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Abstract We find that Siegel type chiral boson with a
parameter-dependent Lorentz non-covariant masslike term
for the gauge fields to be equivalent to the chiral Schwinger
model with one parameter class of Faddeevian anomaly if the
model is described in terms of Floreanini–Jackiw type chiral
boson. By invoking the Wess–Zunino field gauge-invariant
reformulation is made. It has been shown that the gauge-
invariant model has the same physical content as its gauge
non-invariant ancestor had. The BRST invariant effective
action corresponding to this model has also been constructed.
All the nilpotent symmetries associated with the BRST sym-
metry along with the bosonic, ghost, and discrete symmetries
have been systematically studied. We establish that the nilpo-
tent charges corresponding to these symmetries resemble the
algebra of the de Rham cohomological operators in differen-
tial geometry. In the environment of conserved charges asso-
ciated with the models, we study the Hodge decomposition
theorem on the compact manifold.

1 Introduction

The chiral boson is the basic ingredient in the construction
of heterotic string theory [1–4]. The theory of quantum Hall
effect additionally got important input from the physics of
chiral boson [5,6]. The chiral boson [7–9] and the gauged
model of it [10] had been advanced independently. It became
determined that the gauged model of the chiral boson and
the chiral Schwinger had exciting connections regardless of
the structural differences between them [11–14]. The Chi-
ral Schwinger model is an interacting model which includes
fermion and gauge field and the interaction among those is
chiral in nature. This model [15] was extensively studied
over the decades [15–20] and attracted extra attention while
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it became determined that it could be characterized through
the expressions of chiral boson [11–14]. The model can be
expressed in terms of chiral boson in view of the fact that
in (1 + 1) dimension exact bosonization is possible. How-
ever, the bosonization requires regularization which removes
the hassles due to non-unitarity for which it had to suffer
for quite a long period. Two independent regularizations are
found within the literature for this model. The initial one is
called the Jackiw–Rajaraman kind co-variant regularization
[15] and the latter one is Mitra kind non-covariant regulariza-
tion [19]. Mitra himself termed the anomaly in it as Faddee-
vian anomaly [21,22] in view of the fact that Gauss law com-
mutator for this version rendered a non-trivial contribution
[19]. Unlike Jackiw–Rajaraman’s development, the masslike
term for the gauge field was independent of any parameter in
Mitra’s development [19]. A few years later, a one-parameter
involved improvement of Faddeevian regularization became
advanced in [23]. In this article, an attempt has been made
to establish the hidden link between the gauged chiral boson
[10] and the bosonized version of chiral Schwinger with the
one-parameter involved Faddeevian anomaly described in
[23]. The description of the model [23] in terms of chiral
boson was pursued in our article [14]. The investigation of
the symmetry belonging to this version would be instructive
since it is an anomalous gauge theory. The model itself has no
gauge symmetry, however, gauge symmetry can be restored
by enlarging the phasespace of the theory with the introduc-
tion of auxiliary fields. These fields render their incredible
service in restoring the gauge symmetry keeping themselves
allocated in the un-physical sector of the theory.

Since it is an anomalous theory, the study of Becchi–
Rouet–Stora–Tyutin (BRST) is of interest since the BRST
formalism in the context of covariant canonical quantization
of gauge-invariant theories [24–31] play a pivotal role in the
regime of formal field theory. It ensures unitarity at any arbi-
trary order of perturbation in the computations of physical
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processes. The gauge theories endowed with the anti-BRST
as well as anti-co-BRST symmetries within the framework
of BRST formalism can be shown to provide a set of tractable
physical examples for the Hodge theory where the symme-
tries and the corresponding conserved charges provide the
physical realization of the de Rham cohomological opera-
tors of differential geometry [32–34].

Batalin Fradkin vilkovisky (BFV) [28–31] formalism and
its applications in different field theoretical models [35–48]
has added a huge instructive and illuminating information in
the field theoretical regime. So the attempt to construct the
BRST invariant reformulations of this gauged chiral boson
having a non-covariant para meter involved masslike term
for gauge field taking the help of BFV formulation will add
a new and instructive contribution to the regime of formal
field theory.

The BRST cohomological aspects related to it will like-
wise be an significant extension. So along with the nilpotent
BRST symmetry, we concentrate on the other nilpotent sym-
metries like ant-BRST, co-BRST, and anti-co-BRST symme-
try in this framework systematically. There are a few inves-
tigations where endeavors have been made for various mod-
els to show that the generators of of the symmetries related
to the BRST resembles the algebraic structure of de Rham
cohomological operator of differential geometry [45,49–63].
A unique endeavor in this manner is made here to analyze
whether the generators of these continuous symmetries sat-
isfy algebra of de Rham cohomological operators of differ-
ential geometry. The foundation of the resemblance of the
algebra of de Rham cohomological operators have been tried
to administrator with the acquired insight from the past inves-
tigations. In the specific circumstance of conserved charges
associated with the models, we study the Hodge decompo-
sition theorem on the compact manifold and found that the
gauged chiral boson that contrasts with masslike terms for the
gauge field with a non-covariant parameter involved mass-
like terms have a place with the class of Hodge hypothesis

This article is organized as follows. Section 2 contains the
formulation of gauged Floreanini–Jackiw type chiral boson
that corresponds to the one-parameter class of Faddeevian
anomaly. In Sect. 3, a review of the theoretical spectral of
this model is made. In Sect. 4, the gauge-invariant version is
constructed with the use of the Wess–Zumino field. In Sect. 5,
an equivalence between and gauge non-invariant version is
made. Section 6 contains a discussion of a similar type of
model that contains one more chiral degree of freedom in
the theoretical spectrum. In Sect. 7, like the previous cess
with one less chiral degree of freedom here also an equiv-
alence is made between the gauge-invariant and the gauge
non-invariant version of this model. Section 8 is devoted to
the BFV quantization of gauged FJ type chiral boson with a
parameter-dependent non-covariant masslike term for gauge
field. Sect. 9, contains discussions over the extended BRST

symmetries. In Sect. 10, the BRST Cohomological aspect of
the theory is studied. The final Sect. 11, contains a summary
and discussions.

2 Formulation of gauged Floreanini–Jackiw type chiral
boson that corresponds to one-parameter class of
Faddeevian anomaly

A gauged model of Siegel type chiral boson that resem-
bles the chiral Schwinger model with a one-parameter class
of Jackiw–Rajaraman type regularization was mentioned in
[14]. An extension that follows naturally is that the gauge
model of Siegel type chiral boson with an appropriate selec-
tion of masslike terms for the gauge field is equivalent to the
gauged Floreanini–Jackiw type chiral boson [64] with a one-
parameter class of Faddeevian anomaly [14]. To formulate
that let us proceed with the subsequent Lagrangian contain-
ing a suitable parameter-dependent Lorentz non-covariant
masslike term for the gauge field.

