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Abstract We construct the hyperbolic and trigonometric
solutions to the star-star relation via the gauge/YBE cor-
respondence by using the three-dimensional lens partition
function and superconformal index for a certain N' = 2
supersymmetric gauge dual theories. This correspondence
relates supersymmetric gauge theories to exactly solvable
models of statistical mechanics. The equality of partition
functions for the three-dimensional supersymmetric dual the-
ories can be written as an integral identity for hyperbolic and
basic hypergeometric functions.
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1 Introduction

The gauge/YBE correspondence [1,2] connecting supersym-
metric gauge theories and integrable lattice models of statis-
tical mechanics provides a powerful tool for studying spin
models. It turns out that most of integrable edge-interacting
(Ising-like) models in statistical mechanics [3-5] (and some
IRF models [6-8]) can be obtained by this correspondence.
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We will start with a very short account of this topic, the
interested reader can find an exhaustive review on the sub-
jectin [9,10], where necessary information about the corre-
spondence presented. Similar identities appear in integrable
models of statistical mechanics. In this work, we present
some new hypergeometric integral identities of hyperbolic
and trigonometric types.

One of the striking features of recent developments in
non-perturbative supersymmetric gauge theories is their deep
relationship with interesting mathematical structures, see,
e.g. [11-13]. At present, they provide the main source of
many new identities for hypergeometric functions [14—18].

In a recent work [19], the authors constructed a new solu-
tion to the star-triangle equation. This was achieved by using
a certain three-dimensional supersymmetric dual theories on
the lens space Sg /Z,. The sufficient condition for the inte-
grability of the lattice spin models is the star-star relation
[20]. In this paper we present the corresponding star-star
relation for the model studied in [19] and also for models
discussed in [21-23] (the corresponding gauge theories live
on the squashed sphere Sg and S% x S1). In the context of
the gauge/YBE correspondence, this relation can be obtained
from the equality of three-dimensional A = 2 supersymmet-
ric partition functions for a certain dual SQED theories. Our
first two solutions to the star-star relation are given in terms
of hyperbolic hypergeometric integrals (they are written in
terms of hyperbolic gamma functions) and the last solution is
atrigonometric type written in terms of basic hypergeometric
integrals.

The paper is organized as follows. In Sect. 2 we briefly
recall the star-star relation for the IRF models. Then we
present solutions to the star-star equation.
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2 Star-star relation

We deal here with the integrable interaction-round-a-face
(IRF) lattice spin models [24,25]. In the IRF models, spin
variables are located on the sites of the square lattice and
interact via face. The sufficient condition for the integrabil-
ity is the Yang—Baxter equation. In [26] it was shown that the
Yang—Baxter equation for the face models can be reduced to
study of the so-called star-star relation. The star-star relation
contains essentially all the information needed to solve the
lattice spin model. Here we mainly follow the work of Bax-
ter! [26], therefore we refer the reader to the original paper
for details.

We consider an IRF model with the face Boltzmann weight

R (m 03) = Z/dx,-vv(cn, o)W (02, 0:)
Gl 02 mj

x W(os, 0;)W (o4, 07), 2.1
where the o; = (x;; m;) stands for the continuous valued
spin x; and discrete valued spinm; and W (o}, 0 ;) denotes the
interaction between spins o; and o ;. The Boltzmann weight
W (oi, o) solves the star-triangle relation for a certain inte-
grable Ising-type lattice model

> f dxi Way (01, 07) Wary (02, 07) Wayy (03, 07)
mi

= R(a1, a2, a3) Wy_q, (01, 02)

X Why—g, (01, 03)Wy_a;(02, 03), (2.2)
where o1 + a2 + a3 = n. Here «; stands for the rapidity
parameter (spectral parameter) and R is a spin-independent
function.

Now let us define the following Boltzmann weight

(<)
R| o

o3 | = W(oy, 03)W (02, 04) R ("4 “3> . @23)
04

o1 02

The system is integrable if the Boltzmann weight satisfies
the following star-star relation

o1 ol
Ruerny | 02 03 | = Rpighn) | 02 03
o4 o4

2.4

The identity (2.4) is illustrated in Fig. 1, where we skipped
the rapidity lines for convenience, for the full picture and
explicit expressions the reader is referred to [20].

