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Abstract Quantum metrology studies the ultimate preci-
sion limit of physical quantities by using quantum strategy.
In this paper we apply the quantum metrology technolo-
gies to the relativistic framework for estimating the deficit
angle parameter of cosmic string spacetime. We use a two-
level atom coupled to electromagnetic fields as the probe
and derive its dynamical evolution by treating it as an open
quantum system. We estimate the deficit angle parameter
by calculating its quantum Fisher information(QFI). It is
found that the quantum Fisher information depends on the
deficit angle, evolution time, detector initial state, polariza-
tion direction, and its position. We then identify the opti-
mal estimation strategies, i.e., maximize the quantum Fisher
information via all the associated parameters, and therefore
optimize the precision of estimation. Our results show that
for different polarization cases the QFIs have different behav-
iors and different orders of magnitude, which may shed light
on the exploration of cosmic string spacetime.

1 Introduction

In the context of quantum field theory, cosmic strings have
attracted considerable attention due to their significance on
the research of astrophysical, gravitational and cosmologi-
cal [1–4]. Although the cosmic microwave background radi-
ation shows that the cosmic strings are not abundant, the evo-
lution of string brings distinct astrophysical effects, such as
gamma-ray bursts [5,6], producing detectable gravitational
waves [7–9], and high-energy cosmic rays [10]. Among
these interesting astrophysical consequences caused by cos-
mic string, topology defect plays an important role [11]. The
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interest to the research of topology defects in cosmic string
spacetime is amplified by various theoretical studies, which
have created a promising perspective for the development of
this field [3,4,12,13].

Based on the unique signatures of cosmic string [14–
19], various investigations have been conducted to detect
the string [20–24]. The simplest cosmic string spacetime is
characterized by a flat metric with a deficit angle, which is
described by an infinite, straight and static cylindrically sym-
metric cosmic string, and many quantum effects exhibit sig-
nificant characteristics in such spacetime [25–30].

Quantum metrology which aims to achieve higher preci-
sion than the classical ways by using quantum techniques,
has been paid a lot of attention recently [31–34]. There
are considerable interests in applying quantum metrologi-
cal techniques in relativistic settings, specifically, to rela-
tivistic quantum fields [35–39]. One of the purpose is to
explore, in the relativistic quantum regimes, how the rel-
ativistic effects on quantum system affect the precision of
certain measurements [40–44]. The other is how to mea-
sure the physical quantity of relativity, e.g., Unruh–Hawking
temperature, with quantum techniques to obtain higher pre-
cision beyond the classical case [45–47]. Previous research
has investigated the metrology of a wide range of relativistic
phenomena, including measuring the distance to achieve ade-
quate sensitivity for the detection of gravitational wave [48],
high precision estimation of the Earth’s Schwarzschild space-
time parameters by quantum experiments [49], estimation of
gravitational redshift from matter wave interference [50], and
so on.

Since in practice a lot of quantities of interest to us do
not correspond to quantum observable, direct observation of
them is not accessible. In these situations, one has to infer
the interested values of the quantities by examining a set of
data from the measurement of a different observable, or a
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set of observable. Therefore, any conceivable strategy aimed
at evaluating the quantity of interest eventually reduces to a
parameter-estimation problem [51,52]. In this regard, let us
note that the quantum Fisher information (QFI) is the key fig-
ure of merit in the framework of quantum estimation theory.
The QFI links to the Cramér–Rao bound and determines the
ultimate bound on the precision of the estimator [51]. Larger
QFI means more optimal precision for estimating parameter
can be possibly achieved in a metrological task. Therefore,
how to maximize the QFI in a certain system via different
system parameters and different approaches is particularly
significant.

