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Abstract The γ -metric is a static, axially-symmetric sin-
gular solution of the vacuum Einstein’s equations without an
event horizon. This is a two-parameter family of solutions,
generic values of one of which (called γ ) measure the devia-
tion from spherical symmetry. We show that this can serve as
a black hole mimicker, consistent with current observations.
To this end, we first study the shadow cast by this geometry,
in order to constrain the γ -metric from observations. We find
that for γ < 1/2, there are, in principle, no shadows cast. On
the other hand, shadows cast for all values of γ ≥ 1/2 are
consistent with observations of M87∗ by the Event Horizon
Telescope. We also study images of thin accretion disks in the
γ -metric background. In situations where the γ -metric pos-
sesses light rings, these qualitatively mimic Schwarzschild
black holes with the same ADM mass, while in the absence
of such rings, they are drastically different from the black
hole case.

1 Introduction

Physics near the event horizon of a black hole has been one
of the most fascinating topics of research ever since the dis-
covery of General Relativity (GR) more than a century ago.
Indeed, a singularity indicates the limits of applicability of a
theory, and the event horizon, which cloaks the central singu-
larity of a black hole might hold the key to understanding the
most fundamental aspects of gravity. These include the elu-
sive quantum aspects of gravity, which, many believe, should
smoothen this singularity, which is often an inevitable end-
state of gravitational collapse in GR.

Studies related to singularities and event horizons assume
extreme importance and relevance given the fact that it is
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now commonly believed that the centers of most galaxies
are inhabited by supermassive black holes. While such stud-
ies were purely of theoretical interest till a few years back,
the advent of the Event Horizon Telescope (EHT) has proved
to be a game changer. The phenomenal advances in obser-
vational studies near the event horizon of black holes has
ushered in a new era where one can meaningfully compare
theoretical results with EHT data. In fact, immediately after
the EHT collaboration announced its first results on the radio
source M87∗ [1–3], a flurry of activities have started, one of
the most important being the constraining of various solu-
tions of GR and many other gravity theories that are either
black holes or can mimic one. The standard way to do this
is to compare the theoretically obtained shadow with the one
reported by the EHT for M87∗. Indeed, this has been shown to
put stringent constraints on the parameters of the underlying
theory [4–8].

In astrophysical scenarios, the spacetime geometry around
a supermassive compact object is typically modelled by a
static Schwarzschild or a stationary Kerr black hole solution
of GR. While Birkhoff’s theorem guarantees that the former
is the unique solution under the assumption of spherical sym-
metry in vacuum, the latter is perhaps more interesting as a
rotating solution. Such a solution is axially symmetric, and
thus more general than the idealized Schwarzschild solution.
While the Kerr black hole has been extensively studied in the
light of EHT data, a couple of its mimickers were recently
studied in the same context in [4], where it was pointed out
that such alternatives are indeed viable, within some particu-
lar range of parameters. Indeed, the nature of spacetime itself
in the presence of strong gravity is still far from being under-
stood in sufficient details. In such a situation, these studies
assume importance due to the fact that these can rule out
significant regions of parameter space so that one can focus
on more meaningful theoretical models. In this context, one
has to remember that as of now, experiments are indicative
of the existence of dark, compact objects at galactic centres,
which are supermassive in nature. While black holes offer
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the simplest and most elegant explanation for the nature of
such objects, more exotic possibilities cannot be ruled out
either, given the fact that there might be fundamentally new
degrees of freedom in the strong gravity regime. Such exotic
objects, have rapidly gained popularity of late, as it is now
commonly believed that possible alternatives to black holes
and its associated theorems might in fact be necessary. For a
recent review on the relevance of these, see [9]. To wit: cur-
rently, the role of quantum physics in such regimes are not
fully understood, and whether quantum effects can regularize
the singularity and remove the horizon is a matter of debate
[10]. It is therefore of interest to further the understanding of
black hole mimickers and this is what we intend to do in this
paper.

In astrophysical contexts, axially symmetric solutions of
Einstein’s equations are interesting, as these are more gen-
eral than idealized spherically symmetric cases. In the sim-
plest scenario, one can envisage a static solution, which can
have higher multipole terms in its potential, apart from the
usual monopole term. Properties of such spacetimes are well
studied in the literature, and exact solutions are known [11–
15] (for more details, we refer the reader to the monographs
[16] and [17]). Here, we will focus on the Zipoy–Voorhees
spacetime [12,13,16–19], whose metric is popularly known
as the γ -metric. These are singular and vacuum solutions of
Einstein’s equations without an event horizon and are charac-
terized by two parameters, which we call m and γ . While m
relates to the mass, γ has two special values, namely γ = 0
representing flat space and γ = 1 being the Schwarzschild
solution. For all other values of γ , the space-time is axially
symmetric, with γ being a measure of the deviation from
spherical symmetry or from the Schwarzschild solution (for
some recent works on various aspects of the γ metric, see
[20,21].)