I We use the same notation as in [19].

@ Springer

One can also see (2.4) as the following way with the defi-
nition (2.3) to be convinced with the pictorial representation
of the star-star relation in Fig. 1

R<G4 0‘3> . W(Gl,az)W(Gl,fM)R((M 0‘3). (2.5)

0102)  W(o3,020)W(0o3,04) \ 0102

04 03
o1 02
eters [20] omitted in this study.

By using the star-star relation one obtains the following
IRF Yang—Baxter equation (it is depicted in Fig. 2)

a5 )
Z /dxi Rl os o R(U' G3>R<05 04)
o g1 02 ag; 03

miGZ

where R < ) functions differ with the spectral param-

2.6)

where the summation and integration stand for the dis-
crete and continuous spin variables, respectively. Note that
there are several solutions to the IRF Yang-Baxter equation
obtained via gauge/YBE correspondence [2,3,5,7,8].

3 Solutions to the star-star equation

By using the gauge/YBE correspondence one can system-
atically derive solution of the Yang—Baxter equation from
calculations of supersymmetric gauge theory. In the context
of this correspondence the Yang—Baxter equation expresses
the identity of partition functions for supersymmetric dual
pairs. Therefore the main step is to choose appropriate super-
symmetric duality. Here we consider the following three-
dimensional N = 2 dual theories [19,23,41]

e theory A has U (1) gauge group, six chiral multiplets with
SU3) x SU3) x U(1) global symmetry group

e theory B consists of nine free “mesons” with the same
global symmetry group as theory A.

The supersymmetric localization technique? [29] enables
us to calculate the partition function on different manifolds.
The results of Coulomb branch localization on Sg , SZ /7y
and S% x S! are known (see, e.g. [30-32]) and we will use
these results in order to construct the star-triangle relation
and corresponding star-star relation in the next sections.

2 The short review of the three-dimensional supersymmetric localiza-
tion can be found in [27,28].
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Fig. 1 The star-star relation

a0
01 g
Fig. 2 Yang—Baxter relation 01
via the star-star relation. Spin
variables live on vertices and
interact via edges
06 ¥

05
3.1 Notations
Let us introduce some definitions and notations of special

functions which we use in the paper. The g-Pochhammer
symbol is defined as follows

o0

(@ Qoo = [ [(1 = 24"). 3.1)
i=0

We use the shorthand notation

(Z, %5 @)oo = (2 @)oo (X; §)co- (3.2)

We also use hyperbolic gamma function which can be
defined as
) ( —27”'% G: d)
)/(2)(Z§ w1, @) = o2 Bra(zion,m) ¢ — zq’ 9)oo
“oni =
(e 7 o

. (B3

with the parameters § = ¢>7/“1/“2 and g = ¢~ 27®2/®1 gand
the B2 2(z; w1, w2) stands for the Bernoulli polynomial

22— Z(w) + @) n w% + 3wiwy + a)g
i) '

B (z; 01, m) = o
12

(34)

The hyperbolic gamma function also has an integral rep-
resentation’

@ ) /OO dx [ sinhx(2z — w1 — wp)
N s =X - - - -
yolsen @ P o X [ 2sinh(xw;)sinh (xwy)

27 —w) — wy
2xwiw) ’

3 One can find different integral representations in [33,34].

3.5)

02 a2

g4 04

02 01 02

04 05 04

where Re(w1), Re(wy) > 0and Re(w; +wy) > Re(z) > 0.
Additionally, we will use the following reflection property
for hyperbolic gamma function

Y@ (w) + 01 — 7 01, 02)y P (2 01, 02) = 1. (3.6)

3.2 Solution via Sg supersymmetric partition function

The equivalence of the partition functions for dual theories
on Sg gives the following hyperbolic hypergeometric integral
identity [1,35,36]

/iwﬁ @) ) dx
y(ai — x; w1, 02)y (b +x; w1, w2) ———
—ioo i=1 ' ' 1,/wiwy
3
=[] v®@ +bj: 1. 2). (3.7)

ij=1

with the balancing condition Z?: (@i + b)) = w1 +wr. In
[21,37] it was shown that this integral gives the star-triangle
relation for the Faddeev—Volkov model which has the fol-
lowing Boltzmann weight

Weo(xi, x;) =y @ (—a + x; — xj; 01, @2)
Y@ (o — xi +xj; 01, 02), (3.8)

where we introduced new variables ¢; = —«; +x; and b; =
—a; — x;. Here « is a spectral parameter, x; is a spin variable
and w1, wy are temperature-like parameters.

