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Abstract We investigate how the gravitational form factors
of the nucleon undergo changes in nuclear matter, emphasiz-
ing the Abel transformation from the three-dimensional (3D)
Breit frame to the two-dimensional (2D) light-front frame.
Since the gravitational form factors reveal the mechanical
structure of the nucleon, we examine also the medium modi-
fications of the energy–momentum, pressure, and shear-force
distributions. We scrutinize the stabilities of the nucleon in
nuclear matter. For this purpose, we employ the in-medium
modified SU(2) Skyrme model to study these mechanical
quantities of the nucleon, since it provides a simple but
clear framework. In this in-medium modified SU(2) Skyrme
model, the modification of pionic properties is performed by
using low-energy pion-nucleus scattering data and the satu-
ration properties of nuclear matter near the normal nuclear
matter density, ρ0 = 0.5m3

π . The results reveal how the
nucleon swells in nuclear matter as the mass distribution of
the nucleon is broadened in medium. We also show that the
mean square radii corresponding to the mass and angular
momentum distributions increase in nuclear medium. This
feature is kept both in 3D and 2D cases. We visualize how
the strong force fields inside the nucleon in the 2D plane are
distributed and illustrate how these forces undergo change in
nuclear matter.

1 Introduction

The gravitational form factors (GFFs) or the energy–mome-
ntum tensor (EMT) form factors (FFs) of the nucleon pro-
vide essential information on the mass, spin, pressure, and
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shear-force distributions. In particular, the force distributions
inside a nucleon shed light on how the nucleon acquires
stability microscopically. While the GFFs were proposed
many years ago [1,2], it is practically impossible to measure
them directly. However, the generalized parton distributions
(GPDs) furnish a modern understanding of the form factors.
The electromagnetic form factors and GFFs are identified as
the first and second moments of the vector GPDs [3–5] (see
also relevant reviews [6–8]), respectively. It indicates that
the GFFs of the nucleon can be extracted from the exper-
imental data on the vector GPDs [9–12]. The GFFs reveal
a unique feature of the mechanical structure of the nucleon:
Any hadron should satisfy the stability condition, also known
as the von Laue condition [13], which arises from the conser-
vation of the EMT current (see, for example, a recent review
[14]). It is a nontrivial condition and yet any approach for
describing the structure of the nucleon should comply with
it.

The D-term form factor of the nucleon, which is one of
the GFFs, is associated with the pressure and shear-force dis-
tributions, which carry information on the mechanism of the
nucleon stabilization and dictate a criterion for the stability
condition of the nucleon [14–16]. These three-dimensional
(3D) distributions of the pressure and shear-force are often
presented in the Breit frame (BF) [14,15,17]. On the other
hand, the validity of the 3D densities for the nucleon [8,18–
23] has been under question since the experiments on the
proton structure performed by Hofstadter [24,25]. The criti-
cisms have it that the 3D distributions are valid only for the
nonrelativistic particles such as atoms and nuclei, the intrin-
sic sizes of which are much larger than the characteristic
Compton wavelength (� = h̄/mc). However, when it comes
to the nucleon, one cannot define a localized state because
the intrinsic size of the nucleon bears comparison with its
Compton wavelength. It implies that the nucleon is per se
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a relativistic particle [8], so that the probabilistic interpreta-
tion of its 3D distributions in the BF is tainted by relativistic
corrections.

Nevertheless, the BF distributions for the static EMT can
be interpreted as quasi-probabilistic densities from the phase-
space perspective [16,26–29]. It means that the BF distribu-
tions, which are defined through the Wigner distributions in
the quantum phase space [30,31], can be understood as quasi-
probabilistic ones due to Heisenberg’s uncertainty principle.
If one takes the infinite momentum frame (IMF), which indi-
cates that the nucleon is on the light-front (LF), the relativis-
tic corrections to the distributions are suppressed kinemati-
cally and a transversely localized state for the nucleon can be
defined, which enables one to construct the two-dimensional
(2D) transverse distributions on the LF. They provide a strict
probabilistic interpretation [20,21,32] and are not Lorentz
contracted since the initial and final states of the nucleon lie
on the mass shell. Recently, it was shown in Refs. [28,33,34]
that the BF charge distributions could be interpolated to the
LF ones. In Ref. [35], this interpolation was applied to the
EMT force distributions as well as the electromagnetic ones
[33,36,37]. The Abel transform [38], which has been used
in the computerized medical tomography [39], brings the 3D
BF distributions to the 2D LF ones in the transverse plane. It
was already utilized in the deeply virtual Compton scattering
[40,41]. As pointed out in Ref. [35], it is crucial to scruti-
nize how the EMT force distributions in the BF are related
to those in the IMF.

In Ref. [42] the Abel transformation from the 3D BF dis-
tributions to the 2D IMF ones was criticized. That in Ref. [42]
was defined by integrating a spherical symmetric 3D distri-
bution merely over z-axis. It means that the integral projects
the 3D BF distribution onto the 2D BF one without any
relativistic effects. Thus, the Abel transformation defined
in Ref. [42] is restricted within the BF, so that their Abel
images are different from those defined in Refs. [33,35,36].
As far as the EM and EMT transverse densities of the nucleon
are concerned, we can project the 3D distributions onto the
2D transverse densities in the LF. Contrary to the criticism
raised in Ref. [42], the 2D IMF transverse charge densities
of the nucleon [21] were successfully reproduced by Abel-
transforming the nonrelativistic 3D charge and magnetiza-
tion distributions in Ref. [33]. Thus, the criticism of Ref. [42]
was not applied to the present definition of the Abel trans-
form. We want to stress again that while the Abel transforma-
tion used in this literature is quite different from the typical
Abel transformation, we implicitly define “Abel transforma-
tion” as the projection of the 3D BF distributions onto 2D
IMF ones. We will show in the current work that the EMT
transverse densities in the LF are indeed derived by the Abel
transformation of the EMT distributions in the 3D BF as done
in Ref. [35].