LCH =
∫

dx[1

2
(φ̇2 − φ′2) + e(φ̇ + φ′)(A0 − A1)

+τ

2
[(φ̇ − φ′) + e(A0 − A1)]2 + 1

2
( Ȧ − A′

0)
2

+1

2
e2(A2

0 + 2αA1A0 + (2α − 1)A2
1)]. (1)

Here φ represents a scalar field. A0and A1 are the two compo-
nents of the gauge field in (1 + 1) dimension. Over-dot and
over-prime indicate the time and space derivatives respec-
tively. Note that there is a parameter-dependent Lorentz non-
covariant masslike term for the gauge field within Lagrangian
(1). Although the masslike term is lacking Lorentz covari-
ance, it ultimately renders an interesting and physically sen-
sible Lorentz invariant theory. What follows is the illustra-
tion to ascertain the physical sensibility of the model. To
this endeavor, we need to work out the canonical momenta
corresponding to the fields A0, A1, φ, and τ

∂L

∂ Ȧ0
= π0 ≈ 0, (2)

∂L

∂ Ȧ1
= π1 = ( Ȧ1 − A′

0), (3)

∂L

∂φ̇
= πφ = (1 + τ)φ̇ − τφ′ + e(1 + τ)(A0 − A1), (4)

∂L

∂τ̇
= πτ ≈ 0. (5)

The field τ is a lagrange multiplier field. Exploiting the Leg-
endre transformation H = π0 Ȧ0 + π1 Ȧ1 + πφφ̇ + πτ τ̇ − L
along with the use of the expression of momenta (2), (3), (4),
(5) we compute the canonical Hamiltonian:

HC =
∫

dxHC
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=
∫

dx

[
1

2
π2

1 + π1A
′
0 + πφφ′

−e(πφ + φ′)(A0 − A1)

+e2[(α − 1)A2
1 + (α + 1)A0A1]

+ 1

2(1 + τ)
(πφ − φ′)2

]
. (6)

The Eqs. (2) and (5) are the primary constraint of the the-
ory since there is no time derivative in these equations. The
preservation of these constraints leads to some additional
constraints or it fixes the velocity. Repeating this preserva-
tion criterion on the usual constraint and the forthcoming
secondary constraints we find that the phasespace of the sys-
tem is endowed with the following five constraints.

C1 = π0 ≈ 0, (7)

C2 = πτ ≈ 0, (8)

C3 = π ′
1 + e(πφ + φ′) + (α + 1)A1 ≈ 0, (9)

C4 = πφ − φ′ ≈ 0, (10)

C5 = (α + 1)π1 + 2α(A′
0 + A′

1) ≈ 0, (11)

We use a gauge fixing condition

C6 = τ + f (x) ≈ 0. (12)

Note that the constraint πτ ≈ 0 is first class, and it generates
the Siegel gauge symmetry, by the Anderson-Bergman algo-
rithm, we can fix the gauge C6 = τ + f (x) where f (x) is
an arbitrary function [65]. Therefore, we can formulate the
generating functional corresponding to the theory as follows:

Z =
∫

|det[Ck, Cl ] 1
2 |d A1dπ1dφdπφd�dπ�d A0dπ0

× ei
∫
d2x(π1 Ȧ1+πφφ̇+πτ τ̇+π0 Ȧ0−HC )

× δ(C1)δ(C2)δ(C3)δ(C4)δ(C5)δ(C6). (13)

The subscripts k and l run from 1 to 6. The simplification by
the use of Gaussian integral leads us to

Z =
∫

dφd A1e
i
∫
d2xLCH , (14)

where

LCH = φ̇φ′ − φ′2 + 2eφ′(A0 − A1) − e2[(α − 1)A2
1

−(α + 1)A0A1] + 1

2
( Ȧ1 − A′

0)
2. (15)

Thus, it manifests transparently that the Lagrangian (15)
is the appropriate gauged Lagrangian of Siegel type chi-
ral boson that corresponds to the gauged model of chiral
boson with the one-parameter class of Floreanini–Jackiw
type gauged chiral boson which can be generated from the
chiral Schwinger model with one-parameter class Faddee-
vian anomaly [23] introducing a chiral constraint in the phase
space of the theory [14].

3 Review of the theoretical spectrum

In this section, we describe the theoretical spectrum of this
system in brief. The Lagrangian density with which we begin
our analysis to find out the phasespace structure of the theory
is

LCH = φ̇φ′ − φ′2 + 2eφ′(A0 − A1) − e2[(α − 1)A2
1

−(α + 1)A0A1] + 1

2
( Ȧ1 − A′

0)
2. (16)

From the standard definition, the momenta πφ , π0, and π1

corresponding to the fields φ, A0, and A1 are obtained:

πφ = φ′, (17)

π0 = 0, (18)

π1 = Ȧ1 − A′
0. (19)

Using the above Eqs. (17), (18), and (19), it is straightforward
to obtain the canonical Hamiltonian which reads

HC =
∫

dx

[
1

2
π2

1 + π1A
′
0 + φ′2 − 2e(A0 − A1)φ

′

+1

2
e2[2(α − 1)A2

1 + 2(α + 1)A0A1)

]
. (20)

Equations (17) and (18) are the primary constraints of the
theory. Therefore, the effective Hamiltonian is given by

HEFF = HC + uπ0 + v(πφ − φ′), (21)

where u and v are two arbitrary Lagrange multipliers. The
constraints obtained in (17) and (18) have to be preserved in
time to have a consistent physical theory. The preservation
of the constraint (18), gives the Gauss law of the theory:

G = π ′
1 + 2eφ′ + e2(1 + α)A1 = 0. (22)

The consistency criterion of the constraint (17) although ren-
ders no new constraint it determines the velocity v which is
given by

v = φ′ − e(A0 − A1). (23)

The Gauss law constraint, entails Ġ = 0, to get preserved in
time that results in a new constraint

(1 + α)π1 + 2α(A′
0 + A′

1) = 0. (24)

The preservation of the constraint (24) does not give any
new constraint. So we find that the phasespace of the theory
is embedded with the constraints (17), (18), (22), and (24)
and are all of these are weak conditions unto this stage. If
the constraints are treated as strong conditions the following
reduced Hamiltonian results in.