We here study quantum metrology in the relativistic
framework and focus on estimating the deficit angle in cosmic
string spacetime. We use a two-level atom as probe which is
coupled to electromagnetic fields in the background of cos-
mic string spacetime. We study the dependence of the QFI on
various parameters, and identify strategies for maximizing it.
Note that although relativistic metrology has been considered
in the cosmic string spacetime, all of them [36,53] paid their
attention to how the spacetime property affects on estimat-
ing the quantum state parameter of probe, and overlooked
the estimation of the spacetime parameter, e.g., the deficit
angle. However, this overlooked issue plays a very impor-
tant role in the exploration of cosmic string physics [54],
since it might tell us how to obtain the ultimate limit of pre-
cision for estimating cosmic string and what the ultimate
precision bounded by quantum mechanics is. In our previ-
ous research [55], we estimated the deficit angle of a cosmic
string spacetime using a moving detector that is coupled to
a massless scalar field at vacuum state. To further elaborate
the parameter estimation of cosmic string spacetime, we here
extent the relevant investigation to a more practical scenario
by replacing the massless scalar field with a vector field,
i.e., an electromagnetic field. We would like to emphasize
that compared with the massless scalar field case, the unique
emerging electromagnetic polarization will cause significant
effects on the QFI for estimating the deficit angle. Specifi-
cally, the QFIs not only have different behaviors via depen-
dent parameters, but also there is more than two orders of
QFI magnitude difference for different polarization cases, as
shown in the following.

The outline of this paper is as follows. In Sect. 2, we recall
the physics of QFI. Then we introduce our detector, a two-
level atom which is coupled to electromagnetic fields in the
cosmic string spacetime in Sect. 3. In Sect. 4 we investigate
the parameter estimation of the deficit angle parameter with
different polarizations by using a static atomic detector, and
find the effective strategies to maximize the QFI for estimat-
ing the deficit angle. In Sect. 5, we give a simple discussion
about our model. Final remarks and conclusions are given in
Sect. 6.

2 Quantum Fisher information

The quantum Cramér–Rao bound provides a fundamen-
tal limit on the precision that quantum measurements can
achieve [51,52,56], and it is expressed as

Var(λ) ≥ 1

NFλ

. (1)

Here Var(λ) = Eλ[(λ̂−λ)2] is the variance of the estimator,
N is the number of measurements and Fλ = F(λ) denotes
the QFI of parameter λ. The definition of F(λ) can be written
as [56]

F(λ) ≡ Tr [ρ(λ)L(λ)2], (2)

where ρ is the density matrix of the detector and L(λ) is the
symmetric logarithmic derivative which satisfies ∂ρ(λ) =
1
2 (L(λ)ρ(λ)+ρ(λ)L(λ)). The quantum Cramér–Rao bound
provides the ultimate bound of parameter estimation accu-
racy for a state of the family ρ(λ). Consider a two-level quan-
tum system, whose quantum state in the Bloch sphere is of
the form

ρ = 1

2
(I + �ω · �σ), (3)

where �ω = (ω1, ω2, ω3) denotes the Bloch vector, and
�σ = (σ1, σ2, σ3) are the Pauli matrices. For such an elemen-
tal quantum system, one can find its QFI expression analyti-
cally [57]

Fλ =
{

|∂λ �ω|2 + ( �ω·∂λ �ω)2

1−|�ω|2 , | �ω| < 1 ,

|∂λ �ω|2, | �ω| = 1.
(4)

3 Open quantum system in cosmic string spacetime

In practice, any quantum systems inevitably interact with
external environment, which may lead to dissipation and
decoherence. Correspondingly the ambient noise will have
effect on the QFI encoded in the system’s quantum state and
thus have a certain influence on the accuracy of parameter
estimation. Then, it is very necessary to explore the parame-
ter estimation issues in the area of open quantum system. In
this section, we will introduce a two-level detector which is
subjected to the quantum vacuum fluctuations of an electro-
magnetic field in the cosmic string spacetime. The detector
is treated as an open quantum system and its dynamics is
derived by tracing over the degree of freedom of the electro-
magnetic field.

Let us begin with the cosmic string spacetime, whose met-
ric is of the form [14,53,58]

ds2 = dt2 − dr2 − r2dα2 − dz2. (5)
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Fig. 1 Schematic representation of the cosmic string spacetime with
an infinite and straight cosmic string along z direction

As shown in Fig. 1, in the cylindrical coordinates the cosmic
string spacetime is supposed to have an string lies along the
z direction.

