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Abstract Fritzsch–Xing matrices are a particular class of
texture 4 zero hermitian quark mass matrices, known to be
successful in accommodating the quark mixing data. In the
present work, it is shown that these texture 4-zero matrices
with only one phase parameter, unlike the usually considered
two phase parameters, are not only consistent with the lat-
est experimental quark mixing data, but also predict the CP
violation parameters, J and corresponding phase δ, in agree-
ment with the recent global analyses. We also show that the
mass matrix elements do not exhibit a strong hierarchy and
there is a strong correlation between some of the mass matrix
elements of up and down sector. A precision measurement
of δ as well as small quark masses would have the potential
to constrain the phase structure of the matrices further.

1 Introduction

A convincing theory of fermion masses and mixings is one
of the most salient omission in the current description of
particle physics and at present it does not seem to be on
the horizon. All of the charged fermion masses and mix-
ing parameters in the quark sector are experimentally known
to a very good precision [1]. Even in the neutrino sector,
remarkable experimental progress has resulted in advance-
ment in our knowledge of the properties of neutrinos. The-
oretical attempts, on the other hand, are limited mostly to
phenomenological approaches, wherein one goes for build-
ing phenomenological models having the potential for pre-
dictions, in tune with the latest data, which later on become
the guiding steps for more ambitious theories.

In the standard electroweak model, the masses of the
charged fermions, weak mixing angles and the complex
phase parameter causing CP violation enter as free parame-
ters. Further insights into the dynamics which determine the
masses and mixing angles call for steps beyond the elec-
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troweak standard model. In the absence of specific hints
towards the underlying dynamics one is invited to consider
specific symmetry schemes which could reduce the num-
ber of free parameters in the fermion sector and eventually
provide hints towards further dynamical details of the mass
generation mechanism [2,3].

In this regard, one of the successful approach is the “tex-
ture zero” approach, initiated implicitly by Weinberg [4]
and explicitly by Fritzsch [5,6], wherein certain entries of
the mass matrix are exactly zero, such matrices are usually
referred to as “texture specific mass matrices”. The language
of texture zeros has proven to be very useful in establish-
ing experimentally testable relations between the ratios of
quark masses and the flavor mixing angles [7–9]. Recently
it has been shown [10] that the present refined data of quark
masses and mixing angles unambiguously rules out the origi-
nal Fritzsch ansatz as well as all of its texture 6 zero variants.
Further, also the present data rules out all possible texture
5 zero hermitian mass matrices [11]. On the other hand, it
has been observed over the years that texture 4 zero mass
matrices, similar to the original Fritzsch ansatz have always
been compatible with the quark mixing data [7–9,12–15]. It
has also been shown that out of all possible texture 4 zero
mass matrices, compatible with weak basis transformations
[16], there is a unique set of matrices along with its permu-
tations matrices which has the best possible compatibility
with the quark mixing data. This is also borne out by a very
recent extensive analysis of of texture 4 zero mass matrices
[17]. This brings into focus the issue whether it is possible
to reduce the free parameters of these matrices so as to facil-
itate the task of model builders. The purpose of the present
paper is to explore this possibility, particularly in relation to
the phase parameters of these having implications for the CP
violating parameters of the Cabibbo–Kobayashi–Maskawa
(CKM) matrix.

The paper is organized as follows. In Sect. 2, while pre-
senting the analysis of Fritzsch–Xing matrices with updated
values of quark masses and the latest results of the CKM fla-
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vor mixing parameters, we also give the notations and basic
expressions needed and general formalism adopted for the
analysis. In Sect. 3, we formulate texture 4 zero mass matri-
ces with minimal parameters, thus enhancing the predictive
power of these mass matrices. After confirming the validity
of this set of mass matrices, we also discuss the hierarchy
exhibited by mass matrix elements in our model. The details
regarding the parameter space spanned by the free parameters
have been presented and the correlations between these have
been discussed. In the Sect. 3.1, we present the predictions of
this set of mass matrices for the angles of the reference uni-
tarity triangle (UT), Jarlskog’s rephasing invariant parameter
J and CP violating phase δ. In Sect. 3.2, we study the rel-
ative dependence of CKM parameters on the quark masses.
Finally, Sect. 4 summarizes our main conclusions.