Our purpose here is to check how far the γ -metric can
act as a black hole mimicker. To this end, we first study the
shadow cast by the γ -metric, and compare it with the EHT
result. Our main observation is that while for γ < 1/2, there
will in principle be no shadow (this contradicts the recent
results of [22,23]), while the EHT data indicates that all val-
ues of γ ≥ 1/2 are allowed. This is verified by studying the
gamma metric in the limit γ → ∞, where it coincides with
the Chazy–Curzon solution in spherical coordinates [17].
We, therefore, come up with an interesting conclusion : the
gamma metric, with γ ≥ 1/2 is an unconstrained axially
symmetric solution of vacuum GR, consistent with current
EHT data. In this sense, the shadow of the γ -metric adds to
the list of black hole mimickers.

In the later part of this paper, we focus on geometrically
thin accretion disk images for the γ -metric. We consider the
Novikov-Thorne model, and study massive particles on the
“equatorial” plane. The images of the disks are then numer-
ically obtained using ray-tracing technique and compared

with those of Schwarzschild black hole. Our conclusion here
is that, in the presence of light rings, the accretion disk
images of the γ -metric can very closely mimic those of the
Schwarzschild black hole, but in the absence of such rings it
is drastically different.

This paper is organized as follows. In the next Sect. 2, we
review some properties of the γ -metric, and also the metric
in the limit γ → ∞, in subsection 2.1. Next, in Sect. 3, we
study the shadow cast by the γ -metric. This is followed by the
Sect. 4, where we constrain the γ -metric using EHT results,
substantiating our discussion above. Section 5 is devoted to
the analysis of thin accretion disks in the γ -metric back-
ground, followed by the concluding Sect. 6. Throughout this
paper, we will work in units where the gravitational constant
G and the speed of light c is set to unity.

2 The γ -metric and its properties

We consider a particular solution of the Weyl class which
consists of a family of static, axially symmetric vacuum solu-
tions of Einstein’s equations. The solution is called as the
Zipoy–Voorhees spacetime [12,13,16–19], whose metric is
popularly known as the γ -metric. The Weyl class of metrics
have a generic line element of the form [16–18]

ds2 = −e2U dt2 + e−2U
(

e2k(dρ2 + dz2) + ρ2dφ2
)

, (1)

in cylindrical coordinates (t, ρ, φ, z). The γ -metric, for a
particular solution of U (ρ, z), k(ρ, z) and after making a
transformation from (ρ, z) to (r, θ) coordinates, is written
as

ds2 = gtt dt2 + grr dr2 + gθθ dθ2 + gφφdφ2

= −A(r)dt2 + 1

A(r)

×
[

B(r, θ)dr2 + C(r, θ)dθ2 + (r2 − 2mr) sin2 θdφ2
]
,

(2)

where the functions A, B, C are given as

A(r) =
(

1 − 2m

r

)γ

,

B(r, θ) =
(

r2 − 2mr

r2 − 2mr + m2 sin2 θ

)γ 2−1

,

C(r, θ) = (r2 − 2mr)γ
2

(r2 − 2mr + m2 sin2 θ)γ
2−1

. (3)

The transformation between the Weyl coordinates (ρ, z) of
Eq. (1) and the Erez–Rosen coordinates (r, θ) of Eq. (2) is
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[16,18]

ρ2 =
(

r2 − 2mr
)

sin2 θ, z = (r − m) cos θ. (4)

The metric is characterized by two parameters m and γ ,
where m is related to the mass, and γ measures deformation
of the spacetime from spherical symmetry. The Arnowitt–
Deser–Misner (ADM) mass of the spacetime is M = mγ ,

and the corresponding quadrupole moment is Q = γ M3

3 (1−
γ 2) [18]. The monopole M and the quadrupole Q are the
only independent components of multipole moments, as all
higher order components can be expressed in terms of M and
Q. When γ = 0, the γ -metric represents the flat Minkowski
spacetime, and for γ = 1, it reduces to the spherically sym-
metric Schwarzschild solution. For all other values of γ , it
deforms the spacetime from spherically symmetric to axi-
ally symmetric, with γ < 1(γ > 1) representing a prolate
(oblate) spheroid.

