic index for ordinary matter
as shown in Fig. 7 which also depicts � > 4

3 .

7 Conclusion

The study of evolving cluster of stars has been of great interest
for the description of phenomena like DM, voids and galac-
tic structures. It is believed that the cavity model described
by purely evolution conditions might be used as a void pre-
decessor. Voids have made a major contribution to the sci-
entific understanding of the cosmos. In this paper, we have
investigated the evolution of the cavity within a spherically
symmetric compact stars clusters. Generally, voids are nei-
ther spherical nor empty (according to redshift and simulta-
neously observations), however for sake of simplicity, they
are shown as a vacuum spherical cavity surrounded by a
fluid. We have resembled the cluster by a self-gravitating
fluid where the collection of fluid particles represents a col-
lection of stars (baryonic matter) and DM particles (non-
baryonic matter). To accommodate DM’s contribution in the

discussion, we have adopted the idea of high curvature grav-
ity ( f (R) gravity). We have investigated the impact of non-
baryonic matter on the evolution of cavities within the cluster
by using Starobinsky model, f (R) = R+ εR2. Specifically,
we have analyzed the significance of the Starobinsky model
for the evolving cluster. For this purpose, we have explored
the behaviors of matter and DM by using data associated with
star 4U1820−30. It is found that the role of DM is dominant
in contrast to the baryonic matter.

We have applied purely areal evolution condition to dis-
cuss the presence of cavity around the center. All dynamic
equations under this condition have been derived and various
models have been discussed. The obtained models are associ-
ated with various features like expansion-free, geodesic and
conformally flat conditions. These models satisfy Darmois
junction conditions for both hypersurfecs 
(i) and 
(e) in the
presence of DM and normal matter. We have found that the
evolution of cavity in cluster of stars is deeply controlled by
the effects of DM. Finally, we perform the physical analysis
of the obtained cavity models by relating them with the data
of star 4U1820 − 30 and investigated the physical viability
of the star configuration. In this context, we have analyzed
behavior of various physical factors within the cavity and
compared our results with that in GR. It is found that the con-
tribution of density and pressure becomes maximum at the
center which gradually tends to decrease towards the bound-
ary whereas their gradients remain negative throughout the
stellar object interior. It is worth mentioning that our results
with DM are well consistent with GR except the case for
tangential pressure. For DM, the DEC is violated at the cen-
ter of stellar object cluster as compared to the conditions in
GR. Moreover, our stellar object cluster model is stable with
� > 4

3 in the presence of DM. We conclude that the inclusion
of DM significantly controls the evolutionary mechanism of
cavity in cluster of stars.

Data Availability Statement This manuscript has no associated data
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