The metric (5) is quite similar to the metric of Minkowski
spacetime, the difference is that for the Minkowski space-
time 0 ≤ α < 2π , while for the cosmic string spacetime
0 ≤ α < 2π

ν
, where ν = (1 − 4Gμ)−1 with G, the New-

ton constant, and μ, the mass per unit length of the string.
Therefore, compared to the Minkowski spacetime, the cos-
mic string spacetime is locally flat but with a deficit angle
which is used to characterize the nontrivial global topology.
One can quantize the electromagnetic field in the cosmic
string spacetime, the corresponding vector potential of elec-
tromagnetic field is expressed as [59]

Aξ (t, �x) =
∫

dμ j [ cξ j (t) fξ j (�x) + c†
−ξ j (t) f

∗−ξ j (�x)] (6)

with

∫
dμ j =

∞∑
m=−∞

∫ ∞

−∞
dk3

∫ ∞

0
dk⊥k⊥, (7)

in which cξ j (t) = cξ j (0)e−iωt is the annihilation oper-
ator and c†

−ξ j (t) = c†
−ξ j (0)eiωt is the creation opera-

tor with ξ ∈ {0,±1, 3}, m ∈ Z , k3 ∈ [−∞,∞],
k⊥ ∈ [0,∞]. The exact form of the fξ j (�x) is fξ j (�x) =

1
2π

√
ν

2ω
J|νm+ξ |(κ⊥r)ei(νmα+k3z). It is shown that

cξ j (0) = i
∫

d3 �x f ∗
ξ j (t, x)

←→
∂t Aξ (t, x), (8)

c†
ξ j (0) = −i

∫
d3 �x fξ j (t, x)

←→
∂t Aξ (t, x), (9)

where the commutation relations are as follows

[cξ j (t), c
†
ξ j ′(t)] = δ j, j ′ f or ξ = ±1, 3, (10)

[c0 j (t), c
†
0 j ′(t)] = −δ j, j ′ f or ξ = 0. (11)

For more details of the quantization of the electromagnetic
field in the cosmic string spacetime, one can refer to Ref. [59].

We model a two-level atom as the detector which is cou-
pled to an electromagnetic field in the cosmic string space-
time. The total Hamiltonian of the whole system is

H = HA + HF + HI , (12)

where HA, HF and HI are the atomic Hamiltonian, the field
Hamiltonian and the interaction Hamiltonian, respectively.
The specific expression of the atomic Hamiltonian is HA =
1
2 h̄ω0σ3, where h̄ω0 is the energy spacing of the atom and σ3

represents the Pauli matrix. The interaction Hamiltonian is
described as HI = −e�r · �E(x(τ )), where e is electric charge,
e�r denotes the atomic electric dipole moment, and �E(x(τ ))

represents the strength of the electric field along the atom’s
trajectory x(τ ).

We assume the total density matrix of the detector-field
system at the beginning can be written as ρ̂tot(0) = ρ̂(0) ⊗
|0〉〈0|, with ρ̂(0) being the atomic initial density matrix, and
|0〉〈0| representing the vacuum state of the field. In the atomic
frame, the entire quantum system follows the von Neumann
equation [60]

∂ρ̂tot(τ )

∂τ
= − i

h̄
[H, ρ̂tot(τ )], (13)

where τ is the proper time. After tracing over the field degree
of freedom ρ̂(τ ) = TrF [ρ̂tot(τ )], the master equation of the
atom is given under the Born–Markov approximation as [61]

∂ρ̂(τ )

∂τ
= − i

h̄
[Hef f , ρ̂(τ )] + L[ρ̂(τ )], (14)

here L[ρ] = 1
2

∑3
i, j=1 ai j

[
2σ jρσi − σiσ jρ − ρσiσ j

]
with

ai j = Aδi j − i Bεi jkδk3 − Aδi3δ j3, and we have used the
definition A = 1

4 [G(ω0) + G(−ω0)] and B = 1
4 [G(ω0) −

G(−ω0)]. By defining the two-point functions of the electro-
magnetic field

G+(x − x ′) = e2h̄2
3∑

i, j=1

〈+|ri |−〉〈−|r j |+〉 〈0|Ei (x)E j (x
′)|0〉 ,

(15)

with 〈0|Ei (x)E j (x ′)|0〉 = ∂i∂
′
j 〈0|A0(x)A0(x ′)|0〉 + ∂0∂

′
0

〈0|Ai (x)A j (x ′)|0〉, we achieve its Fourier and Hilbert trans-
forms as follows

G(λ) =
∫ ∞

−∞
d�τ eiλ�τ G+(

�τ
)
, (16)
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and

K(λ) = P

π i

∫ ∞

−∞
dω

G(ω)