It is also of great interest to examine how the mechanical
properties of the nucleon undergo modification in nuclear
matter. In fact, the GFFs of the nucleon in nuclear medium
were already studied in Ref. [43]. In the present work, we
aim at providing the genuine 2D EMT distributions of the
nucleon in nuclear matter in the IMF. To investigate them, we
employ the in-medium modified Skyrme model [43–45]. The
model is known to be one of the simplest ones for describing
the lowest-lying baryons based on the 1/Nc expansion. In
the large Nc limit, a baryon arises as a chiral soliton with
effective mesonic degrees of freedom [46] on account of the
suppression of the meson fluctuation. In addition, the model
is related to the essential properties of the QCD, such as chiral
symmetry and its spontaneous breaking.

Qualitatively, the model quite satisfactorily describes the
important properties of the nucleon at low-energy regime.
The merit of the model is that it can be easily applied to
study the numerous baryon properties and has even described
well the general properties of the nucleon GFFs. This model
was already extended to consider the nucleon properties in
nuclear matter by modifying the properties of mesons in
medium [44,45]. In Ref. [47], the model has been further
elaborated to consider the nuclear matter properties at satura-
tion density where the stabilizing term was refined in nuclear
medium. In the present work, we will take Ref. [47] as our
model framework to revisit the GFFs and the 3D distributions
of the nucleon in nuclear matter and study the modification
of the 2D images of the nucleon pressure and shear-force
distributions.

The present work is organized as follows: In Sect. 2, we
formulate the 2D and 3D EMT distributions of the nucleon in
general. In Sect. 3, we show how to compute the GFFs of the
nucleon in nuclear matter. In Sect. 4, we present the results
and discuss them, focusing on how the strong force fields
are distributed inside a nucleon in nuclear matter. The final
section summarizes the present work draws conclusions.

2 2D and 3D EMT distributions of the nucleon

We first recapitulate the GFFs of the nucleon [1,2]. The
nucleon matrix element of symmetric EMT operator T̂μν(0)

between the nucleon states with initial(final) momentum
p(p′) and helicity λ(λ′) can be parametrized in terms of the
three form factors A(t), J (t), and D(t) as follows

〈p′, λ′|T̂μν(0)|p, λ〉 = N̄λ′(p′)
[
A(t)

PμPν

m

+ J (t)
i P{μσν}α�α

m
+ D(t)

4m
(�μ�ν − gμν�2)

]
Nλ(p),

(1)
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where Nλ(p) is the Dirac spinor which is normalized as
N̄λ′(p)Nλ(p) = 2mδλ′λ and we introduced kinematic vari-
ables Pμ = (pμ + p′μ)/2, �μ = p′μ − pμ, and �2 = t .
The parenthesis a{μbν} = (aμbν + aνbμ)/2 stands for
the symmetrization operator and m is the nucleon mass.
We also use the covariant normalization 〈p′, λ′|p, λ〉 =
2p0(2π)3δλ′λδ(3)( p′ − p) for the one-particle states. Three
different form factors, A(t), J (t) and D(t), provide informa-
tion on the mass, spin, and the mechanical properties of the
nucleon, respectively. The mass form factor is given as the
following linear combination

M(t) = A(t) − t

4m2 (A(t) − 2J (t) + D(t)). (2)

In the Wigner sense, the mass ε(r), angular momentum
ρJ (r), pressure p(r) and shear-force s(r) distributions in
the BF are obtained as

ε(r) = mM̃(r),

ρJ (r) = −1

3
r
d

dr
J̃ (r),

s(r) = − 1

4m
r
d

dr

1

r

d

dr
D̃(r),

p(r) = 1

6m

1

r2

d

dr
r2 d

dr
D̃(r), (3)

by using the generic 3D inverse Fourier transform

F̃(r) =
∫

d3�

(2π)3 e
−i�·rF(−�2), (4)

of the GFFs, where F = A, M, J, D are defined in terms of
the multipole expansion [14,16,48,49].

However, the physical meaning of 3D distributions is
marred by ambiguity because of the relativistic corrections.
This ambiguity can be remedied by considering the 2D trans-
verse distributions in the IMF [8,19–23]. The EMT dis-
tributions in the IMF have been already extensively stud-
ied in numerous Refs. [16,26,35,50–53]. The corresponding
EMT 2D distributions for the momentum ε(2D)(x⊥), angular
momentum ρ

(2D)
J (x⊥), pressure p(2D)(x⊥) and shear force

s(2D)(x⊥), which have the following forms

ε(2D)(x⊥) = P+ Ã(x⊥),

ρ
(2D)
J (x⊥) = −1

2
x⊥

d

dx⊥
J̃ (x⊥),

s(2D)(x⊥) = − 1

4P+ x⊥
1

dx⊥
1

x⊥
d

dx⊥
D̃(x⊥),

p(2D)(x⊥) = 1

8P+
1

x⊥
d

dx⊥
x⊥

d

dx⊥
D̃(x⊥), (5)

were obtained by using the generic 2D inverse Fourier trans-
form

F̃(x⊥) =
∫

d2�⊥
(2π)2 e

−i�⊥·x⊥F(−�2⊥). (6)

of the corresponding GFFs. In the expressions above x⊥
and �⊥ denote the position and momentum vectors in the
2D plane transverse to the moving direction of the nucleon,
respectively. Consequently, the mass, shear force, and pres-
sure distributions are redefined by multiplying, for conve-
nience, the Lorentz factors [35] as follows

E(x⊥) = m

P+ ε(2D)(x⊥),

S(x⊥) = P+

2m
s(2D)(x⊥),

P(x⊥) = P+

2m
p(2D)(x⊥), (7)

where P+ is the light-cone momentum. Since the light-cone
momentum distribution ε(2D)(x⊥) is rescaled by the factor
m/P+, we will name E(x⊥) as the “2D IMF energy distribu-
tion”. One should keep in mind that it does not indicate the
higher-twist distribution normalized to be P−.