HR =
∫

dx

[
1

2
π2

1 + 1

4e2
π ′2

1 + 1

2
(α − 1)π ′

1A1

+1

2
e2[(1 + α)2 − 4α)]A2

1

]
. (25)
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Since the constraints are treated here as strong condition to
obtain the reduced Hamiltonian the usual Poisson’s bracket
becomes inadequate however, there is a remedy: the reduced
Hamiltonian is known to be consistent with the Dirac brackets
[66]. The Dirac brackets between the fields describing the
reduced Hamiltonian HR are found out to be

[A1(x), A1(y)]∗ = 1

2e2 δ′(x − y), (26)

[A1(x), π1(y)]∗ = (α − 1)

2α
δ(x − y), (27)

[π1(x), π1(y)]∗ = − (1 + α)2

4α
e2ε(x − y). (28)

Using the reduced Hamiltonian (25), and the Dirac brackets
(26), (27), and (28), a little algebra leads us to obtain the
first-order equations of motion for A1 and π1:

∂−π1 = (α − 1)2

α
e2A1, (29)

∂+A1 = (α − 1)

2α
π1 + 1

2α
(α + 1)A′

1, (30)

and these first-order equations of motion reduce to the fol-
lowing second-order equation after little simplification. It is
straightforward to see that the above two Eqs. (29) and (30)
satisfy a Klein–Gordon type Equation
(

� − (α − 1)

α

)
π1 = 0. (31)

The Eq. (31), represents a massive boson with square of the

mass m2 = −e2 (1−α)2

α
. It is evident that the parameter α

must be negative for the mass of the boson to be physical.
Unlike the Abreu et al. [23] there is no massless degree of
freedom in this situation since the phasespace of this the-
ory contains one more constraint. After this brief review of
the theoretical spectrum let us proceed to study the gauge
symmetric properties of this model.

4 Gauge invariant version with the Wess–Zumino

The model in its usual phasespace is not gauge-invariant. The
use of the Wess–Zumino field helps to get a gauge-invariant
Lagrangian in the extended phasespace. The gauge-invariant
Lagrangian corresponding to this gauged chiral boson that
resembles the chiral Schwinger model with a one-parameter
class Faddeevian anomaly is given by

LCH I =
∫

dx[LCH + LWZ ], (32)

where LWZ refers to the Wess–Zumino term [67]

LWZ = α(ω̇ω′ + ω′2) + e(α + 1)(A0ω
′ − A1ω̇)

−2eα(A0 + A1)ω. (33)

Therefore, the total Lagrangian density reads

LCH I = φ̇φ′ − φ′2 + 2eφ′(A0 − A1) − e2[(α − 1)A2
1

+(α + 1)A0A1] + 1

2
( Ȧ1 − A′

0)
2

+α(ω̇ω′ + ω′2) + e(α + 1)(A0ω
′ − A1ω̇)

−2eα(A0 + A1)ω
′. (34)

Here ω represents the Wess–Zumino field [67]. The momenta
corresponding to the field A0, A1, φ, and ω respectively are

∂LCH I

∂ Ȧ0
= π0 ≈ 0, (35)

∂LCH I

∂ Ȧ1
= π1 = ( Ȧ1 − A′

0), (36)

∂LCH I

∂φ̇
= φ′, (37)

∂LCH I

∂ω̇
= πω = αω′ − e(1 + α)A1 ≈ 0. (38)

The canonical Hamiltonian is obtained using the Eqs. (35),
(36), (37), and (38) by the use of a Legendre transformation:

HC =
∫

dx[π1 Ȧ1 + π0 Ȧ0 + πφφ̇ + πωω̇] − LCH I ]. (39)

Therefore, the effective Hamiltonian reads

HCH I =
∫

dx[1

2
π2

1 + π1A
′
0 + φ′2 − 2e(A0 − A1)φ

′

−e2[(α − 1)A2
1 + (α + 1)A0A1] − αω′2

−e(1 + α)A0ω
′ + 2eα(A0 + A1)ω

′

+w1π0 + w2(πφ − φ′)
+w3[πω − αω′ + e(1 + α)A1]. (40)

The Gauss law constraint of the theory is computed using the
preservation of the constraint (35), that comes out to be

G = π ′
1 + 2eφ′ + e(1 − α)ω′ + e2(α + 1)A1 ≈ 0. (41)

Here w1, w2, and w2 are the Lagrange multipliers having
dimension of velocity The velocities w2 and w2 are found
out to be

w2 = φ′ − e(A0 − A1), (42)

w3 = −ω′ + e(A0 + A1). (43)

The velocity w1 however remains undetermined. The preser-
vation of the Gauss law constraint leads to a new constraint

Ġ = (α + 1)π1 + 2α(A0 + A1)
′ ≈ 0. (44)

So, it appears that the gauge-invariant system has the follow-
ing five constraints:

K1 = π0 ≈ 0, (45)

K2 = πφ − φ′ ≈ 0, (46)

K3 = πω − αω′ + e(1 + α)A1 ≈ 0, (47)
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K4 = π ′
1 + 2eφ′ + e(1 − α)ω′ + e2(α + 1)A1 ≈ 0, (48)

K5 = (α + 1)π1 + 2α(A′
0 + A′

1) ≈ 0. (49)

Our next task is to make an equivalence between the gauge-
invariant and gauge non-invariant version of the theory since
gauge-invariant is made here in the extended phasespace with
the introduction of a Wess–Zumino field.

5 To make an equivalence between the gauge invariant
and gauge non-invariant version

To make an equivalence between the gauge invariant and
the gauge non-invariant interpretation corresponding to this
model let us proceed with the gauge symmetric Lagrangian.
So we add up the Wess–Zumino term [67] with the usual
Lagrangian.