ω − λ
. (17)

Then the effective Hamiltonian Heff is

Heff = 1

2
h̄�σ3 = h̄

2
{ω0 + i/2[K(−ω0)−K(ω0)]} σ3, (18)

where � is the effective level spacing of the atom, containing
the free term ω0 and the Lamb shift expressed as the second
term on the right of Eq. (18). We assume that the detector is
initially prepared in an arbitrary state |ψ(0)〉 = cos θ

2 |+〉 +
eiφ sin θ

2 |−〉, where θ and φ denote the weight parameter
and phase parameter, and |−〉, |+〉 represent the ground state
and excited state of the atom, respectively. With this initial
condition, by solving Eq. (14) we find the time-dependent
Bloch vector of the detector as [62]

ω1(τ ) = sin θ cos(�τ + φ)e− 1
2 Aτ ,

ω2(τ ) = sin θ sin(�τ + φ)e− 1
2 Aτ ,

ω3(τ ) = cos θe−Aτ − B

A
(1 − e−Aτ ). (19)

The interaction between the detector and field is encoded into
the parameters, A and B, which determines the detector’s
evolution and contains the information of spacetime due to
scattering off the quantum field. Therefore, one can infer the
related parameters of spacetime (what we will estimate in the
following) through the relevant outcomes by performing the
measurements on the detector.

4 Parameter estimation in cosmic string spacetime

In this section, we intend to exploit local quantum estimation
theory to find the ultimate limits of precision of the deficit
angle parameter in the detector-field model. Specifically, we
study how the QFI is affected by the detector’s state parame-
ters, such as evolution time, detector initial state, polarization
direction, and so on.

4.1 Static detector in cosmic string spacetime

We now probe the cosmic string spacetime by using a static
detector which is coupled to a vacuum fluctuating electro-
magnetic field. The trajectory of the detector is [53]

t (τ ) = τ, r(τ ) = r, (20)

α(τ) = α, z(τ ) = z,

which is described in the polar coordinates. Substituting the
above trajectory (20) into the Wightman function of the elec-
tromagnetic field, we find its final form along the detector’s
trajectory can be written as

〈0|Er (x)Er (x
′)|0〉 = ν

8π2

∫
dμ j e

iω(τ−τ ′)
[

ω

2
(J 2|νm+1|(k⊥r)

+J 2|νm−1|(k⊥r)) − 1

ω

(
d J|νm|(k⊥r)

dr

)2]
,

(21)

〈0|Eα(x)Eα(x ′)|0〉 = νr2

8π2

∫
dμ j e

iω(τ−τ ′)
[

ω

2
(J 2|νm+1|(k⊥r)

+J 2|νm−1|(k⊥r)) − ν2m2

ωr2 J 2|νm|(k⊥r)
]
,

(22)

〈0|Ez(x)Ez(x
′)|0〉 = ν

8π2

∫
dμ j e

iω(τ−τ ′) k
2⊥
ω

J 2|νm|(k⊥r).

(23)

Then the corresponding Fourier transform is given by

G(λ) =
∑
i

e2|〈−|ri |+〉|2λ3/3π fi (λ, r, ν)�(λ), (24)

where �(λ) is the step function and

fr (ω, r, ν) = 3ν

4

∑
m

∫ 1

0
dη

η√
1 − η2

[
(2 − η2)J 2|νm+1|(ωrη)

+η2 J|νm|−1(ωrη)J|νm|+1(ωrη)

]
,

fα(ω, r, ν) = 3ν

4

∑
m

∫ 1

0
dη

η√
1 − η2

[
(2 − η2)J 2|νm+1|(ωrη)

−η2 J|νm|−1(ωrη)J|νm|+1(ωrη)

]
,

fz(ω, r, ν) = 3ν

2

∑
m

∫ 1

0
dη

η3√
1 − η2

J 2|νm|(ωrη). (25)

With the above Fourier transform, we can find the coeffi-
cients of the Kossakowski matrix ai j is given by

A = B = γ0

4

∑
i

ζi fi (λ, r, ν), (26)

where γ0 = e2|〈−|r|+〉|2 ω3
0/3π , and ζi = |〈−

|ri |+〉|2/|〈−|r|+〉|2 represents the relative polarizability
which satisfies

∑
i ζi = 1, as shown in Fig. 2. We will adopt

the notation f (λ, r, ν) = ∑
i ζi fi (λ, r, ν) for simplification

in the following. From Eqs. (4), (19), and (26), we can find the
corresponding QFI for estimating the deficit angel parameter,
ν, is given by