The BF and LF distributions given respectively in Eqs. (3)
and (7) should be related to each other and the corresponding
relations were derived in Refs. [35,36] by the Abel transform

(
1 − ∂2

(2D)

4m2

)
E(x⊥) = 2

∫ ∞

x⊥

rdr√
r2 − x2⊥

[
ε(r)

+ 3

2
p(r) + 3

2mr2

d

dr
rρJ (r)

]
,

ρ
(2D)
J (x⊥) = 3

∫ ∞

x⊥

ρJ (r)

r

x2⊥dr√
r2 − x2⊥

,

S(x⊥) =
∫ ∞

x⊥

s(r)

r

x2⊥dr√
r2 − x2⊥

,

1

2
S(x⊥) + P(x⊥) = 1

2

∫ ∞

x⊥

(
2

3
s(r) + p(r)

)

× rdr√
r2 − x2⊥

. (8)

In the large Nc limit, it is possible to derive the reduced
expression for the 2D energy distribution

E(x⊥) = 2
∫ ∞

x⊥

rdr√
r2 − x2⊥

[
ε(r) + 3

2
p(r)

]
. (9)
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Integrating 2D and 3D EMT distributions over x⊥ and r ,
respectively, one can get the mass and spin of the nucleon

mA(0) =
∫

d2x⊥ E(x⊥) =
∫

d3r ε(r),

J (0) =
∫

d2x⊥ ρ
(2D)
J (x⊥) =

∫
d3r ρJ (r), (10)

with the properly normalized form factors, A(0) = 1 and
J (0) = 1/2. As in the case of the radii for the 3D distribu-
tions [54], we can define 2D radii for the mass and angular
momentum

〈x2⊥〉E = 1

m

∫
d2x⊥x2⊥E(x⊥)

= 2

3
〈r2〉ε + D(0)

m2 ,

〈x2⊥〉J = 2
∫

d2x⊥x2⊥ρ
(2D)
J (x⊥) = 4

5
〈r2〉J , (11)

respectively [35].
The conservation of the EMT current also provides the 2D

stability condition for the nucleon as in the 3D case, which
yields the following 2D stability equation

P ′(x⊥) + S(x⊥)

x⊥
+ 1

2
S ′(x⊥) = 0. (12)

This 2D stability condition can be considered to be equivalent
to the 3D expression

p′(r) + 2s(r)

r
+ 2

3
s′(r) = 0. (13)

One can see that the shear-force and pressure distributions
are related to each other. Using Eqs. (12) and (13), we obtain
the global stability condition or the von Laue condition

∫
d3r p(r) = 0 ⇐⇒

∫
d2x⊥P(x⊥) = 0, (14)

∫ ∞

0
dr r

[
p(r) − 1

3
s(r)

]
= 0 ⇐⇒

∫ ∞

0
dx⊥

[
P(x⊥) − 1

2
S(x⊥)

]
= 0, (15)

which is the necessary condition for the stability of the
nucleon. The integrand in the last equation in Eq. (8) gives
the 3D local stability condition, which leads to the 2D local
stability condition in the LF [35]

2

3
s(r) + p(r) > 0 ⇐⇒ 1

2
S(x⊥) + P(x⊥) > 0. (16)

The positivity is kept intact by the Abel transformation. This
implies that though the 3D distributions have only quasi-
probabilistic meaning, they still provide intuitive features for

the stability conditions. It also relates the 3D mechanical
radius to the 2D one

〈x2⊥〉mech =
∫
d2x⊥x2⊥

( 1
2S(x⊥) + P(x⊥)

)
∫
d2x⊥

( 1
2S(x⊥) + P(x⊥)

)
= 4D(0)∫ 0

−∞ dtD(t)
= 2

3
〈r2〉mech. (17)

To understand the physics of the pressure and shear-force
distributions more in detail, it is instructive to introduce the
notion of the normal and tangential force fields that are just
the eigenvalues of the stress tensor contracted with the radial
er and tangential eφ unit vectors, respectively. The 3D and
the 2D force fields in the BF and LF are expressed in terms
of the pressure and shear-force distributions as follows:

Fn(r) = 4πr2
[

2

3
s(r) + p(r)

]
,

Ft (r) = 4πr2
[
−1

3
s(r) + p(r)

]
,

F (2D)
n (x⊥) = 2πx⊥

[
1

2
S(x⊥) + P(x⊥)

]
,

F (2D)
t (x⊥) = 2πx⊥

[
−1

2
S(x⊥) + P(x⊥)

]
. (18)

Equation (18) implies that Fn(r) and F (2D)
n (x⊥) should be

positive because of the local stability condition in Eq. (16),
whereas Ft (r) and F (2D)

t (x⊥) should have at least one nodal
point to ensure the von Laue conditions, which are shown in
Eq. (15). We will see these characteristics of the force fields
later in detail.

The value of the D-term is determined by integrating over
the 3D and 2D pressure or shear-force distributions as

D(0) = −4m

15

∫
d3r r2s(r) = −m

∫
d2x⊥x2⊥S(x⊥)

= m
∫

d3r r2 p(r) = 4m
∫

d2x⊥x2⊥P(x⊥). (19)

As will be shown soon, both the 2D and 3D shear-force distri-
butions are positive in the overall ranges of x⊥ and r , respec-
tively. So, the D(0) should be always negative, which is also
deeply related to the stability conditions. Equation (19) also
shows the equivalence between the 2D and 3D pressure and
shear-force distributions. It implies that while 3D distribu-
tions are quasi-probabilistic, the 2D distributions provide the
proper probabilistic meaning.
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3 Gravitational form factors of the nucleon in nuclear
matter

To compute the GFFs of the nucleon in nuclear matter, we
will employ the in-medium modified chiral soliton model.
We start with the in-medium modified chiral Lagrangian1

[43,47]

L∗ = L∗
2 + L∗

4 + L∗
m

= F2
π

16
Tr

[
∂0U∂0U †

]
+ αp

F2
π

16
Tr

[
∂iU∂ iU †

]

+ 1

32e2γ
Tr

[
(∂μU )U †, (∂νU )U †

]2

+ αs
m2

π F
2
π

8
Tr [U − 1] , (20)

where U = exp[r̂ iτ i P(r)] is the SU(2) chiral field with the
profile function P(r) for the pion fields, τ i (i = 1, 2, 3) are
the Pauli matrices, and r̂ i = r i/|r| is the radial component
of the unit vector in space. Tr stands for the trace running
over the SU(2) isospin space. The input parameters of the
soliton model are given by the pion decay constant Fπ =
108.78 MeV, a dimensionless parameter e = 4.854, and the
pion mass mπ = 135 MeV.