LCH I =
∫

dx[LCH + LWZ ] (50)

LCH I = φ̇φ′ − φ′2 + 2eφ′(A0 − A1) − e2[(α − 1)A2
1

+(α + 1)A0A1] + 1

2
( Ȧ1 − A′

0)
2

+α(ω̇ω′ + ω′2) + e(α + 1)(A0ω
′ − A1ω̇)

−2eα(A0 + A1)ω
′ (51)

The canonical Hamiltonian in this situation reads

HCH I =
∫

dx

[
1

2
π2

1 + π1A
′
0 + φ′2 − 2e(A0 − A1)φ

′

−e2[(α − 1)A2
1 + (α + 1)A0A1]

−αω′2 − e(1 + α)A0ω
′ + 2eα(A0 + A1)ω

′
]

(52)

We will now follow the formalism developed in the article
[68] to establish the required equivalence. To ensure it, we
require two gauge fixing conditions. The appropriate gauge
fixing conditions are

K6 = ω′ ≈ 0, (53)

K7 = πω + e(α + 1)A1 ≈ 0. (54)

There were five constraints in the phasespace of the theory.
Those five constraints along with these two gauge fixing con-
ditions form a second class set. It enables us to write down
the generating functional:

Z =
∫

[det[Km, Kn]] 1
2 d A1dπ1dφdπφd A0dπ0dωdπω

× ei
∫
d2x(π1 Ȧ1+πφφ̇+πωω̇+π0 Ȧ0−HC )

× δ(K1)δ(K2)δ(K3)δ(K4δ(K5)δ(K5)δ(K7). (55)

Here m and n both runs from 1 to 7. Integrating out of the
fields ω and πω we find that Eq. (55) reduces to

Z = N
∫

d A1dπ1dφdπφd A0dπ0

× ei
∫
d2x(π1 Ȧ1+πφφ̇+π0 Ȧ0−HGSF )

× δ(K̃1)δ(K̃2)δ(K̃4)δ(K̃5). (56)

where

K̃1 = F1 = π0 ≈ 0, (57)

K̃2 = F2 = πφ − φ′ ≈ 0, (58)

K̃4 = π ′
1 + 2eφ′ + e2(α + 1)A1 ≈ 0, (59)

K̃5 = K̃ f = (α + 1)π1 + 2α(A′
0 + A′

1) ≈ 0. (60)

These are the usual set of constraints of the gauge non-
invariant version of the theory and the corresponding Hamil-
tonian is

HGSF = 1

2
π2

1 + π1A
′
0 + φ′2 − 2e(A0 − A1)φ

′

−e2[(α − 1)A2
1 + (α + 1)A0A1. (61)

Again integrating out of the momenta π0, π1, and πφ we land
onto

Z = Ñ
∫

dφd A1e
i
∫
d2xLGSF , (62)

where

LGSF = φ̇φ′ − φ′2 + 2eφ′(A0 − A1) − e2[(α − 1)A2
1

−(α + 1)A0A1] + 1

2
( Ȧ1 − A′

0)
2. (63)

Note that the system now contains the usual five constraints
K̃1, K̃2, K̃4, and K̃5 and the Lagrangian density LGSF is iden-
tical to the usual Lagrangian LCH having the same Hamilto-
nian HGSF = HR . So the gauge invariant Lagrangian maps
onto the gauge non-invariant Lagrangian described in the
usual phasespace. It also ensures that the physical contents
in both gauge-invariant and gauge non-invariant versions are
identical.

6 A theory that contains one more chiral degrees of
freedom

An alternative description of this theory is possible where the
theory contains an extra chiral degree of freedom. If a chiral
constraint is imposed in it by hand it transforms into the
theory described in the earlier sections [14]. The theoretical
spectra corresponding to the theory having one more chiral
degree of freedom was discussed in [23].
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LCB =
∫

dx

[
1

2
(φ̇2 − φ′2) + e(φ̇ + φ′)(A0 − A1)

+1

2
( Ȧ − A′

0)
2 + 1

2
e2(A2

0 + 2αA1A0 + (2α − 1)A2
1

]
.

(64)

The following is a brief review of the phasespace structure
of this theory. The momenta of the fields describing the
Lagrangian are given by

π0 = 0, (65)

π1 = Ȧ1 − A′
0. (66)

πφ = φ̇ − e(A0 − A1), (67)

It has been found that the theory contains three second class
constraints.

π0 ≈ 0, (68)

π ′
1 + e(πφ + φ′) + e2(1 + α)A1 ≈ 0, (69)

(1 + α)π1 + 2eα(A0 + A1)
′ ≈ 0. (70)

The theoretical spectrum is given by the flowing to second
order equations of motion [23]
(

� − e2 (α − 1)2

α

)
π1 = 0, (71)

Ḟ + F ′ = 0, (72)

where F = φ − 1
e

α
1+α

( Ȧ1 + A′
1). It indicates that theoretical

spectra of the theory contain one massive boson along with
a massless chiral degree of freedom.

7 Gauge invariant version and making an equivalence
with gauge variant version

Like the previous case introducing the Wess–Zumino field,
a gauge-invariant version is possible to construct as follows.
The gauge-invariant version in the extended phasespace is
given by

LCBI =
∫

dx

[
1

2
(φ̇2 − φ′2) + e(φ̇ + φ′)(A0 − A1)

+1

2
( Ȧ − A′

0)
2 + 1

2
e2(A2

0 + 2αA1A0 + (2α − 1)A2
1

]

+α(ω̇ω′ + ω′2) + 2eα(A0 + A1)ω
′

+(α + 1)(A1ω̇ − A0ω
′). (73)

The terms containing the field ω in Eq. (73) is known
as Wess–Zumino term and ω is the corresponding Wess–
Zumino field [67]. To show the equivalence between these
two model we need to calculate the momenta corresponding
to the field A0, A1, φ, and ω like the previous case.

∂LCBI

∂ Ȧ0
= π0 ≈ 0, (74)

∂LCBI

∂ Ȧ1
= π1 = ( Ȧ1 − A′

0), (75)

∂LCBI

∂φ̇
= πφ + e(A0 − A1), (76)

∂LCBI

∂ω̇
= πω = αω′ − e(1 + α)A1 ≈ 0. (77)

Here πφ , π0, and π1, and πω are the momentum correspond-
ing to the field A0, A1, φ, and ω The canonical Hamiltonian
is is obtained through a Legendre transformation along with
using the definition of momenta:

HCBI =
∫

dx

[
1

2
(π2

1 + +φ′2 + π2
φ) + π1A

′
0

−e(A0 − A1)(πφ + φ′)
−e2[(α − 1)A2

1 + (α + 1)A0A1]
−αω′2 − e(1 + α)A0ω

′ + 2eα(A0 + A1)ω
′
]
.(78)

Note that π0 ≈ 0 and πω − αω′ + e(1 + α)A1 ≈ 0 are the
primary constraints of the theory. The system contains two
more constraints. The constraints are explicitly given by

C1 = π0 ≈ 0, (79)

C2 = πω − αω′ + e(1 + α)A1,≈ 0, (80)

C3 = π ′
1 + e(πφ + φ′) + e2(α + 1)A1 + (1 − α)ω′. (81)

It is convenient to write down the generating functional to
make an equivalence keeping the required variables only,
integrating out the rest of them. Here we need some gauge
fixing conditions as suggested in the article [68]. The gauge
fixing conditions that suit here are