Fν(ω, ν, τ, θ, r) = e− f (λ,r,ν)γ0τ (∂ν f (λ, r, ν))2(γ0τ)2 cos2 θ
2

2(e f (λ,r,ν)γ0τ − 1)
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Fig. 2 Polarization schematic: the left panel to the right panel repre-
sent the radial polarization, the tangential polarization and the parallel
polarization, respectively

×(2e f (λ,r,ν)γ0τ − 1 + cos θ). (27)

For convenience, we adopt the notations fr , fα and fz
as fr (ω0, r, ν), fα(ω0, r, ν) and fz(ω0, r, ν), and adopt the
notation Fν as Fν(ω, ν, τ, θ, r) in the following. Note that
different polarizations have different contributions to the
parameters A and B discussed above, thus different effects
on the QFI. Finding out what kind of polarization is optimal
for the QFI should be a significant issue for the detection
of cosmic string. We will investigate the QFI of deficit angel
parameter ν with the radial polarization, the tangential polar-
ization and the parallel polarization in the following.

4.2 The estimation of deficit angel parameter for different
polarizations

For the radial polarization case, we have (ζr , ζα, ζz) =
(1, 0, 0) and the corresponding QFI is given by

Fν = e− frγ0τ (∂ν fr )2(γ0τ)2(2e frγ0τ − 1 + cos θ) cos2 θ
2

2(e frγ0τ − 1)
.

(28)

The QFI is independent on the phase φ of the initial state, and
it only depends on the evolution time, τ , the deficit angel, ν,
the initial state parameter, θ , and distance of the detector rel-
ative to the string, r . Here r is in the unit of c

ω0
, and τ is in the

unit of 1
γ0

. The units of Fν depends on the deficit angle param-
eter. Since the deficit angle parameter is dimensionless, we
obtain Fν is dimensionless here. In order to ensure that the
coordinates quantity in the following figures are dimension-
less, we have worked with quantities by rescaling the time
and the distance

τ �−→ τ̃ ≡ γ0τ, r �−→ r̃ ≡ rω0. (29)

For convenience, we continue to term τ̃ and r̃ as τ and r ,
respectively in the following.

For the tangential polarization (ζr , ζα, ζz) = (0, 1, 0), we
find that the corresponding QFI

Fν = e− fατ (∂ν fα)2τ 2(2e fατ − 1 + cos θ) cos2 θ
2

2(e fατ − 1)
. (30)

Besides, for the scenario where the polarization is parallel
to the string we have (ζr , ζα, ζz) = (0, 0, 1), then the corre-
sponding QFI is given by

Fν = e− fzτ (∂ν fz)2τ 2(2e fzτ − 1 + cos θ) cos2 θ
2

2(e fzτ − 1)
. (31)

Note that for both of the tangential polarization and par-
allel polarization cases, we find that their corresponding
QFIs are also independent of quantum phase φ of the ini-
tial sate. Besides, if the effective distance r � 1, we can find
fr (r, ν) ≈ fα(r, ν) ≈ 3ν2(ν+1)

�[2ν+2] r
2(ν−1), and fz(r, ν) ≈ ν.

Then the QFIs discussed above can be reduced to a simpler
form, and it is interesting to note that in this case the QFI for
the radial and tangential polarization cases is the same.

4.3 A comparison of the estimation for different
polarizations

In this section, we would like to numerically compare the
QFIs of different polarization cases discussed above. To bet-
ter illustrate our results, we present several figures below.