We incorporate the medium modifications by introducing
the density-dependent medium functions

αp(ρ) = 1 − χp(ρ), χp(ρ) = 4πc0ρ

η + 4πc0g′ρ
,

η = 1 + mπ

m
,

αs(ρ) = 1 + χs(ρ)

m2
π

, χs(ρ) = −4πηb0ρ,

γ (ρ) = exp

[
− γnumρ

1 + γdenρ

]
, (21)

which associate the model with the low energy pion-nucleus
scattering data and properties of nuclear matter at the normal
nuclear matter density or the saturation point ρ0 [47]. The
parameters in the medium functions have been already fixed
by

b0 = −0.024m−1
π , c0 = 0.09m−3

π , g′ = 0.7,

γnum = 0.797m−3
π , γden = 0.496m−3

π , (22)

where b0 and c0 are s- and p-wave pion-nucleon scattering
lengths and volumes, g′ is correlation parameter, and γnum

1 Hereafter, a superscript “∗” indicates an modified in-medium quantity.
We consider the in-medium modifications of the quantities discussed
so far with the superscript included.

and γden are fitted in such a way that nuclear matter prop-
erties at the normal nuclear matter density ρ0 = 0.5m3

π are
reproduced correctly. For details we refer to Ref. [47].

Since we consider homogeneous nuclear matter, where
the nuclear density is kept constant, we treat the modified
chiral Lagrangian by introducing the renormalized effective
constants:

F∗
π,t = Fπ,t = Fπ , F∗

π,s = α
1/2
p Fπ ,

e∗ = γ 1/2e, m∗
π = (αs/αp)

1/2mπ , (23)

which shows that all expressions can be expressed in terms of
the renormalized model parameters. For example, the clas-
sical soliton mass functional in nuclear matter takes the fol-
lowing form

M∗
sol[P] = 4π

∫ ∞

0
dr r2

×
[
F∗2

π,s

8

(
2 sin2 P(r)

r2 + P ′(r)2
)

+ sin2 P(r)

2e∗2r2

(
sin2 P(r)

r2 + 2P ′(r)2
)

+m∗2
π F∗2

π,s

4
(1 − cos P(r))

]
, (24)

where P ′(r) denotes the derivative with respect to the vari-
able r . Minimizing the soliton mass, we obtain the nonlinear
differential equation for the profile function P(r) and the
solution for the baryon number B = 1 is derived by impos-
ing the boundary conditions, P(0) = π and P(∞) = 0.
Then making a zero-mode quantization or rotating the clas-
sical soliton slowly, we get the time-dependent SU(2) soli-
tonU (r) → A(t)U (r)A†(t) with the collective Hamiltonian
[46]

H∗ = M∗
sol + Ĵ

2

2I ∗ , (25)

where Ĵ is angular momentum operator and

I ∗ = 2π

3

∫ ∞

0
dr r2 sin2 P(r)

×
[
F2

π + 4P ′(r)2

e∗2 + 4 sin2 P(r)

e∗2r2

]
(26)

is the moment of inertia of the rotating soliton. We derive the
EMT from the time-dependent Lagrangian for the rotating
soliton

Tμν∗ = ∂L∗

∂(∂μφa)
∂νφa − gμνL∗, (27)

123
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Fig. 1 The GFFs A∗(t), J ∗(t), and D∗(t) of the nucleon as functions of the momentum transfer t . The short-dashed curves draw those in free
space, whereas the long-dashed and solid ones depict those respectively at ρ = 0.5ρ0 and at ρ = ρ0, where ρ0 = 0.5m3

π is the normal nuclear
matter density

where φa is a time-dependent pionic field with U (t, r) =
φ0 + iτ ·φ that satisfied the unitarity condition φ2

0 +φ2 = 1.
As discussed already in Ref. [55,56], one should carefully
take the following procedure to describe the EMT form fac-
tors consistently within the Skyrme model. We first minimize
the classical soliton mass, and then make a collective quan-
tization. This means that any observable can be decomposed
into two different contributions:

A = ALO + Arot, (28)

where ALO denotes the leading-order contribution in the
1/Nc expansion whereas Arot comes from the 1/Nc rota-
tional corrections. One should keep in mind that time depen-
dence of the collective Lagrangian enters implicitly through
the collective quantization, not explicitly. When ALO does
not vanish, we shall suppress the rotational corrections Arot.
In the 1/Nc expansion, this procedure is a rigorous one. A
detailed discussion can be found in Appendix C of Ref. [56].
Thus, as far as we follow this procedure, the EMT current is
conserved.

The components of the EMT are then written as

T 00∗ = δσ ′σ

[
F∗2

π,s

8

(
2 sin2 P(r)

r2 + P ′(r)2
)

+ sin2 P(r)

2e∗2r2

(
sin2 P(r)

r2 + 2P ′(r)2
)

+m∗2
π F∗2

π,s

4
(1 − cos P(r))

]
,

T i j∗ = r̂ i r̂ jδσ ′σ

[(
F∗2

π,s

4
+ sin2 P(r)

e∗2r2

)

×
(
P ′(r)2 − sin2 P(r)

r2

)]

+ δi jδσ ′σ

[
− F∗2

π,s

8
P ′(r)2 + sin4 P(r)

2e∗2r4

−m∗2
π F∗2

π,s

4
(1 − cos P(r))

]
,

T 0k∗ = ( Ĵ × r̂)kσ ′σ
sin2 P(r)

4I ∗r

123
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×
[
F2

π + 4 sin2 P(r)

e∗2r2 + 4P ′(r)2

e∗2

]
. (29)

The time component T 00∗ yields the leading-order term for
the energy, i.e., for the static mass distribution given by the
integrand in Eq. (24). The mixed space-time components
T 0k∗ give the angular momentum density whereas the spatial
ones T i j∗ furnish the pressure and shear-force densities.