C4 = ω′ ≈ 0 (82)

C5 = πω − (1 + α)π1 + 2α(A0 + A1)
′

+e(1 + α)A1 ≈ 0 (83)

We are now in a position to formulate the generating func-
tional of the theory. It reads

Z =
∫

|det[Ck,Cl ] 1
2 |d A1dπ1dφdπφdωdπωd A0dπ0

ei
∫
d2x(π1 Ȧ1+πφφ̇+π��̇+π0 Ȧ0−HC )

×δ(C1)δ(C2)δ(C3)δ(C4)δ(C5). (84)

The subscripts k and l runs from 1 to 5. After simplification
by the use of gaussian integral we land on to where the Liou-
ville measure [Dμ] = dπφdφdπ1d A1dπ0d A0dπωdω, and
m andn run from 1 to 5. After integrating out of the field ω

and πω, we find that the generating functional turns into

Z = N
∫

[dμ̄]ei
∫
d2x[π1 Ȧ1+π0 Ȧ0+πφφ̇+−H̃CBS ]

×δ(C̃1)δ(C̃2)δ(C̃3), (85)
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where [Dμ̃] = dπφdφdπ1d A1dπ0d A0, and N is a normal-
ization constant having no significant physical importance,
and H̃CNS is given by

H̃CBS = 1

2
(π2

1 + φ′2 + π2
φ) + π1A

′
0 + e(πφ + φ′)(A0 − A1)

+e2[(α − 1)A2
1 + (α + 1)A0A1], (86)

and

C̃1 = π0, (87)

C̃2 = π ′
1 + e(πφ + φ′) + e2(1 + α)A1, (88)

C̃3 = (1 + α)π ′
1 + 2α(A0 + A1), (89)

which are the constraints of the theory in the gauge non-
invariant situation as given in (68), (69), and (70). We land
onto the required result after integrating out of the momenta
πφ , π1 and π0:

Z = N
∫

dφd A1DA0e
i
∫
d2xLCB (90)

where

LCB = 1

2
(φ̇2 − φ′2) + e(φ̇ + φ′)(A0 − A1)

−e2[(α − 1)A2
1 − (α + 1)A0A1] + 1

2
( Ȧ1 − A′

0)
2

(91)

So it is now transparent that the Lagrangian (91) is the appro-
priate gauge-invariant Lagrangian density corresponding the
Lagrangian of bosonized chiral Schwinger model with one-
parameter class of Faddeevian anomaly [23].

8 BRST formulation of gauged FJ type chiral boson
with non-covariant masslike term for gauge field

BRST formulation is instructive for any theory since it
ensures the unitarity and renormalization of a physical the-
ory. Batalin, Fradkin, and vilkovisky (BFV) formalism serves
as an important tool to construct BRST invariant reformula-
tion. We have got here a scope to exploit BFV formalism
to write down the BRST invariant reformulation of the two
nearly similar models, but having the differences in the num-
ber of constraints they possessed in the phasespaces. What
follows next is an attempt to write down the BRST invari-
ant Lagrangian for the model described in Eq. (63) using
the flavors of BFV formulation as it was found in the article
Fujiwara Igarashi and Kubo [27]. It was shown that using the
improved version of BFV formalism the BF field needed to
make a theory first-class turns into Wess–Zumino scalar [27].
So what we need is the first-class theory corresponding to this
Lagrangian introducing the appropriate Wess–Zumino term.
By the extension of phasespace by Wess–Zumino field ω we

get the following gauge-invariant structure corresponding to
this model:

LWZ = α(ω̇ω′ + ω′2) + e(α + 1)(A0ω
′ − A1ω̇)

−2eα(A0 + A1)ω (92)

Therefore, the total Lagrangian reads

LCH I = φ̇φ′ − φ′2 + 2eφ′(A0 − A1) − e2[(α − 1)A2
1

+(α + 1)A0A1] + 1

2
( Ȧ1 − A′

0)
2

+α(ω̇ω′ + ω′2) + e(α + 1)(A0ω
′ − A1ω̇)

−2eα(A0 + A1)ω
′ (93)

The Lagrangian density has already been given in Eq. (34).
The momenta corresponding to the field A0, A1, φ and σ

respectively are calculated in Eqs. (35), (36), (37), and (38).
The canonical and the effective Hamiltonian are computed
in Eqs. (39) and (40) respectively. The Gauss law constraint
of the theory reads

G̃ = π ′
1 + 2eφ′ + e(1 − α)ω′ + e2(α + 1)A1 ≈ 0. (94)

In Sect. 4, we have seen that the gauge invariant system has
the five constraints. Let us now follow the result of the article
[27] to write down the BRST invariant effective action with-
out going to the formal construction using BFV formalism.
With the information of the article [27] we can immediately
write down a BRST invariant effective action since BF fields
turns in to Wess–Zumino with appropriate choice of gauge
fixing:

Sef f =
∫

d2x

[
πφφ̇ + π1 Ȧ1 + π0 Ȧ0 + πωω̇

−
[

1

2
π2

1 + π1A
′
0 + φ′2 − 2e(A0 − A1)φ

′

−e2[(α − 1)A2
1 + (α + 1)A0A1]

−αω′2 − e(1 + α)A0ω
′ + 2eα(A0 + A1)ω

′] + ĊP

+˙̄C P̄ − [Qb, �]
]
. (95)

Here Q̃b and � stand for the BRST charge and fermionic
gauge fixing term respectively. The fields C and P is a pair
of canonically conjugate ghost fields with ghost numbers 1
and −1 respectively, and the fields C̄, P̄ is a pair of canoni-
cally conjugate anti-ghost fields with ghost numbers −1 and
1 respectively. The constraints K f = K4 − eK3 + eK2 and
K1 form a first-class set and these two form the generator of
the gauge transformation. The gauge transformations corre-
sponding to the fields Aμ, φ, and ω are the following:

Aμ → Aμ + 1

e
∂μλ, φ → φ + λ, ω → ω − λ, (96)
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which keep the Lagrangian invariant. The constraints K f =
K4 − eK3 + eK2 and K1 constitute the BRST charge Q̃b for
this theory:

Q̃b = i

e
C[π ′

1 + e(πφ − πω) + e(φ′ + ω′)] − i

e
π0P̄, (97)

The fermionic gauge fixing term in this situation is

� = e

[
PA0 + C̄

(
1

2
π0 + ∂1A

1
)]

. (98)