The γ -metric is an interesting model to understand the
directional behaviour of naked singularities [24,25]. Since
this is a vacuum solution, the Ricci scalar for the metric van-
ishes. Whereas the expression of the Kretschmann scalar,
K = Rαβδλ Rαβδλ (Rαβδλ is the Riemann curvature tensor),
reads [25–27]

K
= 16m2γ 2

r2(γ 2+γ+1)(r − 2m)2(γ 2−γ+1)(r2 − 2mr + m2 sin2 θ)3−2γ 2

F(r, θ), (5)

where

F(r, θ) = m2 sin2 θ
[
3mγ

(
γ 2 + 1

)
(m − r)

+γ 2
(

4m2 − 6mr + 3r2
)

+ m2
(
γ 4 + 1

)]

+3r(γ m + m − r)2(r − 2m). (6)

It can be seen that the Kretschmann scalar diverges at r = 0
for all γ > 0. So, there is a curvature singularity at r = 0 for
all γ > 0. Moreover, the nature of the surface r = 2m = 2M

γ

is quite interesting. As for the Schwarzschild case, i.e., for
γ = 1, this surface marks the location of the event horizon,
which also represents the infinitely red-shifted surface for
observers at spatial infinity. From Eq. (5), the expressions of
the Kretschmann scalar along the polar axis (θ = 0, π ) and
θ = π/2 become [25]

K|θ=0 = K|θ=π = 48m2γ 2(γ m + m − r)2

r4+2γ (r − 2m)4−2γ
, (7)

K|θ= π
2

= 16m2γ 2

r2γ 2+2γ+2(r − 2m)2γ 2−2γ+2(r − m)6−4γ 2 H(r),

(8)

where

H(r) = m4
(
γ 4 + 3γ 3 + 4γ 2 + 3γ + 1

)

− 3m3r
(
γ 3 + 4γ 2 + 5γ + 2

)

+ 3m2r2
(

2γ 2 + 6γ + 5
)

− 6mr3(γ + 2) + 3r4.

(9)

From Eqs. (5), (7) and (8), we see that, for γ < 2 ( �= 0, 1),
the Kretschmann scalar diverges at r = 2m = 2M

γ
for the

whole domain of θ , i.e., for 0 ≤ θ ≤ π . So there is a curvature
singularity at rs = 2m = 2M

γ
for the mentioned range of

γ . On the other hand, for γ > 2 case, the Kretschmann
scalar becomes zero at r = 2m at θ = 0, π and diverges at
θ = π/2. Therefore, no singularity exists on the polar axis
in the range γ > 2, whereas along the equatorial direction,
the curvature singularity does exist at r = rs for all values
of γ > 0 ( �= 1) [22]. Moreover, the surface r = rs also
represents an infinitely red-shifted surface for any value of
γ > 0 (γ = 1 being the Schwarzschild one) for an observer
at spatial infinity. For example, if ν is the frequency of a light
ray emitted from a source at rest at a finite radial distance r ,
and ν∞ is the corresponding frequency of the same light ray
received by an observer at rest at infinity, then we can write

ν∞ = ν
√

A(r) = ν

(
1 − 2m

r

)γ /2

.

As r → rs = 2m, we have ν∞ → 0, i.e., the light received by
the observer is infinitely red-shifted, irrespective of the value
of γ > 0. Again from Eq. (5), we observe thatK → ∞ when
r2 − 2mr + m2 sin2 θ = 0 for the range 0 < γ ≤ √

3/2.
Therefore, in addition to the singularities at r = 0 and rs =
2m, there exists another singular surface inside the rs = 2m
singularity, for this range of γ . Since we are interested only in
the region exterior to the outermost singular surface rs = 2m,
the singularities internal to this surface are immaterial to our
analysis. For associated literature regarding the properties
of this spacetime, for example the global structure, motion
of test particles, accretion disk properties etc., we refer the
reader to [18,19,26–29].

2.1 γ → ∞ limiting case

We have also considered the spacetime in the limiting case
of γ → ∞, keeping the ADM mass M fixed and finite. The
resulting spacetime corresponds to the Chazy–Curzon solu-
tion of GR in spherical coordinates [17,30–32]. We call it
as gamma-infinite (GI) spacetime for simplicity. The corre-
sponding line element of the GI spacetime is

ds2 = − exp

(
−2M

r

)
dt2 + exp

(
2M

r

)

×
[

exp

(
− M2 sin2 θ

r2

) (
dr2 + r2dθ2

)
+ r2 sin2 θdφ2

]
.

(10)
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The Kretschmann scalar of this GI spacetime reads

K̃ =
16M2

[
3(M − r)2r2 + M2(M2 − 3Mr + 3r2) sin2 θ

]

r10

× exp

[
2M(M sin2 θ − 2r)

r2

]
. (11)

From the above expression, we see that

K̃
∣∣∣
r→0

=
{

0, if θ = 0, π

∞, if θ �= 0, π
(12)

Therefore, there is no curvature singularity at r = 0 for θ =
0, π , whereas for all other values of θ , curvature singularity
exists at r = 0. We shall also discuss the lensing properties
of this spacetime in sequel.