2 The Fritzsch–Xing texture 4-zero quark mass
matrices: an updated analysis

Before performing an updated and complete numerical anal-
ysis of the parameter space of mass matrices with four texture
zeros, let us briefly review the relations between the param-
eters of mass matrices and the observable quantities. For the
three generations of quarks, the quark mass terms are given
as

uLMuuR + dLMddR , (1)

where uL(R) and dL(R) are the left-handed (right-handed)
quark fields and Mu and Md are the mass matrices for the
up sector (u, c, t) and down sector (d, s, b) respectively.
The mass matrices can be diagonalized by the following bi-
unitary transformations:

V †
uL MuVuR = Mdiag

u ≡ Diag (mu,mc,mt ); (2)

V †
dL
MdVdR = Mdiag

d ≡ Diag (md ,ms,mb); (3)

where Mdiag
q (q = u, d) are real and diagonal, while VqL

and VqR are unitary 3 × 3 matrices. The quantities mu,md

etc. denote the eigenvalues of the mass matrices, i.e. the
physical quark masses. The quark mixing matrix, connecting
mass eigenstates to the weak eigenstates, referred to as the
Cabibbo–Kobayashi–Maskawa matrix [18,19] is given as,

VCKM = V †
uL VdL =

⎛
⎝
Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb

⎞
⎠ , (4)

where Vud gives the amplitude of the process u → d+W and
similarly for the other elements. Thus, apart from the quark
masses, the elements of VCKM constitute the low energy
observable quantities through which one can get clues about

the structure of the mass matrices, which are completely arbi-
trary in Standard model. The VCKM, by definition, is a unitary
matrix, hence can be expressed in terms of three real angles
and six phases. Out of the six phases, five can be re-absorbed
into the quark fields in Eq. (1). Therefore, one is left with
only one non-trivial phase which is responsible for CP vio-
lation in the SM. There are several parametrizations of the
VCKM, however the most commonly used parametrization is
the standard parametrization, also advocated by PDG [1],

VCKM

=
⎛
⎝

c12c13 s12c13 s13e−iδ

−s12c23 − c12s23s13eiδ c12c23 − s12s23s13eiδ s23c13

s12s23 − c12c23s13eiδ −c12s23 − s12c23s13eiδ c23c13

⎞
⎠ ,

(5)

with ci j = cos θi j and si j = sin θi j . In the PDG representa-
tion, sinδ �= 0 implies the existence of CP violation.

The Fritzsch–Xing quark mass matrices (texture 2-zero
for Mu and texture 2-zero for Md ) are presented below,

Mu =
⎛
⎝

0 Au 0
A∗
u Du Bu

0 B∗
u Cu

⎞
⎠ ; Md =

⎛
⎝

0 Ad 0
A∗
d Dd Bd

0 B∗
d Cd

⎞
⎠ , (6)

where Au = |Au |eiαu , Ad = |Ad |eiαd , Bu = |Bu |eiβu ,
Bd = |Bd |eiβd , such that the combined texture of quark sec-
tor is texture 4-zero.

The diagonalizing transformations for these matrices can
easily be obtained in terms of quark masses and free param-
eters Du, Dd , φ1 = αu − αd and φ2 = βu − βd . The details
of the diagonalization equations for these mass matrices can
be found in our earlier work [20]. Thus, in total, there are 10
parameters in the above set of matrices to describe the six
quarks masses and four mixing parameters.

Before discussing the details of our analysis, we present
the latest quark masses and mixing data. Since the observed
parameters for the CKM mixing matrix are fitted at the elec-
troweak energy scale μ = mZ , we have taken the quark
masses also atmZ energy scale [21], and are given in Table 1.