We can extract the energy, spin, pressure, and shear-force
distributions directly from Eq. (29):

ε∗(r) =
[
F∗2

π,s

8

(
2 sin2 P(r)

r2 + P ′(r)2
)

+ sin2 P(r)

2e∗2r2

(
sin2 P(r)

r2 + 2P ′(r)2
)

+m∗2
π F∗2

π,s

4
(1 − cos P(r))

]
,

ρ∗
J (r) = sin2 P(r)

12I ∗

[
F2

π + 4 sin2 P(r)

e∗2r2 + 4P ′(r)2

e∗2

]
,

p∗(r) = − F∗2
π,s

24

(
2 sin2 P(r)

r2 + P ′(r)2
)

+ sin2 P(r)

6e∗2r2

(
sin2 P(r)

r2 + 2P ′(r)2
)

− m∗2
π F∗2

π,s

4
(1 − cos P(r)) ,

s∗(r) =
(
F∗2

π,s

4
+ sin2 P(r)

e∗2r2

)

×
(
P ′(r)2 − sin2 P(r)

r2

)
. (30)

As mentioned previously, the rotational corrections are sup-
pressed except for the spin densityρJ (r), where the rotational
corrections take the leading role.

We then arrive at the final expressions for the GFFs in
Eq. (1) given in the large Nc limit as

A∗(t) − t

4m∗2 D∗(t) = 1

m∗

∫
d3r

× ε∗(r) j0(r
√−t), (31)

D∗(t) = 6m∗
∫

d3r p∗(r) j0(r
√−t)

t
, (32)

J ∗(t) = 3
∫

d3r ρ∗
J (r)

j1(r
√−t)

r
√−t

, (33)

where j0(z) and j1(z) represent the spherical Bessel func-
tions of order 0 and 1, respectively. At the zero momentum
transfer t = 0, A∗(0) and J ∗(0) are normalized to be

Table 1 Various quantities related to the GFFs of the nucleon in both
the BF and IMF: the energy distributions at the center (ε∗(0), E∗(0)),
the pressure distributions at the center (p∗(0), P∗(0)), nodal points
of the pressures (r∗

0 , (x∗⊥)0)) and the mean square radii of the mass,
angular momentum and mechanical (〈r2〉∗, 〈x2⊥〉∗) at different values
of nuclear density ρ

ρ/ρ0 0 0.5 1

ε∗(0) (GeV/fm3) 1.25 0.84 0.62

p∗(0) (GeV/fm3) 0.263 0.178 0.133

r∗
0 (fm) 0.72 0.82 0.91

〈r2〉∗ε (fm2) 0.68 0.83 0.95

〈r2〉∗J (fm2) 1.09 1.23 1.35

〈r2〉∗mech (fm2) 0.75 0.90 1.01

E∗(0) (GeV/fm2) 1.25 0.96 0.80

P∗(0) (GeV/fm2) 0.060 0.047 0.039

(x⊥)∗0 (fm) 0.59 0.67 0.73

〈x2⊥〉∗E (fm2) 0.30 0.38 0.44

〈x2⊥〉∗J (fm2) 0.87 0.99 1.08

〈x2⊥〉∗mech (fm2) 0.50 0.60 0.68

A∗(0) = 1

m∗

∫
d3r ε∗(r) = 1,

J ∗(0) =
∫

d3r ρ∗
J (r) = 1

2
. (34)

These normalizations were proven in Ref. [56] for a Skyrmion
in free space and they hold also in nuclear matter [43].

4 Results and discussion

To examine how the mechanical properties of the nucleon
undergo modification in nuclear matter, we consider homo-
geneous nuclear matter in which the nuclear density is kept
constant. From now on, all observables are given as functions
of the normalized nuclear matter density ρ/ρ0.

4.1 Gravitational form factors of the nucleon

The GFFs of the nucleon and the corresponding 3D densities
in nuclear matter were already studied in Ref. [43]. Since,
however, the 3D distributions acquire ambiguous relativistic
corrections because of the relativistic nature of the nucleon,
they do not give a correct probabilistic meaning. Thus, we
need to consider the 2D distributions of the nucleon in the LF,
which provide proper probabilistic meaning. We can obtain
the 2D densities in the LF by using the Abel transformation.

In Fig. 1, we show the results of the nucleon GFFs as
functions of t , changing the nuclear densities from ρ = 0
(free space) to ρ = ρ0. As ρ increases, The form factors fall
off faster than those in free space as functions of t . Since
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Fig. 2 The 3D and 2D mass distributions multiplied respectively by
4πr2 and 2πx⊥. The upper-left (-right) panel depicts 3D mass distri-
butions with 4πr2 at ρ = 0 (ρ = ρ0). The long-dashed, short-dashed,
dot-dashed, and solid curves illustrate the contributions of the kinetic

term (L∗
2) with two derivatives, the Skyrme term (L∗

4) with four deriva-
tives, the mass term (L∗

m ), and the total result, respectively. The lower-
left (-right) panel draws the 2D mass distributions with 2πx⊥ at ρ = 0
(ρ = ρ0). Notations are the same as in the 3D case

A∗(0) = 1 and J ∗(0) = 1/2 are strictly constrained to be
at t = 0, their magnitudes are unchanged in nuclear mat-
ter. It hints that the corresponding radii of the nucleon get
larger in the medium, i.e., the size of the nucleon swells in
medium, as was discussed in Ref. [43]. On the other hand,
the absolute magnitude of the in-medium D∗(t) is enhanced
by the density effects but decreases more noticeably than that
in free space as t increases. The D-term form factor contains
information on the stability of the nucleon and character-
izes the distribution of force fields inside the nucleon. Many
theoretical studies and experimental indications show that it
should be negative [9,17,57–60] to secure the stability of the
nucleon. In the present work, D(0) is around −2.8 in free
space, but it decreases (becomes larger in the absolute value)
as ρ increases. D∗(0) at the normal nuclear matter density
yields around −3.9. This result indicates that the pressure and
shear-force densities are deformed inside the nucleon by the
nuclear environment. In this context, it is interesting to note
that the analysis of selected nuclear isotopes with spin-parity
quantum numbers J P = 0+ shows the increasing absolute

value of D(0) [61]. For heavier nuclei, the value of the D-
term predicted in the framework of the liquid drop model is
approximated as D(0) ≈ −0.246A2.26, where A is the mass
number of the nucleus [15]. For more discussion, we also
refer to Ref. [14].