3 Optical properties and shadows of the γ -metric

To analyze the gravitational lensing and shadows cast by the
γ -metric, we need to study the motion of photons in this back-
ground. Due to time translational and azimuthal symmetries
of this spacetime given by the metric in Eq. (2), we have
two constants of motion along the null geodesics, namely,
the energy E and the angular momentum L of photons about
the axis of symmetry. Therefore, the t and φ components of
the geodesic equations for photons are given by

ṫ = − E

gtt
, φ̇ = L

gφφ

. (13)

where an ‘overdot’ represents differentiation with respect to
the affine parameter (unless otherwise specified). From the
normalization of four velocities of photons (uμuμ = 0) along
null geodesics, we obtain

(−gtt )
(

grr ṙ2 + gθθ θ̇
2
)

+
(−gtt

gφφ

)
L2 = E2 ,

i.e., (−gtt )
(

grr ṙ2 + gθθ θ̇
2
)

+ Veff = E2 (14)

where Veff is the effective potential for photons and is given
by

Veff = L2

r2 sin2 θ

(
1 − 2m

r

)2γ−1
= L2

r2 sin2 θ

(
1 − 2M

γ r

)2γ−1
.

(15)

On the equatorial plane, θ = π/2 and θ̇ = 0. Therefore,
on this plane, we have

(−gtt ) grr ṙ2 + V π/2
eff = E2 (16)

where the effective potential on the equatorial plane takes the
form

V π/2
eff = L2

r2

(
1 − 2m

r

)2γ−1

= L2

r2

(
1 − 2M

γ r

)2γ−1

. (17)

If a photon arrives at the turning point (rtp) of its trajectory,
we have ṙ |r=rtp = 0, which from Eqs. (16) and (17) gives,

V π/2
eff |r=rtp = L2

r2
tp

(
1 − 2M

γ rtp

)2γ−1

= E2

	⇒ b(rtp) = L

E
= rtp

(
1 − 2M

γ rtp

)(1−2γ )/2

(18)

where b(rtp) is the impact parameter of a light ray. The max-
imum of the effective potential marks the position of the
photon capture radius which is known as the light ring in an
axially symmetric case, and the photon sphere in a spher-
ically symmetric case. On the equatorial plane, the photon
capture radius becomes

rps = (2γ + 1)m = 2M + M

γ
. (19)

Figure 1 shows the variation of the photon capture radius
rps on the equatorial plane and the singularity radius rs as
functions of γ . Note that the photon capture radius exists
only for γ ≥ 1/2. However, for γ < 1/2, it does not exist
as rps < rs in this case. This is also clear from the effective

potential V π/2
eff . For γ > 1/2, V π/2

eff vanishes both at the
singularity rs and at the spatial infinity with a maximum in
between marking the position of rps. However, for γ < 1/2,

V π/2
eff diverges at the singularity rs (see Fig. 2). Therefore, in

this latter case, photons on the equatorial plane will always
have turning points outside the singularity. This is also true
for off-equatorial photon geodesics. The reason is that, if the
geodesics governed by Eq. (16) always have turning points,
then so do the ones governed by Eq. (14), as, in the limit
r → rs , the effective potential in Eq. (14) still diverges and
the coefficient of θ̇2 vanishes. Therefore, in the γ < 1/2 case,
as a photon with any non-zero impact parameter always has
a turning point, there will be no capturing of photons at all,
and hence no shadow will be produced in this case.

To check the above results, we use our numerical ray-
tracing techniques (with certain modifications) discussed
in our previous work [33] and produce the images. We
shoot photons with different impact parameters from a dis-
tant observer towards the lensing objects and integrate the
geodesic equations backward in time. If a geodesic has a
turning point and escapes to infinity for a given impact param-
eter, we assign bright point to this. On the other hand, if it is
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Fig. 1 Variation of the photon capture radius (rps) and the singularity
(rs) on the equatorial plane as functions of γ . The solid red line cor-
responds to rps and the solid blue line represents rs . We have chosen
M = 1 to obtain the plots. For γ < 0.5, we see that rps < rs , i.e., the
singular surface is outside the photon capture circle

Fig. 2 A typical plot of V π/2
eff (in units of L̄2) as a function of r (in

units of M) for γ = 0.45. A ray of light (indicated by the black line)
comes from a distant source, hits the turning point at r = rtp, turns back
and escapes to infinity

captured by the singularity, we assign dark point to the corre-
sponding impact parameter. However, since at the singularity
rs = 2M

γ
some of the metric functions become infinite, we

cannot exactly touch the surface of singularity due to numer-
ical limitation. We shall have to take a region of tolerance
(δr) around the singularity. Therefore, we take the inner grid
to be at r = rs +δr , where δr is very small. For γ ≥ 1/2, any
photon hitting this surface will be captured by the singularity.
Also, while performing ray-tracing, we consider piecewise
step size in the affine parameter λ. When the radial coordi-
nate reaches below a predefined value rs + 0.3, i.e., when
r ≤ (rs + 0.3) along a geodesic, we decrease the step size to
�λ = 10−5.