Table 1 Quark masses at mZ
energy scale [21] and mixing
parameters as given by global fit
results by PDG [1]

mu 1.23 ± 0.21 MeV

mc 0.620 ± 0.017 GeV

mt 168.26 ± 0.75 GeV

md 2.67 ± 0.19 MeV

ms 53.16 ± 4.61 MeV

mb 2.839 ± 0.026 GeV

|Vus | 0.22650 ± 0.00048

|Vub| 0.00361+0.00011
−0.00009

|Vcb| 0.04053+0.00083
−0.00061

sin 2β 0.699 ± 0.017
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Table 2 Parameter ranges for the quark mass matrices given in Eq. (6)
that reproduce the mixing parameters given in Table 1

Du (GeV) Dd (GeV) φ1 φ2

19.0–61.0 0.3–0.9 69.0◦–122.0◦ 2.0◦–7.2◦

For the mass matrices given in Eq. (6), the CKM matrix
can be obtained in terms of quark masses and free parame-
ters Du, Dd , φ1 and φ2. For the analysis, we use the quark
masses given in Table 1 and scan their full ranges at 1σ , while
the phases are scanned in the range [−π, π ]. Thereafter, we
calculate the CKM elements |Vus |, |Vcb|, |Vub| and angle β

of the UT. We keep the parameter sets, in which the value
of each of these four observables is reproduced within the
1σ interval of error-bars, as given by the global fit results by
Particle Data Group (PDG) [1] and presented in Table 1.

We choose these four mixing parameters, because their
values have been determined to a very good degree of accu-
racy. The set of matrices given in Eq. (6), successfully repro-
duces the three observed CKM elements and angle β given
in Table 1 in the parameter ranges given in Table 2.

Angle β refers to one of the inner angles of the CKM
unitarity triangle described by the orthogonality relation

VudV
∗
ub + VcdV

∗
cb + VtdV

∗
tb = 0 ,

in the complex plane. The three inner angles of this triangle

are defined as,

α ≡ arg

[
− VtdV ∗

tb

VudV ∗
ub

]
,

β ≡ arg

[
−VcdV ∗

cb

VtdV ∗
tb

]
,

γ ≡ arg

[
−VudV ∗

ub

VcdV ∗
cb

]
.

(7)

Another interesting measure of CP violation is the Jarl-
skog’s rephasing invariant parameter J . The significance of
J lies in the fact that all the CP violating effects in the SM are
proportional to it as well as it is independent of the represen-
tation of CKM matrix. For hermitian quark mass matrices,
J can be obtained using the commutator of mass matrices
[22–24], for example,

iC ≡ [Mu, Md ] , (8)

Table 3 Predictions of the
quark mass matrices given in
Eq. (6)

α 66.2◦–113.7◦

γ 44.7◦–92.3◦

J (2.30–3.39) ×10−5

δ 45.0◦–90.0◦

such that

DetC = −2J (mt − mc)(mc − mu)(mu − mt )

×(mb − ms)(ms − md)(md − mb). (9)

In parallel with the usage of commutators encountered in
quantum mechanics, the commutator of hermitian mass
matrices is a measure of the simultaneous diagonalization
of the matrices, that is, its non zero value ensures mismatch
in the diagonalization of the mass matrices, which in turn
implies CP violation. Using Eq. (9), one can easily express
the rephasing invariant J , in terms of the mass matrices, Mu

and Md .
One can also express J in terms of the VCKM elements, as

J
∑
γ,l

εαβγ ε jkl = Im[Vα j VβkV
∗
αkV

∗
β j ]. (10)

Using the standard parametrization, given in Eq. (5), J
can be expressed in terms of the CKM mixing angles,
θ12, θ23 and θ13, and CP violating phase, δ, as

J = s12s23s13c12c23c
2
13 sin δ. (11)

Therefore,

δ = sin−1

(
−DetC

2(mt − mc)(mc − mu)(mu − mt )(mb − ms)(ms − md)(md − mb)s12s23s13c12c23c2
13

)
. (12)

Thus, the CP violating phase δ can be obtained in a
rephasing invariant manner using the commutator of mass
matrices. In Table 3, we present the predictions of the mass
matrices given in Eq. (6) for the other two angles of the uni-
tarity triangle i.e. α and γ and for J and δ. From the Table,
we observe that the ranges of α, γ, J and δ are quite wide,
however these include their ranges obtained from the global
analyses and the experimental limits [1].