@ Springer



789 Page 4 of 8

Eur. Phys. J. C (2022) 82:789

The corresponding star-star relation for this model (for
details, see Appendix A) has the following form

dx
iJwiwsy

ico 4 ) ,
/, ny()(ai—x;wl,wz)y()(bi+x;w1,wz)
—100

_ n%jzl yP(ai +bj; 01, )
1_[?,,':3 Yy +bj: w1, )

dz
iJorw
3.9)

o 4
100

Xf_ [[7® @ =z o102y @ Gi + 2 01, 0)
—100

with a new balancing condition Z?:l (aj +b;) = 2(w1+w)2)
and we used the following notations

G =a;+s, b =b;+ if i=1,2,

(3.10)
dl-:ai—s, b Zb if i:3,4,
with

1
s = 5(501 +w2 —ay —ax — by —by)
" (3.11)
= E(_wl —wy 4+ az +ag + bz + by).

This integral identity was obtained in [38]. The physical inter-
pretation of this identity discussed in [39].

3.3 Solution via S 2 /Z, supersymmetric partition function
We again start with the equivalence of the partition functions
for dual theories. This time we consider the dual theories on

Sg’ /Z, and obtain the following hyperbolic hypergeometric
integral identity* [19]

e(y)e iy /

y@)(—i(ai —x) —iw(u; —y); —iwr, —iw)

[r/2

=1

y P (—ila; —x) — iwa(r — (i — y)); —iwar, —iw)
YO (=i + x) —iw(vi + y); —iwir, —iw)

Y P (=i(bi +x) — iwr(r — (v; + ¥));

dx — oY i)

r—wiw)
3

[ y® it +b)) —ion @ +v)):
ij=1

—lwyr, —iw)

—iwr, —iw)y(2)(—i(a,~ +Dbj)—iw

4 Note that this integral identity was obtained via the reduction proce-
dure and it needs to be proven rigorously.

@ Springer

x (r — (u; +vj)); —iwr, —iw)), (3.12)
with the balancing conditions Z?:l a; + b; = w1 + wy and
Z?:l u; + v; = 0. The €(y) function is defined as €(0) =
e(L%J) = 1 and €(y) = 2 otherwise. The main difference
from the expression (3.7) is that here the summation is over
the holonomies y = 53— [ A,dx", where the integration is
over a non-trivial cycle on Sg /Z, and A, is the gauge field,
see, e.g. [31].

By introducing new variables a; = —«; + x; and b; =
—a; — x; with the condition u; = —uv; for i = 1,3, one
can rewrite the integral identity (3.12) as the star-triangle
equation with the following Boltzmann weight

We (xi, Xj, ui, uj)
= Tty D (i (—a 4 x; — x))
—iwi(u; —uj); —iwyr, —iw)
Xy @ (—i(—a+x; — Xj)
—iwy(r — (uj — uj)); —iwrr, —iw)
x y@(—i(—a — x; +x;)
—iwi(uj —u;); —iwr, —iw)
x y @ (—i(—a — x; +x;)
—iwa(r — (uj —uj));

—iwor, —iw). (3.13)

The model with the Boltzmann weight (3.13) is an exactly
solvable lattice spin model with discrete and continuous spin
variables living on sites, where x; represents continuous spin
and u; represents discrete spin variable. The r = 1 case

corresponds to the Faddeev—Volkov model from the previous

section’.
Using the similar technique presented in Appendix A one
can construct the star-star relation for this model

[r/2]
e(y)/ ]'[y‘”( i(ai —x) —iwi(u; — y); —iopr, —io)

x ym(—z(ai —x) —iwa(r — (u; — y)); —iwar, —iw)

x y P (=i(b; +x) — iw1(vi + y); —iwrr, —iw)

dx
< y P (=i(b; +x) — iwy(r — (v +y)): —icor, i)
B X =)
[17 jo1 v @ (=iGai + b)) — w1 (i +v)); —iwr7, —ie)
[T} =3 ¥ @ (=i (@ + b)) — i1 (d; + 07): —iwyr, —iw)
[T7 =1 v @ (—itai +bj) — iwn(r — (i +v))); —iwnr, —iw)