The QFIs of the deficit angle parameter ν are plotted as a
function of the effective time τ and the initial states (denoted
as different θ ), which are shown in Fig. 3. It is found that
the QFIs for different polarization cases behave the same:
With the increase of the evolution time, they increase at the
beginning to a maximum, then decrease monotonously, and
finally vanish. It means that there is an optimal detection
time at which the highest precision for estimating the deficit
angle can be possibly achieved during the exploration of cos-
mic string spacetime. Note that the QFIs for θ = π cases
(i.e., the initial detector state is ground state) keep zero over
the whole evolution time, which behave quite different from
other initial states cases. The reason is that the quantum vac-
uum fluctuating fields in the cosmic string spacetime can
not induce the spontaneous excitation of the static detector,
however, can induce its spontaneous emission. Therefore, the
detector has no response to the quantum vacuum fluctuating
fields when it is initially prepared at the ground state. How-
ever, if the detector is initially prepared at the excited state or
its quantum superposition with the ground state, its evolution
as a consequence of spontaneous emission would depend on
the spacetime characteristic through the detector-field inter-
action. Note that for all the considered polarization cases,
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Fig. 3 QFI of the deficit angle parameter ν as a function of the effec-
tive time τ and the initial state parameter θ . The left to right panels
correspond to the radial polarization (ζr , ζα, ζz) = (1, 0, 0), the tan-
gential polarization (ζr , ζα, ζz) = (0, 1, 0) and the parallel polariza-
tion (ζr , ζα, ζz) = (0, 0, 1), respectively. We take the effective distance

r = 0.1 and the deficit angle parameter ν = 1.5. Here Fν and ν are
dimensionless. θ is the state parameter, which is expressed in radian.
τ and r are also dimensionless by rescaling, actually r is in the unit of
c
ω0

, and τ is in the unit of 1
γ0

Fig. 4 QFI of the deficit angle parameter ν as a function of the effec-
tive time τ and the effective distance r . The left to right panels cor-
respond to the radial polarization (ζr , ζα, ζz) = (1, 0, 0), the tangen-
tial polarization (ζr , ζα, ζz) = (0, 1, 0) and the parallel polarization
(ζr , ζα, ζz) = (0, 0, 1), respectively. We take the deficit angle param-

eter ν = 1.5 and the initial state parameter θ = 0. Here Fν and ν are
dimensionless. θ is the state parameter, which is expressed in radian.
τ and r are also dimensionless by rescaling, actually r is in the unit of
c
ω0

, and τ is in the unit of 1
γ0

Fig. 5 QFI of the deficit angle parameter ν as a function of the effec-
tive distance r with fixed values of the parameter ν = 1.5, 1.8, 2.0. The
left to right panels correspond to the radial polarization (ζr , ζα, ζz) =
(1, 0, 0), the tangential polarization (ζr , ζα, ζz) = (0, 1, 0) and the
parallel polarization (ζr , ζα, ζz) = (0, 0, 1), respectively. We take the

effective time τ = 4 and the initial state parameter θ = 0. Here Fν

and ν are dimensionless. θ is the state parameter, which is expressed in
radian. τ and r are also dimensionless by rescaling, actually r is in the
unit of c

ω0
, and τ is in the unit of 1

γ0
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the QFIs always achieve their peak values with θ = 0 at a
certain time, i.e., the initial excited state. Thus the excited
state is the most sensitive state for the detection of cosmic
string spacetime. This is because that the interaction between
detector and fields, as discussed above, only causes the static
atom to emit spontaneously, and thus only the excited state
of the detector will response to the vacuum-fluctuation fields
as a consequence. We conclude that the maximum sensitiv-
ity in the estimation for the deficit angle parameter ν can be
obtained by initial preparation of the detector in the excited
state. Note that this conclusion is universal, and it is actually
valid for any deficit angle parameter ν and the effective dis-
tance r . To verify its universality, we can see from Eq. (27)
that when the initial ground state is prepared (i.e., θ = π ), the
QFI keeps vanishing for any defect angle parameter, evolu-
tion time, polarization direction, and effective distance, then
we take derivative of the QFI with respective to the initial
state parameter θ , and find

∂θ Fν = − (∂ν f (λ, r, ν))2τ 2(e f (λ,r,ν)τ + cos θ) sin θ

2e f (λ,r,ν)τ (e f (λ,r,ν)τ − 1)
. (32)

Clearly, the solutions to ∂θ Fν = 0 are θ = 0, π , which
means these two values are the points at which the QFI has
extreme value. Since ∂θ Fν ≤ 0 for all θ ∈ [0, π ], we obtain
θ = 0 corresponds to the maximum point and θ = π cor-
responds to the minimum point. Besides, as shown in the
figure the polarization direction affects the magnitude of the
QFI significantly. The maximum QFI magnitude of the radial
polarization and the tangential polarization case are almost
two orders bigger than the parallel polarization case. We can
also find that the response width of the QFI to evolution
time behaves differently for different polarizations. The QFI
for the parallel polarization case has the narrowest response
width compared with the other two cases.