3 Texture 4-zero quark mass matrices with minimal
parameters

A figure of merit for any mass matrix model is its predictabil-
ity power, which is maximal when a minimal number of free
parameters are introduced. Using simplicity and the require-
ment of maximal predictability as guiding principles, we are
led to consider if we can reduce the number of parameters
further in the set of mass matrices given in Eq. (6). To this
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Fig. 1 Contours of
|Vus |, |Vcb|, |Vub| and sin 2β in
φ1 − φ2 plane, for the mean
values of quark masses and
central values of allowed ranges
of Du and Dd . The solid lines
are for the lower limit of the
ranges mentioned in the Table 1,
while the dashed lines are for
the upper limit

end, we have tried various combinations, for example, we
considered some of the elements as zeros, e.g. one can put
(2,2) or (2,3) or (3,3) element as zero, however this does not
reproduce CKM matrix within its limits. Getting rid of one
of the phases φ1 or φ2, also does not lead to reproduction of
compatible CKM matrix elements.

In Fig. 1, we have plotted contours of |Vus |, |Vcb|, |Vub|
and sin 2β in φ1 − φ2 plane for the mean values of quark
masses and central values of allowed ranges of Du and Dd

given in Table 2. The solid lines are for the lower limit of the
ranges mentioned in the Table 1, while the dashed lines are for
the upper limit. The figure reveals several interesting points.
For example, it suggests that |Vus | is not sensitive to variation
in φ2, while it is very sensitive to variation in φ1. On the other
hand, |Vcb| is not sensitive to variation in φ1, while it is very
sensitive to variation in φ2. |Vub| and sin 2β are sensitive to
both φ1 and φ2. However, the most important observation is
that angle φ1 is close to 90◦, while angle φ2 is very close to
0◦, where these strong constraints are majorly put by |Vus |
and |Vcb|, respectively. We also find that a non zero value of
φ2 is very crucial to reproduce angle β. A quick look at Fig. 1
motivates us to consider the possibility φ1 = φ2+90◦, which
we have investigated in detail below. As discussed earlier, our
endeavor is to reduce the number of free parameters in mass
matrices and hence we now present texture 2-zero parallel
structure for the up and down quark mass matrices, with one
less parameter than the matrices given in Eq. (6), for example

Mu =
⎛
⎝

0 |Au |ei(βu+π/4) 0
|Au |e−i(βu+π/4) Du |Bu |eiβu

0 |Bu |e−iβu Cu

⎞
⎠ ;

Md =
⎛
⎝

0 |Ad |ei(βd−π/4) 0
|Ad |e−i(βd−π/4) Dd |Bd |eiβd

0 |Bd |e−iβd Cd

⎞
⎠ .

(13)

The mixing matrix corresponding to above mass matrices can
be obtained in terms of the quark masses and free parameters
Du, Dd and φ2 = βu − βd . Thus, in our proposed model
we consider only one phase, i.e. φ2 to reproduce the CKM
elements and angle β of the UT. As before, we scan the
parameter space of Du, Dd and φ2 and keep the parameter
ranges, in which the value of each observable is reproduced
within the 1σ interval. We find that this simple ansatz is able
to reproduce the CKM elements, angles of UT, J and δ well
within their ranges given in PDG, in the parameter ranges
given in Table 4.