Figure 3 shows the ray-traced shadows of the γ -metric for
different γ . Note that, for γ ≥ 1/2, the singularity always
casts shadows whose shapes and sizes will depend on the
value of γ . The shadow becomes more and more prolate

as we decrease γ . This is similar to the results obtained in
[22,23]. However, for γ = 0.4, we note that the dark region
shrinks as we decrease δr and will vanish in principle in the
limit δr → 0. Therefore, as explained before via a theoretical
argument, γ < 1/2 case does not cast any shadow. This
conclusion is in contradiction to the studies of shadows in
[22,23].

The shrinking of the dark region with decreasing δr can
be understood in more detail from the analysis of geodesics
on the equatorial plane. In Fig. 4, we have shown depen-
dence of the impact parameter on turning point rtp for equa-
torial geodesics. Note that the turning point lies very close
to the singularity even when the impact parameter is ∼ 3
or 4. If we take the turning point to be rtp = rs + 0.001,
then corresponding impact parameters are 2.92 2.13 and 1.15
for γ = 0.45, 0.4 and 0.3, respectively. Therefore, if we
take δr = 0.001, then this means that we are excluding all
those photons having turning points rtp ≤ (rs + 0.001), i.e.,
from the impact parameters space, we are excluding impact
parameters b ≤ 2.92, 2.13 and 1.15 for γ = 0.45, 0.4 and
0.3, respectively. Photons having impact parameters within
the excluded region form dark spots, as they are excluded
from the analysis. As a result, we are having the dark region
for γ < 1/2. However, for a given γ < 1/2, decreasing
δr means decreasing the excluded region from the impact
parameter space. The excluded region and hence the dark
region vanishes in the limit δr → 0. Therefore, we do not
have any shadow in principle in the γ < 1/2 case.

We reiterate that the somewhat “strange” nature of the dark
regions in Fig. 3e–h are numerical artefacts. Namely, when
we take δr = 0.05 to produce the image in Fig. 3e, we are tak-
ing only those rays into consideration whose turning points
rtp lie on and outside the radius rs + 0.05, and all the rays
having turning points inside the radius rs +0.05 are excluded.
Photons from these excluded rays produce the dark regions.
When we decrease δr and take δr = 10−5, we exclude fewer
rays (only those having turning points inside rs +10−5), and
more rays take part in image formation (Fig. 3h), thus reduc-
ing the size of dark region. Then, in the limit δr → 0 (when
all the rays, in principle, take part in image formation), the
shadow disappears. Finally, a word about numerically track-
ing small values of δr ∼ 10−9 that we are taking, is in order.
As in a numerical procedure, we cannot exactly touch the
surface of the singularity (δr = 0) as some of the metric
functions blow up at the singularity r = rs , we must take a
very small but finite region of tolerance δr around the singu-
larity. Now, we need to track δr = 10−9 between two succes-
sive numerical steps only for photons which reach close to
the inner grid rs + δr . This happens only for photons which
have turning point around rs + δr , with ṙ = 0 at the turning
point. Therefore, as the photons reach close to their turning
points around rs + δr , the magnitude of ṙ becomes small
(close to zero). Additionally, with �λ also small, the differ-

123



696 Page 6 of 11 Eur. Phys. J. C (2022) 82 :696

Fig. 3 Ray-traced shadows of the γ -metric. The black region will disappear for γ < 1/2 in the limit δr → 0, implying that there is no shadow in
this case. The observer’s inclination angle is taken to be θo = π/2. The shapes of the dark regions for γ = 0.4 are numerical artefacts, see text

Fig. 4 Impact parameter as a function of the turning point rtp on the equatorial plane. The vertical dashed line corresponds to turning point
rtp = rs + 0.001. The corresponding impact parameters for this turning point are 2.92 2.13 and 1.15 for γ = 0.45, 0.4 and 0.3, respectively. Here,
we have considered M = 1

ence |�r | � |ṙ | �λ in r between two successive numerical
steps becomes small. Note that this �r must be smaller than
δr for photons which reach close to rs + δr in order to track
small δr = 10−9. That this is the case can be readily checked.

4 Constraining the γ -metric using the M87∗ results

We now use the results from M87∗ observation [1] and put
possible constraint on the γ -metric. For this purpose, we

use the average size of the shadow and its deformation from
circularity. To this end, we first denote the horizontal and the
vertical axes in the shadow plane by α and β respectively
and define an angle φ between the α-axis and the vector
connecting the geometric centre (0, 0) of the shadow with
a point (α, β) on the boundary of a shadow. Therefore, the
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Fig. 5 Dependence of the
diameter and deformation of the
shadow on γ and θo. Here,
M = (6.5 ± 0.7) × 109 M and
D = (16.8 ± 0.8) Mpc. The red
dashed line shows the
inclination angle θo = 17◦. Note
that, for this inclination angle,
the diameter and the
deformation of the shadow are
consistent with the M87∗
observation

average radius Rav of the shadow is given by [7]