We plot the QFIs of the deficit angle parameter ν as a
function of the effective distance r and the effective time τ

with the deficit angle parameter ν = 1.5 shown in Fig. 4. We
find that although different polarizations will cause different
behaviors of QFI, for all the polarization cases the optimal
position at which the QFIs would achieve their maximum
values is the same, i.e., r � 1. It means the optimal precision
would be achieved there. We can also find that the QFIs for the
radial polarization and tangential polarization cases are more
than two orders larger than that for the parallel polarization
case. Remarkably, when r � 1, the response time for the
radial and the tangential polarization cases is much longer
than that of parallel polarization.

To further illustrate the dependence of QFI on the position
of the detector, by fixing the evolution time we plot the QFI
as a function of r with different fixed deficit angle parameter
ν shown in Fig. 5. For the radial polarization and the tan-
gential polarization cases, the deficit angle parameter affects

the magnitude of the QFI dramatically when r < 1, and the
QFIs keep oscillating while changed relatively slightly when
r > 2. In addition, we can numerically find the maximum
QFIs and the corresponding parameters for all the polariza-
tion cases. In our example where three different deficit angle
parameters are chosen (ν = 1.5, 1.8, 2), we find that for a
fixed evolution time and initial state (θ = 0) the maximum
QFIs for the radial and tangential polarization occur when
ν = 1.5 and the detector is closed to the string at r = 0.14.
Correspondingly, the maximum QFIs are Fνmax = 8.513 for
the radial polarization case and Fνmax = 7.796 for the tan-
gential polarization, respectively. However, unlike the for-
mer two cases, the maximum QFI of parallel polarization
(Fνmax = 0.2285) occurs when ν = 2 and r = 2.29. This
means that for a fixed time the sensitivity of the detector
depends on both the polarization and the deficit angle param-
eter. Comparing the three maximum QFIs, the former two
cases are almost two orders bigger than the latter one obvi-
ously.

Figure 6 shows how the estimation of the deficit angle ν is
affected by itself. For the fixed initial states, we find that the
QFIs for the radial polarization and tangential polarization
cases behave similarly, while they are quite different from
the parallel polarization case. Fixing the time, for the radial
and tangential polarization cases, with the increase of the
deficit angle ν the QFIs increase at the beginning, reach a
maximum value, then decrease monotonously, and go to zero
eventually. However, for the parallel polarization case, the
QFI decreases monotonously to zero with the increase the
deficit angle ν. Again, the QFIs for different polarization
cases achieve their maximum values at different deficit angle,
and the corresponding maximum values can differ by orders
of magnitude.

5 Discussion

Recently, many desktop experiments have been designed
with atoms and molecules to explore the new physics, and
similar model to our scenario has been used thereof to detect
the electromagnetic fields induced by new interaction [63].
By analyzing the QFI, we in the above have discussed how
a two-level detector detects the quantum vacuum fluctua-
tions of electromagnetic fields scattered by the cosmic string
spacetime. However, for a more realistic cosmic environ-
ment, the thermal noise is inevitable. Consider the relevant
analysis in a thermal environment with temperature T , the
corresponding Wightman function of the electromagnetic
fields along the detector’s trajectory is given by [64,65]

Grr (τ − τ ′) = ν

8π2

∫
dμ j csch

ω j

T
cos

(
ω j � τ
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Fig. 6 QFI of the deficit angle parameter ν as a function of itself and the
effective time τ with fixed value of the initial state parameter θ = 0. The
left to right panels correspond to the radial polarization (ζr , ζα, ζz) =
(1, 0, 0), the tangential polarization (ζr , ζα, ζz) = (0, 1, 0) and the
parallel polarization (ζr , ζα, ζz) = (0, 0, 1), respectively. We take the

effective distance r = 0.1. Here Fν and ν are dimensionless. θ is the
state parameter, which is expressed in radian. τ and r are also dimen-
sionless by rescaling, actually r is in the unit of c

ω0
, and τ is in the unit

of 1
γ0

+ iω j

T

)[
ω j

2
V − 1

ω j

(
∂ J|νm|(k⊥r)