Once the allowed ranges of these three parameters are
obtained, we can evaluate various quantities of the CKM
paradigm. We begin with presenting the allowed ranges of
real parts of the mass matrices Mu and Md ,

Mr
u =

⎛
⎝

0 0.027−0.035 0
0.027−0.035 17−51.5 51.47−78.26

0 51.47−78.26 115.88−150.91

⎞
⎠ ;

Mr
d =

⎛
⎝

0 0.012−0.015 0
0.012−0.015 0.25−0.75 0.88−1.30

0 0.88−1.30 2.02−2.56

⎞
⎠ . (14)

In the CKM paradigm, we notice several points of impor-
tance. First, the quark masses are strongly hierarchical,
mu,d � mc,s � mt,b, with the hierarchy of ‘up’ sector
being much stronger. Second, the CKM matrix elements also
exhibit a strong hierarchy, i.e. |Vub| < |Vtd | � |Vts | <

|Vcb| � |Vcd | < |Vus | < |Vcs | < |Vud | < |Vtb|, indi-
cating the suppression of off-diagonal elements in com-
parison to diagonal ones. Therefore, we expect our anal-
ysis to manifest these strong hierarchies as well, i.e., the
mass matrix elements are expected to follow the hierarchy
(3, 3) � (2, 3) � (2, 2) � (1, 2). However, our results
in Eq. (14) show that the hierarchy followed in both up and
down sector is (3, 3) � (2, 3) � (2, 2) � (1, 2), i.e. except
for (1,2) element, the hierarchy observed between the mass
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Table 4 Parameter ranges for the mass matrices given in Eq. (13) that
reproduce the mixing parameters given in Table 1

Du (GeV) Dd (GeV) φ2

17.0–51.5 0.25–0.75 2.5◦–7.7◦

matrix elements is weak. Figure 2 clearly depicts the hierar-
chy followed by mass matrix elements, wherein we show the
obtained ranges of the mass matrix elements.

Various authors have also considered ‘weakly’ hierarchi-
cal mass matrices to reproduce ‘strongly’ hierarchical mix-
ing angles [25]. For instance, in Ref. [26], Xing et al. find
|Bi |/Ci ∼ Di/|Bi | ∼ 0.24 for the case of both up and
down mass matrices. However, in Ref. [27], Xing and Zhou
find a new part of the parameter space, corresponding to
Ci ∼ |Bi | ∼ Di . Both of these possibilities are covered by
the set of mass matrices formulated by us in Eq. (13). To
understand the reason to realize strong hierarchy in the ele-
ments of CKM matrix obtained from the weakly hierarchical
mass matrix elements, we present the approximate expres-
sions for the off diagonal CKM element Vcb below. We have
used the approximation mu,d � mc,s � mt,b to arrive at the
following:

Vcb ≈ −
√

(mt − Du)(Dd + ms)

mtmb

+eiφ2

√
(Du + mc)(mb − Dd)

mtmb
. (15)

Numerical analysis shows that (i) φ2 being very small and
the assumption φ1 = φ2 + 90◦ as well as (ii) the lower right
corner of the Mu and Md being weakly hierarchical (as pre-
sented in Eq. (14)) ensure that |Vcb| is sufficiently small to
be in its experimental range. The free parameters Du and
Dd of our mass model, being in the range given in Eq. (14)
have a profound role in reproducing |Vcb| and other off diag-
onal elements of CKM matrix. If the mass matrices given in
Eq. (13) are taken to be strongly hierarchical, the off diago-
nal elements of CKM matrix turn out to be larger than their
experimental ranges. This issue has also been extensively
discussed in a recent paper by Fritzsch et al. [28], wherein
they have studied the correlations between quark mass and
flavor mixing hierarchies for Texture 4-zero Fritzsch–Xing
quark mass matrices.