4.2 Energy and angular momentum distributions of the
nucleon

We now discuss the results for the energy distributions of
the nucleon in nuclear matter. In Table 1, various quanti-
ties related to the GFFs of the nucleon are presented both
in free space and in nuclear matter at the different values of
nuclear density ρ. The 3D ε∗(0) and 2D E∗(0) at the center
of the nucleon decrease if ρ increases. Moreover, as listed in
Table 1, the central value of the 3D distribution lessens faster
than that of the 2D case. For example, the central value of the
3D distribution decreases by about 50 %, whereas it decreases
by about 36 % in the 2D case.
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Fig. 3 The 3D angular momentum distributions of the nucleon. The
upper-left (-right) panel depicts the 3D angular momentum distributions
multiplied by 4πr2 at ρ = 0 (ρ = ρ0). The lower-left (-right) panel

draws the 2D angular momentum distributions with 2πx⊥ at ρ = 0
(ρ = ρ0). Notations are the same as in Fig. 2

Table 2 Contributions of the different terms to the angular momentum
J , the stability condition (Von Laue condition), and the values of the
D-term extracted from the pressure distributions for ρ = 0 (ρ = ρ0)

Terms J Von Laue D-term

3D

L∗
2 0.188 (0.179) −9.55 (−7.74) −2.78 (−3.26)

L∗
4 0.312 (0.321) 12.45 (13.65) 1.16 (2.12)

L∗
m – −2.90 (−5.91) −1.22 (−2.74)

2D

L∗
2 0.188 (0.179) −4.78 (−3.87) −2.66 (−3.21)

L∗
4 0.312 (0.321) 6.22 (6.83) 0.64 (1.15)

L∗
m – −1.44 (−2.96) −0.82 (−1.82)

Total 0.5 0 −2.83 (−3.88)

In Fig. 2, we draw the 3D and 2D mass distributions mul-
tiplied respectively by 4πr2 and 2πx⊥. We find that the 3D
one exhibits a broader shape than the 2D one by comparing
the solid red curve in the upper panel with the lower panel.
The 2D and 3D mass distributions become broader as the

density of nuclear matter increases, as seen from the solid
red curve in the left panel compared to the right panel. These
features appear clearly in the mean square radii of the 2D and
3D mass distributions:

〈x2⊥〉∗E
〈r2〉∗ε

≈ {0.441, 0.457, 0.463}, (35)

where we list the ratios of mean square radii of the 2D
and 3D energy distributions given at three different values
of the nuclear matter density ρ = {0, 0.5ρ0, ρ0}, respec-
tively. In Eq. (11), the 2D mass radius is expressed as
〈x2⊥〉∗E = 2

3 〈r2〉∗ε + D∗(0)/m∗2. The factor 2/3 comes from
the geometrical difference. In addition, D(0) should be neg-
ative to ensure the stability of the nucleon. Thus, it is natural
for 〈x2⊥〉E to be smaller than 〈r2〉ε. We list the numerical val-
ues of the 3D and 2D radii explicitly in Table 1. As a result,
the 3D mass mean square radius decreases by about 40 % at
the normal nuclear matter density, while in the 2D case, it
is reduced by about 47 %, compared to those in free space,
respectively. On the other hand, the central value of the 2D
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Fig. 4 3D and 2D pressure distributions of the nucleon. The upper-left (right) panel depicts the 3D pressure distributions multiplied by 4πr2 at
ρ = 0 (ρ = ρ0). The lower-left (-right) panel draws the 2D pressure distributions with 2πx⊥ at ρ = 0 (ρ = ρ0). Notations are the same as in Fig. 2

Fig. 5 3D and 2D pressure distributions of the nucleon as functions of the nuclear density ρ, multiplied by 4πr2 and 2πx⊥, respectively. The
short-dashed, long-dashed, and solid curves represent the pressure distributions with ρ = 0, 0.5ρ0, ρ0, respectively. ρ0 denotes the normal nuclear
matter density

mass distribution gets larger than the 3D one as the nuclear
density increases.

It is interesting to analyze how the different terms of the
effective chiral Lagrangian contribute to the mass distribu-
tion. As shown in Fig. 2, all contributions become broader
as the nuclear density increases. It indicates that both the
internal core of the nucleon and outer shell are affected in
the presence of the nuclear environment. The main contribu-

tion to the mass comes from the Skyrme term L∗
4, whereas

that of the mass term L∗
m turns out to be the smallest. It is

of particular interest to examine how each term contributes
after the Abel transformation. While the contributions from
the kinetic L∗

2 and Skyrme L∗
4 terms preserve their sign, the

mass distribution from the mass term L∗
m becomes negative

in both the free space and nuclear matter after the Abel trans-
formation. This behavior can be understood from Eq. (8). As
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will be discussed later, mass term contributes to the pressure
distribution negatively, i.e., it gives 3p(r)/2 < 0, of which
the magnitude is larger than ε(r).

In Fig. 3, we depict the 3D and 2D distributions for the
angular momentum, multiplied by 4πr2 and 2πx⊥, respec-
tively. Note that integrating over the 2D and 3D angular-
momentum distributions should yield the spin of the nucleon

∫
d2x⊥ρ

(2D)∗
J (x⊥) =

∫
d3rρ∗

J (r) = J ∗(0) = 1

2
, (36)

which provides a self-consistency check. As in the case of the
mass distributions, both the 3D and 2D distributions for the
angular momentum become broader as the nuclear density
increases. It implies that the mean square radii of the angular
momentum distribution also increase in nuclear matter (see
also Table 1). The 3D distribution is broader than the 2D one.
The factor 4/5 in Eq. (11) arises again from the geometrical
difference between the 3D and 2D angular-momentum dis-
tributions. The sign of each contribution is not changed after
the Abel transformation. As shown in Eq. (8), ρ

(2D)
J (x⊥) is

directly related to ρJ (r). As listed in Table 2, each contri-
bution to the spin of the nucleon in nuclear matter is also
changed. It is of great interest to see that the contribution
of the kinetic term L∗

2 is reduced in nuclear matter whereas
that of the Skyrme term L∗

4 is enhanced as the nuclear den-
sity increases. Nevertheless, the spin of the nucleon is always
kept to be 1/2 as it should be.