R2
av = 1

2π

∫ 2π

0
l2(φ) dφ, (20)

where l(φ) = √
α(φ)2 + β(φ)2 and φ = tan−1

(β(φ)/α(φ)). Following [1], we define the deviation �C
from circularity as

�C = 1

Rav

√
1

2π

∫ 2π

0
(l(φ) − Rav)2 dφ. (21)

Note that �C is the fractional RMS distance from the average
radius of the shadow. According to EHT collaboration, the
angular size of the observed shadow is �θsh = 42 ± 3 μas,
and its deviation from circularity (�C) is less than 10% [1].
Also, following [1], we take the distance to M87∗ to be D =
(16.8 ± 0.8) Mpc and the mass of the object to be M =
(6.5±0.7)×109 M. These numbers imply that the diameter
of the shadow in dimensionless units should be

dsh

M
= D�θsh

M
= 11.0 ± 1.5, (22)

where the errors have been added in quadrature. The above
quantity must be equal to 2Rav

M , i.e., dsh
M = 2Rav

M . In Fig. 5,
we have shown the average diameter and the deviation from
circularity of the shadow for different γ and the observers
inclination angle θo. Here, we have taken 0.5 ≤ γ ≤ 1.
Note that the size of the shadow is consistent with the M87∗
observations for all γ and θo. However, the deviation from
circularity is more than 10%, i.e., �C > 0.1 over a small
parameter region where γ is close to 0.5 and inclination is
high simultaneously. If we restrict the inclination angle to
be θo = 17◦, which the jet axis makes to the line of sight
[1], then both the shadow size and the deviation from cir-
cularity are consistent with the M87∗ observations for all γ

values considered in Fig. 5. For γ > 1, we have found that
the deviation from circularity slowly increases with increas-
ing γ for a given inclination angle. Therefore, for a given

Fig. 6 The diameter of the shadow for the GI spacetime

θo, the maximum deviation from circularity occur for the GI
spacetime. However, with increasing γ (> 1), the shadow
size slowly increases from the Schwarzschild value 6

√
3M

for a given higher inclination angle and decreases for a given
lower inclination angle. Therefore, for γ > 1, the maximum
and minimum size respectively occur for the GI spacetime
with θo = 90◦ and θo = 0◦. These maximum and mini-
mum values are respectively given by dsh/M � 10.47 and
dsh/M � 10.14 (see Fig. 6). For any other values of γ (> 1)
and θo, 10.14 � dsh/M � 10.47. For the GI spacetime with
θo = 17◦, dsh/M � 10.18 and �C � 0.002, which are con-
sistent with the observation. Therefore, we find that, for the
inclination angle of 17◦, the shadow of the γ -metric is always
consistent with the M87∗ observations for all γ ≥ 1/2.

The importance of the above result is that it provides a
horizonless static, axially symmetric vacuum solution that
can mimic a black hole for the above mentioned range of
γ . As we have mentioned in the introduction, such exotic
black hole mimickers are of current relevance in the light of
the EHT data, as the nature of quantum effects in the strong
gravity regime is still elusive. In that context, what we have
shown here is that the γ metric being consistent with current
experimental data makes it an attractive solution for further
study. Furthermore, any value of γ ≥ 1/2 being consistent
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with the data implies that the parameter is essentially uncon-
strained. More precise measurements might possibly lead to
stronger constraints on γ .

5 Accretion disks and their images

We now consider the properties and image of a geometri-
cally thin accretion disk in the γ -metric given in Eq. (2). The
disk consists of massive particles moving in stable circular
timelike geodesics1 on the equatorial (θ = π/2) plane and is
described by the Novikov–Thorne model [34,35]. Since the
spacetime has time translational and azimuthal symmetries,
we have two constants of motion along a timelike geodesic,
namely, the specific energy Ẽ (energy per unit mass) and the
specific angular momentum L̃ about the axis of symmetry
respectively. Therefore, the geodesic equations correspond-
ing to t and φ can be written as,

ṫ = − Ẽ

gtt
, φ̇ = L̃

gφφ

. (23)

From the normalization of four velocity uμ (i.e. uμuμ = −1)
for massive particles, the radial geodesic equation on the
equatorial plane can be written as

grr ṙ2 = −1 − Ẽ2gφφ + L̃2gtt

gtt gφφ

= Ṽeff(r, θ, Ẽ, L̃), (24)

where Ṽe f f is the effective potential. A stable circular orbit
is given by Ṽeff = 0, Ṽ ′

eff = 0 and Ṽ ′′
eff < 0. The first two

conditions yield the following expressions for the specific
energy and the specific angular momentum of the particles
moving in the stable circular orbits:

Ẽ = − gtt√
− (

gtt + gφφ2
) , L̃ = gφφ√

− (
gtt + gφφ2

) ,

 = dφ

dt
=

√
− gtt,r

gφφ,r
, (25)

where  = dφ/dt is the angular velocity of the particles
forming the disk. The flux of the electromagnetic radiation
emitted from a radial position r of the disk is given by the
standard formula [34,35]

F(r) = − Ṁ

4π
√−g

′

(Ẽ − L̃)2

∫ r

rin

(Ẽ − L̃)L̃ ′dr, (26)

where Ṁ = d M/dt is the mass accretion rate, rin is the inner
edge of the disk, and

√−g = √−gtt grr gφφ is the determi-

1 Strictly speaking, the particles move on almost circular geodesics and
are very slowly infalling.

Fig. 7 Variations of r+ (blue), r− (green), rs (red) and rps (black) as
functions of γ . We have considered M = 1 to obtain the plots

nant of the metric on the equatorial plane. The marginally
stable circular orbit is given by V ′′

eff = 0. This gives

r± = 1 + 3γ ± √
5γ 2 − 1

γ
M. (27)

Figure 7 shows the variations of r±, the radius of singularity
rs = 2M

γ
and the photon capture radius rps as functions

of γ . For 0 < γ < 1/
√

5, r± do not exist. Therefore, in
this case, we have a single continuous disk with its inner
edge at rin = rs and outer edge at some radius r > rs .
For γ = 1/

√
5, r− = r+, i.e., the outer edge of the inner

disk coincides with the inner edge of the outer disk, thereby
giving a single continuous disk. For 1/

√
5 < γ < 1/2,

rs < r− < r+, implying that there exist stable circular orbits
in between the singularity rs and r−, and also at radii greater
than r+ with no stable circular orbits in between r− and r+.
Therefore, in this case, we have double disk configuration
(two concentric disjoint disks). The inner disk extends from
the singularity (i.e., rin = rs) to r−, and the outer disk extends
from rin = r+ to some radius r > r+. For 1/2 ≤ γ ≤ 1,
r− ≤ rs < r+. Therefore, in this case, r− does not exist, and
we have a single accretion disk with its inner edge at rin = r+
and the outer edge at some radius r > r+. Although both the
roots r± are real for γ > 1 case, the angular momentum
L̃ of circular orbits with radii r ≤ r− becomes imaginary.
Therefore, in γ > 1 case, we have a single disk with its inner
edge at rin = r+. Note that, in the limit γ → ∞, i.e., for the
GI spacetime, rs = 0 and r± = (3 ± √

5)M .
We now use our numerical ray-tracing techniques (with

certain modifications) discussed in our previous work [33]
(see also [36]) and produce the images of accretion disks.
The intensity maps of the images of accretion disks for the
different cases discussed above are shown in Fig. 8. Note
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Fig. 8 The images of accretion disks in a Schwarzschild black hole
and the γ -metric (a–g). See the text for the disk configurations for dif-
ferent values of γ . The outer edge of the outer disk is at r = 20M ,
and the observer’s inclination angle is θo = 80◦. The observer is placed
at the radial coordinate r = 104 M , which corresponds effectively to
the asymptotic infinity. In order to get rid of the parameters M and
Ṁ , we have normalized the fluxes by the maximum flux observed for

the Schwarzschild black hole. Also, we have plotted square-root of the
normalized flux for better illustration. The color bars show the values
the flux. All spatial coordinates are in units of M . Here, we have taken
δr = 10−9 for γ < 1/2 case. The central black strip in this case is a
numerical artefact as was the case in Fig. 3e–h, and will disappear in
the limit δr → 0

that, when there are light rings in the γ -metric, the image
is very similar to that of a black hole, thereby mimicking a
black hole. In the absence of light rings, however, the images
for the γ -metric differ strikingly from that of the black hole,
as shown by Fig. 8d–f. Note that the central black strips in
Fig. 8d–f which look “strange” are only numerical artefacts,
as was the case in Fig. 3e–h, and will disappear in the limit
δr → 0, as was discussed towards the end of Sect. 3. Namely
in this case also, this is a result of exclusion of rays that
have turning points within the region of tolerance, and will
disappear in the limit when this region is made to approach
zero.

We should also point out that here, we have solved null
geodesic equations numerically to generate the accretion disk
images using the energy flux formalism, based on Novikov-
Thorne model of accretion. Our numerical method is only
used for ray-tracing. In a more realistic scenario, one needs
to incorporate numerical methods to take into account the
general relativistic magneto-hydrodynamic (GRMHD) phe-

nomena around the accretions disk, which is not relevant for
our analysis here. The main significance of our analysis lies
in the fact that it does give us a good example of a black hole
mimicker for a particular range of γ .