The BRST transformations of the fields constituting the
effective action Sef f get generated from the BRST charger
Qb, which are given by

sbφ = −C, sbω = C, sbπφ = −C′, sbπω = −C′,

sb A0 = 1

e
Ċ, sb A1 = 1

e
C′,

sbC = 0, sb p = 1

e
[π ′

1 + e(πφ − πω) + e(φ′ + ω′)],

sbC̄ = 1

e
π0, sbP̄ = 0. (99)

With the use of Eq. (99) we find that

[Qb, �] = A0[π ′
1 + e(πφ − πω) + e(φ′ + ω′)]

+π0

(
A′

1 − 1

2
π0

)
+ P̄P + C̄′C′ ≈ −π0∂1A

1

−1

2
π2

0 + P̄P + C̄′C′. (100)

So, the generating functional corresponding to the BRST
invariant effective action takes the form

Z =
∫

DφeSef f , (101)

where

Sef f =
∫

d2x

[
πφφ̇ + πωω̇ + π0( Ȧ0 − A′

1) + 1

2
π2

0

−1

2
π2

1 + π1( Ȧ1 − A′
0) − φ′2 + 2eφ′(A0 − A1)

−e2[(α − 1)A2
1 + (α + 1)A0A1]

−ω′2 + 2eω′(A0 + A1) + ĊP + ˙̄CP̄ − P̄P − C̄′C′
]

.

(102)

Performing integration over π1, p, and p̄ we land onto the
following generating functional.

ZBR =
∫

Dφexp

[
i
∫

d2x
[
πφφ̇ + πωω̇ + π0( Ȧ0 − A′

1)

+1

2
π2

0 + 1

2
( Ȧ1 − A′

0)
2 − 2e2A2

1

−φ′2 + 2eφ′(A0 − A1) − αω′2 − e(1 + α)A0ω
′

+2eα(A0 + A1)ω
′ + ˙C̄Ċ− C̄′C′]] . (103)

Note that the fieldπ0 is playing the role of Nakanishi–Lautrup
type auxiliary field. Let us call it as B for convenience. The
Lagrangian density now turns into

Le f f = 1

2
( Ȧ1 − A′

0)
2 − 2e2A2

1 − φ′2 + φ̇φ′ + 2eφ′(A0 − A1)

+α(ω̇ω′ + ω′2) + e(α + 1)(A0σ
′ − A1ω̇)

−2eα(A0 + A1)ω + 1

2
B2 + B∂μA

μ + ∂μC̄∂μC. (104)

The action corresponding to this theory is invariant under the
following transformations

sbφ = −C, sbω = C, sb A0 = 1

e
Ċ, sb A1 = 1

e
C′,

sbC = 0, sbC̄ = 1

e
B, sbB = 0. (105)

Using the constraints of the theory we can recast the BRST
charge in the following form

� = π ′
1 + e(πφ − πω) + e(φ′ + ω′),

B = π0. (106)

It is straightforward to define define the anti-BRST charge
for this system:

Qab = i

e
[�C̄ − B ˙̄C], (107)

which generate the following ant-BRST transformations of
the fields describing the effective Lagrangian (104)

sabφ = −C̄, sabω = C̄, sab A0 = 1

e
˙̄C, sab A1 = 1

e
C̄′,

sabC = 1

e
B, sabC̄ = 0, sabB = 0. (108)

Let us now calculate the equations of motion of the fields
from the Lagrangian (104) by using the Euler–Lagrange
equation in order to establish the important algebra between
the nilpotent charges.

φ̇′ − φ
′′ + e(A′

0 − A′
1) = 0, (109)

−ω̇′ − ω
′′ + e(A′

0 + A′
1) = 0, (110)

Ḃ − π
′
1 − 2e(φ

′ + ω
′
) = 0, (111)

−B′ + π̇1 + 2e(φ
′ − ω

′
) + 4e2A1 = 0, (112)

B + ( Ȧ0 − A
′
1) = 0, (113)

¨̄C − C̄ ′′ = 0, (114)

C̈ − C ′′ = 0. (115)

The Eqs. (109), (110), (111), (112), (113), (114), and (115)
lead to the following useful relations

Ḃ = �,B′′ = �̇. (116)

It is straightforward to see that the BRST charge Qb and the
anti-BRST Qab satisfy the following relations

Q̇b = Q̇ab = 0, {Qb,Qab} = 0,Q2
b = 0,Q2

ab = 0. (117)
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These algebras (117) guarantee the nilpotency of the BRST
and anti-BRST charges. It completes the BRST and anti-
BRST property of the model under consideration.

9 A discussion on the extended BRST symmetries of the
model

A careful look reveals that apart from BRST and anti-BRST
symmetry this model does have few other nilpotent symme-
tries. Let us now proceed to explore that. We should mention
here that although these look nilpotent like the BRST sym-
metry, there are sharp differences with the BRST symmetry
and that plays a pivotal role in the gauge symmetries of phys-
ically sensible theories. We are in a position to examine the
symmetries one by one with special emphasis on the algebra
of the charges corresponding to the symmetries.

9.1 Co-BRST and anti-Co-BRST symmetry

With this in view, we execute an investigation on the co-
BRST and anti-co-BRST symmetry properties of this model.
The algebra satisfied by the charges corresponding to these
nilpotent symmetries also has been studied exhaustively. It
is beneficial to mention at this stage that the total gauge
fixing term remains invariant under the co-BRST symme-
try transformations along with the invariance of the other
terms involved in the theory. It is known that the origin of the
gauge fixing term remains encoded in the co-exterior deriva-
tive δ = ± ∗ d∗ with δ2 = 0 of differential geometry as
the operation of δ on a one-form produces the gauge-fixing
term. The symbol ∗ indicates the Hodge duality operation on
the 2D spacetime manifold. The ± sign refers to the dimen-
sionality of the spacetime [34,69,70]. Thus, the nilpotent
co-BRST symmetry transformations have their origin in the
co-exterior derivative δ of differential geometry. We find that
co-BRST transformations for the fields are

sdφ = −˙̄C, sdω = ˙̄C, sd A0 = 1

e
C̄ ′′

, sd A1 = 1

e
˙̄C′,

sdc = 1

e
�, sd C̄ = 0, sdB = 0. (118)

At this stage, it is straightforward to write down the conserved
co-BRST charge of this theory which reads

Qd = i

e
[� ˙̄C − π0C̄ ′′ ]. (119)

The action (104) is found to remain invariant under above
co-BRST transformation with a little algebra. The anti-co-
BRST charge is now written down as follows

Qad = i

e
[�Ċ − π0C ′′ ]. (120)

A careful look reveals that the charges Qd and Qad satisfy
the following interesting relations.

sdQd = −{Qd ,Qd} = 0,

sadQad = −{Qad ,Qad} = 0,

sdQad = −{Qad ,Qd} = 0,

sadQd = −{Qd ,Qad} = 0. (121)

9.2 Bosonic symmetry

We have already discussed the BRST, anti-BRST, co-BRST,
and anti-co-BRST symmetry. Besides, it is found that this
theory has one more symmetry. This symmetry is indeed
constituted with the aforesaid discussed BRST, anti-BRST,
co-BRST, and anti-co-BRST symmetry. It is found that the
following relations are satisfied.