∂r

)2]
,

(33)

Gαα(τ − τ ′) = νr2

8π2

∫
dμ j csch

ω j

T
cos(ω j � τ

+ iω j

T
)

[
ω j

2
V − ν2m2

ω j r2 J 2|νm|(k⊥r)
]
, (34)

Gzz(τ − τ ′) = ν

8π2

∫
dμ j csch

ω j

T
cos

(
ω j � τ

+ iω j

T

)
k2⊥
ω j

J 2|νm|(k⊥r), (35)

with V = J 2|νm+1|(k⊥r)+ J 2|νm−1|(k⊥r). Then the associated
Fourier transform is

G(λ) =
{∑

i
e2|〈−|ri |+〉|2λ3

3π f −1
i (λ,r,ν)

(N (ω) + 1), (ω > 0),∑
i
e2|〈−|ri |+〉|2λ3

3π f −1
i (λ,r,ν)

N (|ω|), (ω < 0),
(36)

where N = 1/(eω/T − 1) and fi (λ, r, ν) is what we have
show in the above. The corresponding coefficients of the Kos-
sakowski matrix ai j is

A = γ0

4

∑
i

ζi fi (λ, r, ν)(2N + 1),

B = γ0

4

∑
i

ζi fi (λ, r, ν). (37)

For N = 1
eω/T −1

, we have let h̄ = kB = 1. By considering

the dimension, we obtain N = 1
eh̄ω/KBT −1

. For the reduced

Planck constant h̄ = 1.0546×10−34 J ·s, the Boltzmann con-
stant kB = 1.38×10−23 J/K , the typical transition frequency
of the hydrogen atom ω ∼ 1015s−1 [66], and the temperature
for a realistic cosmic environment is T ∼= 2.76K [67], we
obtain that N = 1

eh̄ω/kB T −1
∼ 1

e104 → 0. Then we arrive

A = B = γ0

4

∑
i

ζi fi (λ, r, ν). (38)

It means that one can actually neglect the thermal noise. The
corresponding quantum Fisher information is thus

Fν(ω, ν, τ, θ, r) = e− f (λ,r,ν)γ0τ (∂ν f (λ, r, ν))2(γ0τ)2 cos2 θ
2

2(e f (λ,r,ν)γ0τ − 1)

×(2e f (λ,r,ν)γ0τ − 1 + cos θ), (39)

which is the same result to the vacuum case shown above.
Therefore, in a more realistic cosmic environment, the results
for the vacuum case discussed above are still valid.

Besides, note that actually the cosmic strings have been
explored in the analogue gravity with various experimental
platforms, e.g., superfluid [68] and anisotropic medium [69],
and so on. Our results can also be examined in such ana-
logue gravity systems. When one consider the quantum sim-
ulation of cosmic string in a condensed matter system, the
density fluctuations thereof can be used to simulate the quan-
tum fields, and an impurity can be introduced as the detec-
tor coupled to the density fluctuations. This model is pro-
posed in Refs. [70,71], and has been experimentally realized
recently [72,73]. By controlling the properties of the con-
densed matter and checking the dynamics of the detector, one
can in principle test our results here in the analogue gravity.

6 Conclusion

Motivated by detecting the topological defects in cosmic
string spacetime, we use a static two-level atom which is cou-
pled to the electromagnetic fields as the detector to estimate
the deficit angle parameter ν. To obtain optimal estimation
conditions, measurements are performed on the detector to
make QFI values be maximized for different parameters. We
focus on the QFI of ν with different polarizations, and find
that the polarization direction plays a very important role in
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the estimation of the deficit angle ν, and it not only affects the
behavior of the QFI, but also determines its maximum mag-
nitude. For different polarization cases, the QFIs can differ by
orders of magnitude. It is found that one can not extract any
information about the cosmic string spacetime if the detector
is initially prepared at the ground state. The optimal initial
state to estimate the deficit angle ν for all the polarization
cases is the pure excited state. The optimal point via the evo-
lution time τ , the effective distance r , and the deficit angle ν

itself, at which the QFI achieves the maximum value and thus
the possible estimation precision is optimal, depends on the
polarization direction. Our results are important extension of
quantum metrology to the relativistic framework, and could
facilitate the exploration of cosmic string spacetime charac-
teristic in the future.
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