4.3 Pressure and shear-force distributions of the nucleon

We are now in a position to discuss the pressure and shear-
force distributions, which are crucial for the stability con-
ditions of the nucleon. Figure 4 shows each contribution to
the 3D and 2D pressure distributions multiplied by 4πr2 and
2πx⊥ in the upper and lower panels, respectively. We draw
the 3D and 2D weighted pressure densities in free space
(nuclear matter) in the upper-left (upper-right) and lower-
left (lower-right) panels, respectively. In fact, the results for
the 3D distributions were already discussed in Refs. [43,56].
Thus, we will concentrate in this work on how the 2D pres-
sure distributions undergo modification in nuclear matter
in comparison with the 3D ones. As shown in Fig. 4, the
Abel transformation does not change the general feature of
each contribution. It means that the conclusions drawn in
Refs. [43,56] are unchanged also in the 2D pressure dis-
tributions. The kinetic L∗

2 and mass L∗
m terms of the pion

provide the attractive force, whereas the Skyrme term L∗
4

yields the repulsive force so that the stability of the nucleon
is acquired. The pressure distribution should have at least
one nodal point such that the global stability condition or
the von Laue condition given in Eq. (14) is satisfied. It is
achieved by the perfect balance between the kinetic L∗

2 and

mass L∗
m terms and the Skyrme L∗

4 term. In the case of the
2D pressure distribution, we have the same conclusion. As
listed in Table 2, the contributions of the kinetic L∗

2 term to
the 3D and 2D pressures decrease with the nuclear density
increased, whereas the absolute magnitudes of the SkyrmeL∗

4
and mass L∗

m terms are enhanced in nuclear matter.
In Fig. 5, we depict the 3D and 2D pressure distributions of

the nucleon as functions of the nuclear density ρ, multiplied
by 4πr2 and 2πx⊥, respectively. The results show clearly
that as ρ increases, both the 3D and 2D pressure distributions
become broader. It implies that the nucleon swells in nuclear
matter. If ρ continuously increases to higher densities, the
negative pressure distribution of the kinetic term L∗

2 gets fur-
ther shallowed, which ends up with the situation that at a cer-
tain nuclear density the contribution of the kinetic term L∗

2
will no more compensate that of the Skyrme term L∗

4. As a
result, there is no topological solution; the skyrmion disap-
pears (for more discussion, we refer to Ref. [43]). It indicates
that the nucleon may dissolve in quark matter.

The numerical value of D(0) is obtained by integrating the
3D and 2D pressure distributions with the weights mr2 and
4mx2⊥ as shown in Eq. (19). The weights amplify the pressure
distributions as r and x⊥ increase. Thus, the negative tails of
both 4πr2 p∗(r) and 2πx⊥P∗(x⊥) overwhelm the core parts
so that the negative value of D(0) is ensured. It implies that
the correct balance of the pressure distributions is required
to get the negative values of the D-term. In Table 2, we list
the results for the D-term in the fourth column.

Figure 6 represents each contribution to the 3D and 2D
shear-force distributions of the nucleon multiplied by 4πr2

and 2πx⊥ in the upper and lower panels, respectively. We
want to mention that the mass term L∗

m does not contribute to
the shear-force distribution as shown in Eq. (30). The general
feature of each contribution is again well kept after the Abel
transformation. In the case of the shear-force distributions,
the contribution of the kinetic term L∗

2 is generally domi-
nant over that of the Skyrme term L∗

4. As shown in Eq. (8),
S∗(x⊥) is directly related to s∗(r), so that the shapes of the 3D
shear-force distributions are maintained by the Abel transfor-
mation. Since both the 3D (2D) shear-force distributions are
positive over the whole ranges of r (x⊥), the negative value
of the D-term is also secured by Eq. (19).

In Fig. 7, we draw the 3D and 2D shear-force distributions
of the nucleon as functions of the nuclear density ρ, multi-
plied by 4πr2 and 2πx⊥, respectively. Being similar to the
case of the pressure distributions, both the 3D and 2D shear-
force distributions get broadened as ρ increases. Considering
the dependence of both the pressure and shear-force distri-
butions on the nuclear density, we can easily understand the
reason why the 3D and 2D mechanical radii become larger in
nuclear matter than in free space. The 3D and 2D mechanical
radii are defined in Eq. (17) in terms of the pressure and shear-
force distributions. Since they get more extended in nuclear
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Fig. 6 3D and 2D shear-force distributions of the nucleon. The upper left (right) panel depicts the 3D shear-force distributions multiplied by 4πr2

at ρ = 0 (ρ = ρ0). The lower left (right) panel draws the 2D shear-force distributions with 2πx⊥ at ρ = 0 (ρ = ρ0). Notations are the same as in
Fig. 2

Fig. 7 3D and 2D pressure distributions of the nucleon as functions of the nuclear density ρ, multiplied by 4πr2 and 2πx⊥, respectively. Notations
are the same as in Fig. 5

matter, the mechanical radii become larger as ρ increases, as
shown in Table 1. Its physical implication is crucial because
the mechanical radius of the nucleon exhibits the physical
size of the nucleon. The results for the mechanical radii indi-
cate that the nucleon swells in nuclear matter. It also implies

that the local stability condition in Eq. (16) is satisfied. Its
positivity is indeed kept intact also in nuclear matter.

It is of great interest to examine the ordering of the mag-
nitudes of the nucleon radii as done in Ref. [36]. Table 1
displays the following ordering for the 3D and 2D radii:
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Fig. 8 3D and 2D normal force
fields inside the nucleon. The
upper-left (-right) panel depicts
the 3D normal force field at
ρ = 0 (ρ = ρ0). The lower-left
(-right) panel draws the 2D
force normal force fields at
ρ = 0 (ρ = ρ0). Notations are
the same as in Fig. 2

Fig. 9 3D and 2D normal force
fields inside the nucleon as
functions of the nuclear density
ρ. The short-dashed,
long-dashed, and solid curves
represent the normal force fields
with ρ = 0, 0.5ρ0, ρ0,
respectively. ρ0 denotes the
normal nuclear matter density

〈x2⊥〉E < 〈x2⊥〉mech < 〈x2⊥〉J (2D radii),

〈r2〉E < 〈r2〉mech < 〈r2〉J (3D radii). (37)

While the ordering of the 2D radii is in agreement with that in
the chiral quark-soliton model [36], the 3D radii are ordered
differently. We have the same orderings in nuclear matter.