Apart from the hierarchy between the elements of Mu or
Md , it is also desirable to discuss the correlations amongst
the free parameters of Mu and Md . In Fig. 3, we present
the complete parameter space spanned by the free param-
eters, Du, Dd and φ2 in our model. We find that there is a
strong correlation between mass matrix element (2,2) of up
and down sector, i.e., Du and Dd . Further, the correlation
between Du and φ2 and between Dd and φ2 is very simi-

lar, hinting towards an underlying symmetry in up and down
sectors. In the middle right panel, we have plotted the param-
eter space available to δ with respect to φ2. We see a very
strong correlation between δ and φ2. The shaded region cor-
responds to the limits on δ by the present global range, i.e.
δ = (72.1+4.1

−4.5)
◦ [1]. We find that the global range of δ is

compatible with φ2 to be around 6◦. Furthermore, the scat-
ter plots in the lowest panel of Fig. 3, show very interesting
correlations between some of the flavor mixing observables.
We find that δ is correlated to |Vus |, clearly a result of lesser
number of free parameters in our model due to the added
assumption of φ1 = φ2 + 90◦. These correlations might
be useful to explore the underlying correlations between the
quark mass spectrum and the flavor mixing pattern. Also,
there is an obvious linear correlation between α and δ owing
to the the unitarity triangle relation α+β +γ = π . The grey
shaded regions in these plots indicate the 1σ experimental
ranges [1] for these observables.

In Fig. 4a, we have plotted the contours of |Vus |, |Vcb|,
|Vub| and sin 2β in Du–φ2 plane, for mean values of quark
masses and Dd = 0.4. The Fig. 4b depicts the zoomed in
region of the same figure for better clarity. We infer that
the precision determination of sin 2β (red lines) and |Vcb|
(blue lines) will significantly restrict the allowed range of
Du . However, |Vus | (black lines) does not put strong con-
straints on φ2 or Du . We also find that CKM element |Vub|
(green lines) loosely restricts Du . The phase φ2 is restricted
by |Vcb|, |Vub| and sin 2β. These conclusions remain valid,
even when the value of Dd is varied in its allowed range.
Thus, a more precise determination of sin 2β and VCKM ele-
ments will result in an even more restricted range of φ2,
which would further yield a more precise evaluation of CP
violating phase δ as φ2 has interesting implications for the
CP violating phase δ, as emphasized above.

3.1 Predictions for CKM matrix, UT angles, J and δ

The mass matrix we formulated in Eq. (13), allows us to
calculate the ranges of elements of the CKM mixing matrix
using the methodology discussed earlier. The CKM matrix
obtained is given as

VCKM

=
⎛
⎝

0.9739−0.9741 0.2260−0.2270 0.00352−0.00372
0.2258−0.2269 0.9731−0.9733 0.0399−0.0414
0.0070−0.0099 0.03889−0.04081 0.9991−0.9992

⎞
⎠ .

(16)

The above ranges are well consistent with the current global
fit by PDG [1]. The other two interior angles, α and γ , of the
UT can be evaluated from Eq. (7) to be

α = (66.4−113.6)◦, γ = (44.9−92.1)◦, (17)
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Fig. 2 The ranges of mass
matrix elements for both Mu
and Md , depicting the hierarchy
observed

Fig. 3 The top and middle
panels show the parameter space
spanned by the free parameters
of our mass matrices model
given in Eq. (13), while the
lowest panel displays the
correlations between |Vus | and δ

and between α and δ
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Fig. 4 a Contours of
|Vus |, |Vcb|, |Vub| and sin 2β in
Du and φ2 plane, for mean
values of quark masses and
Dd = 0.4, for the matrices given
in Eq. (13). The solid lines are
for the lower limit of the range
mentioned in the Table 1, while
the dashed lines are for the
upper limit. b The zoomed in
region of a in the allowed range

(a) (b)

Fig. 5 Dependence of |Vus |,
|Vub|, |Vcb| and β on quark
masses mu(orange), mc(cyan),
mt (black), md (red), ms (blue),
mb(green).The x-axis of each
plot corresponds to the 1σ

variation in the quark masses,
while the shaded region
corresponds to the experimental
value of that particular mixing
parameter at 1σ , as given in the
Table 1

while the experimental value of β was used as a constraint
to check the viability of mass matrices. In order to evaluate
Jarlskog’s invariant rephasing parameter J and CP violating
phase δ, we use Eqs. (9) and (12) to obtain