Let us also mention that in Fig. 8, we have plotted the
energy flux distributions coming from the accretion disk. The
higher the emitted energy flux, the higher will be the bright-
ness of the image. We can see that the brightness of images
for γ < 0.5 cases is much higher as compared to the γ > 0.5
cases. From Fig. 7 and the discussion before it, we see that
for γ ≤ 1/

√
5, there exists a continuous disk with its inner

edge at the singularity (rin = rs) and outer edge at some
radius r > rs . Again, for 1/

√
5 < γ < 0.5, we have a dou-

ble disk configuration (two concentric disjoint disks) where
the inner edge of the inner disk coincides with the singular
surface (rin = rs). On the contrary, for γ > 0.5 cases, we
have single disk configurations where the singularity is cov-
ered by photon capture radius (rps) and this rps lies inside the
inner edge of the accretion disk, i.e., rs < rps < rin (sim-
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ilar to black holes). Since, in this scenario, the inner edge
of the disk lies outside the singular surface, the energy flux
emitted from the inner edge of the disk has the maximum
value which is finite. However, when the inner edge of the
disk coincides with the singular surface, the emission from
the vicinity of the naked singularity becomes unboundedly
large. Similar features of diverging flux from accretion disks
around naked singularities have been obtained in the litera-
ture, see, e.g., [36,37]. Since the flux becomes unboundedly
large, the brightness also becomes high for the images of
γ = 0.45, γ = 0.4 or γ = 0.3 (Fig. 8d–f.)

6 Conclusions

The unprecedented advances in observational studies in the
current era of the EHT have resulted in the exciting pos-
sibility of understanding the nature of singularities in GR,
by comparing theory with experimental data. Motivated by
the celebrated work of Hawking [38], the importance of such
studies lies in the fact that these can ultimately throw light on
the nature of strong gravity, effective at horizon scales [39]. It
is by now well established that there might be fundamentally
new physics at such scales, near a spacetime singularity, due
to hitherto unknown quantum effects.

Currently, the best possible scenario to try and uncover
such effects is via the study of black hole images. Such stud-
ies, which are abundant in the literature by now, point to
the fact that horizonless objects might as well mimic black
holes. We recall some of the current literature. Shadows of
black holes with spherical accretion were studied in [40].
In [41], an accretion disc model of the Schwarzschild black
hole was considered, and its shadow was studied in relation
to the EHT data. The astrophysical nature of such shadows
was studied in [42], where the authors showed that this was a
fairly robust indicator of the associated physics, in the sense
that it is not affected greatly by astrophysical parameters. A
recent review and overview of aspects of shadows in black
hole physics appears in [43]. An important aspect of such
analyses is the fact that one can use the EHT data to constrain
possible solutions of Einstein equations which include exotic
compact objects other than black holes. Indeed, a plethora of
activities have been reported in this direction in the recent
past, and it is by now understood that several singular solu-
tions, as well as horizonless compact objects are consistent
with current data. The totality of such results will be pivotal in
understanding the correct nature of the fundamental aspects
of strong gravity. Currently, the debate is thus ongoing, and
with improved data it is expected that stronger constraints
will emerge on theoretical models that explain the data. It is
in this context that the results presented here assume impor-
tance, as we have quantified a new black hole mimicker.

Here, we have carried out the analysis of shadows and
accretion disk images of the Zipoy–Voorhees spacetime,
characterized by the γ -metric. This is known to be an attrac-
tive singular vacuum solution of the Einstein equations with-
out a horizon and with axial symmetry. We have shown that
while for the parameter γ < 1/2, there will be no shadow,
the γ ≥ 1/2 class is essentially unconstrained, i.e., all such
values of γ are consistent with current EHT observations.
We have further constructed thin accretion disk images in
the γ metric background and shown that while for γ ≥ 1/2,
these mimick the Schwarzschild black hole, they are dramat-
ically different from the Schwarzschild case for γ < 1/2.
Our results indicate that at the moment, the γ metric is a
perfectly reasonable candidate for the central singularity at
the galactic centre from EHT observations of M87∗.

As we mentioned in the introduction, astrophysical black
holes are often approximated by the static Schwarzschild
or the stationary Kerr solution. The γ -metric on the other
hand describes a static, axially-symmetric vacuum solution,
and is attractive in its own rights. Since spherical symmetry
in static vacuum solutions is by no means a fundamental
criterion in black hole physics, our result that the γ -metric
is perfectly admissible, and should be an interesting addition
to the current literature. Further, we have shown how the thin
accretion disk images here might be very similar to that of the
Schwarzschild black hole in cases when there are light rings.
These cases thus exemplify situations where the horizonless
object might mimic a black hole. In the absence of any light
ring, however, these images might be very different from the
black hole case.

In continuation of this work, it should be interesting to
compare other static axially symmetric solutions of GR with
the current data from the EHT. It would also be interesting
to apply the analysis in this paper to the most recent obser-
vational results from the EHT on SgrA∗ (see [44] and its
followup papers).
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