4.4 3D and 2D force fields inside the nucleon

The strong force fields inside a nucleon reveal how the
nucleon acquires stability microscopically. As derived in
Eq. (18), the normal and tangential force fields inside the
nucleon are nothing but the stability conditions given in
Eqs. (16) and (15): the 3D and 2D normal force fields should
be positive over the whole ranges, and the tangential force
fields should have at least one nodal point to secure the stabil-
ity condition. Figure 8 illustrates how the normal force field
satisfies the local stability condition. As shown in the upper-

left panel of Fig. 8, the positivity of Fn(r) is achieved in a
nontrivial way. The Skyrme term L∗

4 plays an essential role
in making Fn(r) satisfy the local stability condition. Interest-
ingly, the stable topological soliton arises when the Skyrme
term L∗

4 is included. It is noticeable that this characteristic of
the Skyrme model is reflected in the local stability condition.
On the other hand, the kinetic term L∗

2 negatively contributes
to the core part but positively to the outer shell. The mass
term L∗

m always provides a negative contribution. The lower-
left panel of Fig. 8 shows that the Abel transformation does
not change the main feature of each contribution. As shown
in the right panels of Fig. 8, both the 3D and 2D normal force
fields become broadened in nuclear matter. Figure 9 exhibits
how the normal force fields undergo this broadening as ρ

increases.
The upper-left panel of Fig. 10 reminds us of the pressure

distributions in Fig. 4. The tangential force field is just the
integrand of the global stability condition or the von Laue
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Fig. 10 3D and 2D tangential
force fields inside the nucleon.
The upper-left (-right) panel
depicts the 3D normal tangential
field at ρ = 0 (ρ = ρ0). The
lower-left (-right) panel draws
the 2D force tangential force
fields at ρ = 0 (ρ = ρ0).
Notations are the same as in
Fig. 2

Fig. 11 3D and 2D tangential
force fields inside the nucleon as
functions of the nuclear density
ρ. The short-dashed,
long-dashed, and solid curves
represent the tangential force
fields with ρ = 0, 0.5ρ0, ρ0,
respectively. ρ0 denotes the
normal nuclear matter density
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Fig. 12 Visualization of the 2D strong force field inside the nucleon. The left panel illustrates that in free space, whereas the right panel displays
that in nuclear matter at the normal nuclear matter density

123



Eur. Phys. J. C (2022) 82 :719 Page 15 of 16 719

condition as shown in Eq. (15). Thus, the role of each con-
tribution is the same as in the case of the pressure distri-
butions as revealed in the upper-left panel of Fig. 10. It is
kept unmarred after the Abel transformation, as shown in the
lower-left panel of Fig. 10. Figure 11 demonstrates convinc-
ingly that the tangential force fields also get broadened as ρ

increases. Note that the sign of the 2D tangential force field
turns negative at around x⊥ ≈ 0.39 fm in free space whereas
at around x⊥ ≈ 0.48 fm at ρ = ρ0.

The total strong force field in free space (nuclear matter)
is visualized in the left (right) panel of Fig. 12. The core
part of the strong force field is dominated by the normal
force field, whereas the outer shell is governed by the tan-
gential one. This behavior of the strong force field ensures
that the nucleon acquires stability. In Ref. [62], it was shown
that Ft (x⊥) comes into leading play at large distances in a
model-independent way if one uses the r dependence of the
pressure and shear-force distributions. Last but not least, we
want to mention that the total internal force fields include
also contributions from the opposite direction to the force
fields drawn in Fig. 12. So, the nucleon is kept to be static.

5 Summary and outlook

In the present work, we aimed at investigating the gravi-
tational form factors of the nucleon and the corresponding
mechanical distributions in nuclear matter within the frame-
work of the in-medium modified Skyrme model. We first
computed the three different gravitation form factors of the
nucleon: the mass, angular momentum, and D-term form fac-
tors with the nuclear density varied from ρ = 0 to ρ = ρ0,
where ρ0 denotes the normal nuclear matter density. As the
momentum transfer increases, the mass and angular momen-
tum form factors fall off faster than the case in free space
with ρ increased. Since they are normalized to A∗(0) = 1
and J ∗(0) = 1/2, the magnitudes of these two form factors
at t = 0 are not changed. On the other hand, the absolute
magnitude of the D-term form factor is enhanced in nuclear
matter and drops off more rapidly than in free space. We then
examined the mass distribution of the nucleon in nuclear mat-
ter. Each contribution of the kinetic term, the Skyrme term,
and the mass term becomes broader as ρ increases. This fea-
ture is kept unchanged by the Abel transformation except for
the mass term. The contribution of the mass term turns nega-
tive in the two-dimensional transverse plane on the light cone.
The angular momentum distributions show similar behaviors
as the nuclear density is changed.

The pressure and shear-force distributions play crucial
roles in understanding the stability of the nucleon. The pres-
sure distribution has at least one nodal point so that the von
Laue condition is satisfied. The kinetic term and mass term of
the pion provide attraction whereas the Skyrme term yields

repulsion. As the nuclear density increases, both the 3D and
2D pressure distributions becomes broader. The shear-force
distributions exhibit the density dependence, being similar to
the pressure distributions. The Abel transformations do not
change the general features of the pressure and shear-force
distributions. The local and global stability conditions are
satisfied also in nuclear matter. The mass, angular momen-
tum, and mechanical radii of the nucleon become larger in
nuclear matter than in free space, which indicates that the
nucleon swells in nuclear matter.

Finally, we scrutinized the strong normal and tangential
force fields, which are deeply related to the stability condi-
tions. The normal force fields are positive over the whole
space and transverse plane. The 2D strong force fields keep
all important features of the 3D force fields, which means that
the Abel transformation does not change the characteristics
of the force fields. In conclusion, the nucleon acquires sta-
bility also in nuclear matter in a certain range of the nuclear
matter density.
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