IT 23 v @ (=i + b)) — in(r = @i +1))); —iwar, —i)

5 The r = 2 case is also special, in [40] it was used for proving orthog-
onality and completeness relation of the Clebsch—Gordan coefficients
for the self-dual continuous series of U, (osp(1]2)).
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[r/2]
X Ze(m)/ Hy(z)( (@ —z) —iw(u; —m); —iwir, —iw)

< y P (=i(d@; — 2) — iwy(r — (i — m)); —iwyr, —iw)

x y P (—=i(b; +2) —iw1(V; +m); —iwir, —iw)

x y P (=i(b; +2) — iy (r — (5 +m)); —iwr, —iw)

dz

X PN (3.14)
where the balancing conditions are Z?:l a; + b =2(w; +
wy) and Z?:l u; + v; = 0, and we used the following nota-
tions

;=a;+s.b = b +5.0; =u; + p.

a;
vi=v +p,ifi=1,2,
R, ) (3.15)
ai:ai—S,bi:bi—s,ui:],{i—p7
v, =v; — p,ifi =3,4,
where
1
zz(a)l+a)2—a1—a2—b1—b2)
1
= E(_wl —wy+ a3+ as+ bz + ba), (3.16)

1 1
p= _E(ul +uy+vi+uv)= 5(“3 + ug + v3 + v4).

3.4 Solution via §? x S! supersymmetric partition function

In this section we present a new trigonometric solution to
the star-triangle equation and to the star-star equation. In

(g O+D2 (g )1 g1+ O 28 (51 ) oo

> 411

y=—00 i=1
(qlJr(erui)/z(aix)*]’q1+(Ui*)’)/2xbi71;q)ooL dx
(q(y+”i)/2al-x’q(vif)’)/zbixfl;q)oo _x3y 2mix
3 1+@i+vi)/2¢,.5 \—1.
1 i bj)™
T W) Dy
l_[l—l b; =1 (g %aibj; g)oo
where the balancing conditions are ]_[?Zlaibi = ¢ and

Z?:] u; +v; = 0.

This identity can be written as the star-triangle relation by
introducing the new fugacities a; = «; ]x, andb; = o; ]x !
and using the condition u#; = —v;. The resulting Boltzmann

weight then has the following form

(q1+(uifuj)/2(a*1x-x-_1)7l; q) oo
(q(ui—uj)/z

Wa(-xis-xj9 Mivuj) =

1xl ’ Q)oo

(ql-l—(uj—ui)/z(a_l_X-_l.x ')_1; 9o

(¢ =P i g

(3.18)

where « stands for the spectral parameter. The corresponding
statistical mechanics model is a square lattice model with
edge interaction and discrete and continuous spin variables.
This model is a special case (with broken gauge symmetry)
of the integrable lattice spin model considered in [3] and it
is a trigonometric analogue of the Faddeev—Volkov model.
One we can construct the star-star relation for this model

1 ; /2 —
@ TP @b ) e
(q(zli+u_j)/2

2
1 dx 1 Hi,j:l a,-bj;q)oo

(q()"f‘“i)/zaix’ q(vi_)’)/zbjx_l; q)oo

—1

(q1+(m+u )/Z(a Z) 1+(17i—m)/21b~l.

x5 2wix

;q)OOL

= 2y
i=19;'b;

TTis @i (b)Y
dz

1 AU /2, ~
DR @5 )

bjiq)oo

4 (q
l_[i,j:3

(¢ (M+L )/2~ ~

(qm iz, q‘”' “m2biz=1i g

)oo

e (3.19)

[22,23,41] authors considered the following basic hyperge-
ometric sum/integral identity® which represents the equiva-
lence of the superconformal indices for dual theories (parti-
tion function on $2 x S') discussed in Sect. 3

6 This identity can be written as a pentagon identity which is related to
the triangulation of 3-manifolds.

with the new balancing conditions I—[?:l aib; = ¢* and
Z?:l u; + v; = 0. In the latter expression we used the fol-
lowing notations