{sd , sad} = 0,

{sb, sab} = 0,

{sb, sad} = 0,

{sd , sab} = 0

{sb, sd} = sw,

{sab, sad} = sw̄. (122)

Here w corresponds to the bosonic symmetry. The field vari-
ables have the following transformations under the bosonic
symmetry transformation:

swφ = − i

e
(Ḃ + �),

swω = i

e
(Ḃ + �),

swA0 = i

e
(B′′ + �̇),

swA1 = i

e
(Ḃ′ + �′),

swC = 0,

swC̄ = 0,

swB = 0. (123)

However, the symmetry corresponding to sw̄ is not indepen-
dent because we find that the operation of sw and sw̄ have the
following linear algebraic relations between themselves:

sw + sw̄ = 0, ie, {sb, sd} = sw = −{sab, sad} (124)

This symmetry of course has a conserved charge. The con-
served charge corresponding to this bosonic symmetry reads

Qw = i

e2 (�2 − BB′′
). (125)
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With the help of the equations of motion we land onto the
following useful relations:

Q̇w = dQw

dt
= − i

e2 [ḂB′′ + BḂ′′ ]

= i

e2 [ḂB′′ − BḂ′′ ] = 0, (126)

since � ≈ 0, and consequently �̇ ≈ 0. Therefore it appears
the bosonic charge Qw is a constant of motion of the theory.
We have already seen that the theory is endowed with the
BRST, anti-BRST, co-BRST, anti-co-BRST symmetry along
with a bosonic symmetry. Apart from the presence of these
symmetries, the theory has some extra symmetries. We now
turn to observe that.

9.3 Ghost and discrete symmetry

We know that ghost and anti-ghost fields are designated by
a specific number called ghost numbers. For the ghost field,
the ghost number is 1 and the corresponding number for the
anti-ghost field is −1. The matter, anti-matter, and gauge field
of course have zero ghost numbers. The above fact provides
a scale transformation that keeps the effective action of the
theory invariant. We introduce the following scale transfor-
mation of the ghost field

φ → φ,ω → ω, A0 → A0, A1 → A1,B → B, C → eλC,

C̄ → e−λC̄, (127)

where λ is a global scale parameter and we find that the
effective action of the theory remains invariant under these
transformations. The above transformations in the infinites-
imal limit take the following form

sgφ = 0, sgω = 0, sg A0 = 0, sg A1 = 0, sg B = 0, sgC = C,

sg C̄ = −C̄. (128)

According to Noether’s theorem, this symmetry must have
a conserved charge and that conserved charge for this ghost
symmetry is given by

Qg = i[ ˙̄CC + ĊC̄]. (129)

The ghost sector is found to respect a discrete symmetry in
addition to the above continuous symmetry transformation:

C → ±i C̄, C̄ → ±iC. (130)

This ends the discussion of the symmetry properties of this
model. It is more interesting to investigate the geometrical
cohomology corresponding to the symmetry of this model
under consideration.

10 Cohomological aspect of the theory

In differential geometry, de Rham cohomological operators
are known to obey the following important algebra

d2 = δ2 = 0,� = (d + δ)2 = dδ + δd = [d, δ]−, (131)

[�, δ] = 0, [�, d] = 0. (132)

Here d and δ are respectively known as exterior and co exte-
rior operator and � is known Laplace–Beltrami operator. Let
us now look carefully at the algebra of the conserved charges
corresponding to all these symmetries which the theory is
possessing:

Q2
b = 0,Q2

ab = 0, Q2
d = 0,Q2

ad = 0

{Qb, Qab} = {Qd , Qad} = {Qb,Qad} = {Qd ,Qab} = 0,

[Qg,Qb] = Qb, [Qg,Qab] = −Qab, [Qg,Qd ]
= −Qd , [Qg,Qad ] = Qad ,

Qw = −{Qb,Qd} = {Qad ,Qab}, [Qw,Qα] = 0. (133)

where Qα ≡ (Qb,Qab,Qd ,Qad ,Qg). The above relations
(133) transpires that Qw is the Casimir operator of the whole
algebra.

We know that in differential geometry the role of an exte-
rior derivative is to raise the degree of a form by one, i.e.,
d fn = fn+1 whereas the role of the co-exterior derivative
is the reverse, it lowers the degree of a form by one, i.e.,
δ fn = fn−1. Here fn represents a form of degree n. Under
the operation of � however, the degree of a form remains
unaltered. Let us now define a state |η〉 with ghost number κ

in the Hilbert space of states of this BRST invariant theory
as

iQg|η〉κ = κ|η〉κ . (134)

It is straightforward to verify the relations

iQgQb|η〉κ = (κ + 1)Qb, |η〉κ
iQgQad |η〉κ = (κ + 1)Qad |η〉κ ,

iQgQd |η〉κ = (κ − 1)Qd |η〉κ ,

iQgQab|η〉κ = (κ − 1)Qab|η〉κ ,

iQgQw|η〉κ = κQw|η〉κ . (135)

A careful look into the Eq. (135) transpires the following
analogy:

(Qb,Qad) → d, (Qd ,Qab) → δ,Qw → �. (136)

Note that (Qb,Qad) raise the ghost number of the state
by one whereas (Qd ,Qab) lower the ghost number by
one, and Qw keeps the ghost number unchanged. So
(Qb,Qad), (Qd ,Qab),Qw resemble the algebra of d, δ,�.
A closer look reveals that the analogy with the Hodge-de
Rham decomposition theorem enables us to express any
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arbitrary state |η〉n in terms of the sets (Qb,Qd ,Qw) and
(Qad ,Qab,Qw) as

|η〉κ = |σ 〉κ + Qb|χ〉κ−1 + Qd |ρ〉κ+1, (137)

|η〉κ = |σ 〉κ + Qad |χ〉κ−1 + Qab|ρ〉κ+1, (138)

where the most symmetric state is the harmonic state |σ 〉κ ,
that satisfies the following equations