J = (2.30−3.39) × 10−5, δ = (44.9−92.1)◦. (18)

The above ranges are quite wide and include the ranges
given by the global fit analysis and experiments [1]. Similar
results for CP violating phase and other CKM parameters
have been obtained in the literature. For example, in Ref. [29],
authors obtain δ = (87.9)◦ as best fit value for the case of
a 4-zero textures having the interplay of μ − τ reflection
symmetry. Similarly in Ref. [30], authors present five differ-

ent viable models of texture zeros originating from modular
symmetry and obtain the best fit value of δ = (69.2 ± 3.1)◦.
Thus, our model, despite having only one phase parameter, is
not only consistent with other such analyses, but also gives
an excellent fit to most of the CKM parameters, which is
phenomenologically very encouraging.

3.2 Sensitivity of CKM elements on quark masses

To understand the role of precision determination of the quark
masses for the mass matrix model formulated by us, given in
Eq. (13), we have shown the variation of |Vus |, |Vub|, |Vcb|
and sin 2β with respect to the quark masses in Fig. 5.
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The x-axis of each plot corresponds to the variation in the
quark masses mu, mc, mt , md , ms and mb, shown respec-
tively by orange, cyan, black, red, blue and green lines. Each
quark mass is varied from its minimum to maximum value
in the 1σ range given in Table 1. The shaded region in each
plot corresponds to the experimental value of that particular
mixing parameter at 1σ , as given in the Table 1. A quick
look at the Fig. 5 indicates that |Vus | is most sensitive to
the variation in the masses md and ms , while |Vub| shows
maximum sensitivity to mu along with md and ms . Simi-
larly, |Vcb| and β are most sensitive to variation in ms and
mb. Since the measurement of light quark masses are not as
precise as measurement of heavy quarks, therefore, further
refinement in the measurement of these quark masses and
CKM parameters will help in eliminating many of the quark
mass models.

4 Summary and conclusion

Motivated by the extensively used texture 4 zero Fritzsch–
Xing quark mass matrices, which are very successful in
describing the CKM phenomenology, we formulate these
with minimum possible free parameters. In the proposed
structure, these quark mass matrices contain only one free
phase compared with the usually considered two phases. We
study the implications of this particular set of texture 4 zero
mass matrices for the CKM phenomenology, particularly for
the CP violation parameters, J and corresponding phase δ.
We find that these matrices very well reproduce not only the
CKM matrix but also the angles of the UT, J and δ well
within their experimental and global fit ranges. We observe
that except for the element (1,2), the matrix elements in both
up and down sector follow a weak hierarchy, for example,
(3, 3) � (2, 3) � (2, 2) � (1, 2). We find that there is a
strong correlation between mass matrix element (2,2) of up
and down sector, i.e., Du and Dd . Further, the correlation
between Du and φ2 and between Dd and φ2 is very simi-
lar, hinting towards an underlying symmetry in up and down
sectors. We also infer that φ2 is strongly restricted by |Vus |
while Du and Dd are primarily restricted by the limits sin 2β

and |Vcb|. Due to a very strong correlation between the CP
violating phase δ and φ2, a precise measurement of δ will
constrain the phase structure of the model further. The inves-
tigation of the sensitivity of various CKM elements on quark
masses shows that a precision measurement of quark masses
has the potential to constrain the model to a good extent.

In conclusion, it can be said that even in the absence of
theoretical justification, mass matrices with fewer parame-
ters are not only simple, but also more predictive and serve
as a useful guide for model building and calls for a theoreti-
cal investigations to understand the underlying symmetries.

Further, it remains to be seen whether this texture can also
be applied to the lepton sector.
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