= a;s, b; = b;s, uj =u; + p,

a;

vi=v +p,ifi=1,2,

v 1p O (3.20)
i =ais ', b =bis™ ity = u; — p,

Vj = v; p,ifl:3,4,

@ Springer
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where

S_/ q _ |azasb3by
ayazbiby qg

1 1
p= _E(ul +uy+v+uwvm)= 5(”3 + ug +v3 + v4g).
(3.21)

4 Conclusions

In this work, we constructed hyperbolic and trigonometric
solutions to the star-star equation. We obtained new solutions
from the equality of three-dimensional A" = 2 supersymmet-
ric partition functions for certain dual SQED theories via the
gauge/YBE correspondence.

There are several ways of constructing solutions to the
star-star equation. One can use the Bailey pair construction
starting from the star-triangle relation for the models dis-
cussed here. It is possible to obtain the solution by breaking
the gauge symmetry from SU (2) group to the U (1) for the
supersymmetric dual theories with SU(2) gauge group and
SU (6) flavor group considered in [42].

There are many interesting limits of the solutions consid-
ered here, for instance it would be interesting to construct
solution to the star-star equation in terms of Euler gamma
functions [43].

The gauge/YBE correspondence has revealed various
interesting connections among integrable models and super-
symmetric gauge theories. There are underlying mathemat-
ical structures such as quantum algebras related to the solu-
tions of the Yang—Baxter equations obtained via gauge/YBE
correspondence. It would be interesting to pursue this direc-
tion for these solutions to the star-star relation.
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Appendix A: Derivation of the star-star relation (3.9)

Here we follow the approach presented in [38].
Let us consider the following double integral

ico 2
/,Fh@w—mw%h+m
—10Q0 .

i=1

ico 4 ) )
x/ Hy()(ai—s—z)y()(b,-—s+z)
—ioo 3

<y stz -y D — g4y 4T
iJorm iJorwr

(A1)

Here we used the shorthand notation y ® (x) = y @ (x; w1,
wy). First we integrate the integral (A.1) over the x variable
using the identity (3.7). We end up with the following result

2
y@es) [ v? @ +b))
i,j=1

ico 4
x/ [[y®P@—s -2y —s+2)
—ico;_3

2 2
dz
2) . @ ¢,.
x|y G+z+b) | |vT@+s —2)—.
E l E l 1 wlwz

(A.2)

Then integrating (A.1) over the z variable one finds that

4

y@@s) [T vP @ +b; —25)
i,j=3

ico 2
xf_Fh@@—mw%m+w
I

4 4
< [1r® @i + 0 [[r® @ - »—2 (A3)

i=3 i=3 lvwie;

The latter two expressions are results of the same integral
expression, therefore we find that

2
y@@s) [ v® @ +b)
ij=1
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ico _4
x/ [[r®@—s—2y®P®i—s+2)
—ioo i3
2

2

dz
) . @2 ¢,

< [TrPe+z+m)[[rP@+s ——=
i=1 i=1 ly@wiw?

4
=y@2s) 1_[ y P +b; —2s)
i,j=3

ico 2
x / [[r®@ —xy@ @ +x
TI®i=1

4 4
dx
<[TrPei+0[[r?P@-0n—=

: L (A4
i=3 i=3 @12

One can rewrite this expression in a compact form

/ioo ﬁ (2)( ) @ b dx
a; —Xx bi +x)—/———
—ioo izly ' v ' 1./w1w2

B 1_[:'2,;':1 yP(ai + b))
H?J:} y @ (@i + b;)

o @ 7 dz
[T i — bt — (A5
X /—ioo. Y (a; Z))/ ( t+Z)i 105 ( )

i=1

with the related balancing condition Z?: 16i +bj =2(w1 +
wy) by introducing new variables

a; =a; +s, E,’Zbi"l's, ifi=1,2,
- (A.6)
a =a;—s, bi=b;—s, ifi=234,
where
1
525(0)14'(1)2_41_@2_171_172)
(A7)

1
= 5(—0)1 —wy +az +as + bz + by).

In order to obtain the final result one needs to use the reflec-
tion property (3.6) for the hyperbolic gamma function.
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