Qw|σ 〉κ = 0,Qb|σ 〉κ = 0,Qd |σ 〉κ = 0,Qab|σ 〉κ = 0,

Qad |σ 〉κ = 0. (139)

The charges Qb,Qab,Qd , and Qad corresponding to the
symmetries of a physically sensible theory must maintain
the conditions

Qb|Phy〉 = 0, Qab|Phy〉 = 0,

Qd |Phy〉 = 0, Qad |Phy〉 = 0, (140)

which lead to the following two conditions on the first-class
constraints that generate the gauge as well as BRST symme-
try of the theory:

π0|Phy〉 = 0, ie, B|Phy〉 = 0 (141)

[π ′
1 + e(πφ − πω) + e(φ′ + ω′)]|Phy〉 = 0, ie,

�|Phy〉 = 0. (142)

11 Summary and discussion

We have taken into consideration a gauged Lagrangian with
a Siegel type chiral boson with a parameter-involved non-
covariant masslike term for the gauge field. The masslike
term that was selected in [10] resulted in a gauged the-
ory of Floreanini–Jackiw type chiral boson which may be
derived from the Chiral Schwinger model with the Jackiw–
Rajaraman type of the electromagnetic anomaly as became
proven with the incredible concept of imposition of chiral
constraint in the article of Harada [11]. To derive the gauged
version of Floreanini–Jackiw type of chiral boson a param-
eter involved masslike term is brought right here in Eqn. (1)
with the anticipation that we receive the same gauged model
of chiral boson [14] obtained from the chiral Schwinger
model with the one-parameter class of improved Faddeevian
anomaly [23].

In the article [19], the author showed that the chi-
ral Schwinger model remains physically sensible in all
respect with a parameter-unfastened masslike term where
the nature of anomaly belonged to the Faddeevian class
and a one parameter-class of improved Faddeevian anomaly
was generated in [23]. We have made here an equivalence
between the gauge-invariant and gauge non-invariant ver-
sion of this gauged Floreanini–Jackiw type chiral boson with
a parameter-involved masslike term using the ingenious for-
malism developed in [68]. The role of gauge fixing is found

very crucial here because an arbitrary but legitimist gauge
fixing may lead to other effective theories which may fail
to establish the equivalence. Using the formalism developed
in [27] we write down the BRST invariant effective action
without going through the formal BFV development of BRST
quantization as it was followed in the article [49,53,63] to
study the BRST symmetry and the corresponding BRST
cohomology. In the article [53] however, BRST cohomol-
ogy was not attempted. We study the extended version of
the BRST algebra. We also notice that the nilpotent anti-
BRST symmetry transformations always satisfy the absolute
anti-commutativity. The nilpotency signalizes the fermionic
nature of the anti-BRST symmetry transformations and the
absolute anti-commutativity encodes the linear independence
of these transformations. The gauge fixing term, owing to its
origin in the co-exterior derivative remains invariant under
co-BRST symmetry transformations. Thus, the co-exterior
derivative can be realized in terms of the co-BRST symmetry
of the theory. The anti-commutator of BRST and co-BRST
transformations produce a bosonic symmetry which is an
analog of the Laplacian operator. It is also found that the
ghost terms of the theory remain invariant under the bosonic
symmetry transformations. Finally, we have shown that, at
the algebraic level, the aforesaid symmetry transformations
resemble the identical algebra as it is found to be satisfied by
the de Rham cohomological operators of differential geom-
etry.

BRST quantization of the parameter-unfastened Faddee-
vian anomaly in a formal way using BFV was done earlier
in [42] where we did not study the cohomological aspects.
In this article, our main emphasis is to study the cohomolog-
ical aspects that precisely require an extended version of the
BRST algebra i.e., the algebra between the different transfor-
mation generators. To be precise, these are the BRST, anti-
BRST, co-BRST, anti-co-BRST, and the conserved charge
corresponding to the bosonic symmetry. We have been suc-
ceeded to establish that the model with parameter-dependent
Faddeevian anomaly also belongs to the Hodge class.

One of the highlights of our present investigation is the
observation that the Lagrangian density under consideration
provides a model for the Hodge theory because the contin-
uous symmetry operators of the specific Lagrangian density
and the corresponding charges obey an algebra that is rem-
iniscent of the algebra obeyed by the de Rham cohomolog-
ical operators of differential geometry. In other words, the
continuous symmetry operators provide the physical realiza-
tions of the cohomological operators of differential geometry.
This happens because of the fact that the Lagrangian density
respects five perfect symmetries. This is precisely the rea-
son that four of the above-mentioned five symmetries of the
theory obey an exact algebra that a reminiscent of the alge-
bra obeyed by the de Rham cohomological operators of the
differential geometry.
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A cautious look exhibits that the version developed in
[11] and [12] appear with quite different mathematical and
structural forms. However these two [11] and [12] are essen-
tially originated from the fermionic chiral Schwinger model
which was described in [15]. A precise bosonization of this
fermionic model within the (1 + 1) dimensional has been
found possible. A one-loop correction enters inside that via
regularization during the course of the bosonization pro-
cess. This regularization may be executed in unique meth-
ods and that ends up with unique counter terms. Parameter-
unfastened Faddeevian regularization came in the literature
due to Mitra [19]. The generalization with the one-parameter
involved improved Faddeevian regularization was developed
in [23]. It has been observed that each of the models may
be expressed in terms of chiral boson [12,14], like Jackiw–
Rajaraman’s version of the chiral Schwinger model which
was offered by Harada [11]. So it exhibits that those versions
are the outcome of the use of various regularizations during
the course of bosonization of the fermionic model proposed
in [15]. Therefore, it has been found that unique regulariza-
tion ends in the bosonized version that has an appearance
quite unique in a structural sense. Most of these bosonized
versions can be expressed in terms of chiral bosons and they
have identical symmetry structure at the quantum level and
they all belong to the magnificent Hodge class. In the arti-
cle [46], it has been visible that for the bosonized model
of the chiral Schwinger with different regularizations (the
standard one and the parameter-unfastened Faddeevian) and
also for the Schwinger model [63] the symmetry at the quan-
tum level stays unchanged and it does no longer rely on the
selection of regularization and certainly, the Hodge algebra
becomes satisfied with the aid of the extended BRST symme-
tries. Here we observe that the bosonized model of the chiral
Schwinger model with the one-parameter class of improved
Faddeevian regularization additionally, respect the identical
symmetry and belongs to the same magnificient Hodge class.
So via case studies, it has been has been established that the
symmetry of the chiral Schwinger model stays identical at
the quantum level regardless of the character of anomaly.
Of course, extra distinct research is needed to establish it in
general.
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